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Preface

Thank you for your interest in our book, but more importantly, thank you for taking the time to
read the Preface. I always read the Prefaces of the textbooks which I use in my classes because
I believe it is in the Preface where I begin to understand the authors - who they are, what their
motivation for writing the book was, and what they hope the reader will get out of reading the
text. Pedagogical issues such as content organization and how professors and students should best
use a book can usually be gleaned out of its Table of Contents, but the reasons behind the choices
authors make should be shared in the Preface. Also, I feel that the Preface of a textbook should
demonstrate the authors’ love of their discipline and passion for teaching, so that I come away
believing that they really want to help students and not just make money. Thus, I thank my fellow
Preface-readers again for giving me the opportunity to share with you the need and vision which
guided the creation of this book and passion which both Carl and I hold for Mathematics and the
teaching of it.

Carl and I are natives of Northeast Ohio. We met in graduate school at Kent State University
in 1997. I finished my Ph.D in Pure Mathematics in August 1998 and started teaching at Lorain
County Community College in Elyria, Ohio just two days after graduation. Carl earned his Ph.D in
Pure Mathematics in August 2000 and started teaching at Lakeland Community College in Kirtland,
Ohio that same month. Our schools are fairly similar in size and mission and each serves a similar
population of students. The students range in age from about 16 (Ohio has a Post-Secondary
Enrollment Option program which allows high school students to take college courses for free while
still in high school.) to over 65. Many of the “non-traditional” students are returning to school in
order to change careers. A majority of the students at both schools receive some sort of financial
aid, be it scholarships from the schools’ foundations, state-funded grants or federal financial aid
like student loans, and many of them have lives busied by family and job demands. Some will
be taking their Associate degrees and entering (or re-entering) the workforce while others will be
continuing on to a four-year college or university. Despite their many differences, our students
share one common attribute: they do not want to spend $200 on a College Algebra book.

The challenge of reducing the cost of textbooks is one that many states, including Ohio, are taking
quite seriously. Indeed, state-level leaders have started to work with faculty from several of the
colleges and universities in Ohio and with the major publishers as well. That process will take
considerable time so Carl and I came up with a plan of our own. We decided that the best
way to help our students right now was to write our own College Algebra book and give it away
electronically for free. We were granted sabbaticals from our respective institutions for the Spring
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semester of 2009 and actually began writing the textbook on December 16, 2008. Using an open-
source text editor called TexNicCenter and an open-source distribution of LaTeX called MikTex
2.7, Carl and I wrote and edited all of the text, exercises and answers and created all of the graphs
(using Metapost within LaTeX) for Version 0.9 in about eight months. (We choose to create a
text in only black and white to keep printing costs to a minimum for those students who prefer
a printed edition. This somewhat Spartan page layout stands in sharp relief to the explosion of
colors found in most other College Algebra texts, but neither Carl nor I believe the four-color
print adds anything of value.) I used the book in three sections of College Algebra at Lorain
County Community College in the Fall of 2009 and Carl’s colleague, Dr. Bill Previts, taught a
section of College Algebra at Lakeland with the book that semester as well. Students had the
option of downloading the book as a .pdf file from our website www.stitz-zeager.com or buying a
low-cost printed version from our colleges’ respective bookstores. (By giving this book away for
free electronically, we end the cycle of new editions appearing every 18 months to curtail the used
book market.) During Thanksgiving break in November 2009, many additional exercises written
by Dr. Previts were added and the typographical errors found by our students and others were
corrected. On December 10, 2009, Version

√
2 was released. The book remains free for download at

our website and by using Lulu.com as an on-demand printing service, our bookstores are now able
to provide a printed edition for just under $19. Neither Carl nor I have, or will ever, receive any
royalties from the printed editions. As a contribution back to the open-source community, all of
the LaTeX files used to compile the book are available for free under a Creative Commons License
on our website as well. That way, anyone who would like to rearrange or edit the content for their
classes can do so as long as it remains free.

The only disadvantage to not working for a publisher is that we don’t have a paid editorial staff.
What we have instead, beyond ourselves, is friends, colleagues and unknown people in the open-
source community who alert us to errors they find as they read the textbook. What we gain in not
having to report to a publisher so dramatically outweighs the lack of the paid staff that we have
turned down every offer to publish our book. (As of the writing of this Preface, we’ve had three
offers.) By maintaining this book by ourselves, Carl and I retain all creative control and keep the
book our own. We control the organization, depth and rigor of the content which means we can resist
the pressure to diminish the rigor and homogenize the content so as to appeal to a mass market.
A casual glance through the Table of Contents of most of the major publishers’ College Algebra
books reveals nearly isomorphic content in both order and depth. Our Table of Contents shows a
different approach, one that might be labeled “Functions First.” To truly use The Rule of Four,
that is, in order to discuss each new concept algebraically, graphically, numerically and verbally, it
seems completely obvious to us that one would need to introduce functions first. (Take a moment
and compare our ordering to the classic “equations first, then the Cartesian Plane and THEN
functions” approach seen in most of the major players.) We then introduce a class of functions
and discuss the equations, inequalities (with a heavy emphasis on sign diagrams) and applications
which involve functions in that class. The material is presented at a level that definitely prepares a
student for Calculus while giving them relevant Mathematics which can be used in other classes as
well. Graphing calculators are used sparingly and only as a tool to enhance the Mathematics, not
to replace it. The answers to nearly all of the computational homework exercises are given in the

http://www.stitz-zeager.com
http://www.lulu.com/content/paperback-book/college-algebra/7513097


xi

text and we have gone to great lengths to write some very thought provoking discussion questions
whose answers are not given. One will notice that our exercise sets are much shorter than the
traditional sets of nearly 100 “drill and kill” questions which build skill devoid of understanding.
Our experience has been that students can do about 15-20 homework exercises a night so we very
carefully chose smaller sets of questions which cover all of the necessary skills and get the students
thinking more deeply about the Mathematics involved.

Critics of the Open Educational Resource movement might quip that “open-source is where bad
content goes to die,” to which I say this: take a serious look at what we offer our students. Look
through a few sections to see if what we’ve written is bad content in your opinion. I see this open-
source book not as something which is “free and worth every penny”, but rather, as a high quality
alternative to the business as usual of the textbook industry and I hope that you agree. If you have
any comments, questions or concerns please feel free to contact me at jeff@stitz-zeager.com or Carl
at carl@stitz-zeager.com.

Jeff Zeager
Lorain County Community College
January 25, 2010



xii Preface



Chapter 1

Relations and Functions

1.1 The Cartesian Coordinate Plane

In order to visualize the pure excitement that is Algebra, we need to unite Algebra and Geometry.
Simply put, we must find a way to draw algebraic things. Let’s start with possibly the greatest
mathematical achievement of all time: the Cartesian Coordinate Plane.1 Imagine two real
number lines crossing at a right angle at 0 as below.
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The horizontal number line is usually called the x-axis while the vertical number line is usually
called the y-axis.2 As with the usual number line, we imagine these axes extending off indefinitely
in both directions. Having two number lines allows us to locate the position of points off of the
number lines as well as points on the lines themselves.

1So named in honor of René Descartes.
2The labels can vary depending on the context of application.

http://en.wikipedia.org/wiki/Descartes
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For example, consider the point P below on the left. To use the numbers on the axes to label this
point, we imagine dropping a vertical line from the x-axis to P and extending a horizontal line
from the y-axis to P . We then describe the point P using the ordered pair (2,−4). The first
number in the ordered pair is called the abscissa or x-coordinate and the second is called the
ordinate or y-coordinate.3 Taken together, the ordered pair (2,−4) comprise the Cartesian
coordinates of the point P . In practice, the distinction between a point and its coordinates is
blurred; for example, we often speak of ‘the point (2,−4).’ We can think of (2,−4) as instructions
on how to reach P from the origin by moving 2 units to the right and 4 units downwards. Notice
that the order in the ordered pair is important − if we wish to plot the point (−4, 2), we would
move to the left 4 units from the origin and then move upwards 2 units, as below on the right.
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Example 1.1.1. Plot the following points: A(5, 8), B
(
−5

2 , 3
)
, C(−5.8,−3), D(4.5,−1), E(5, 0),

F (0, 5), G(−7, 0), H(0,−9), O(0, 0).4

Solution. To plot these points, we start at the origin and move to the right if the x-coordinate is
positive; to the left if it is negative. Next, we move up if the y-coordinate is positive or down if it
is negative. If the x-coordinate is 0, we start at the origin and move along the y-axis only. If the
y-coordinate is 0 we move along the x-axis only.

3Again, the names of the coordinates can vary depending on the context of the application. If, for example, the
horizontal axis represented time we might choose to call it the t-axis. The first number in the ordered pair would
then be the t-coordinate.

4The letter O is almost always reserved for the origin.
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x

y

A(5, 8)

B
(
−5

2 , 3
)

C(−5.8,−3)
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When we speak of the Cartesian Coordinate Plane, we mean the set of all possible ordered pairs
(x, y) as x and y take values from the real numbers. Below is a summary of important facts about
Cartesian coordinates.

Important Facts about the Cartesian Coordinate Plane

• (a, b) and (c, d) represent the same point in the plane if and only if a = c and b = d.

• (x, y) lies on the x-axis if and only if y = 0.

• (x, y) lies on the y-axis if and only if x = 0.

• The origin is the point (0, 0). It is the only point common to both axes.
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The axes divide the plane into four regions called quadrants. They are labeled with Roman
numerals and proceed counterclockwise around the plane:

x

y

Quadrant I

x > 0, y > 0

Quadrant II

x < 0, y > 0

Quadrant III

x < 0, y < 0

Quadrant IV

x > 0, y < 0

−4 −3 −2 −1 1 2 3 4
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−1
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4

For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2) in Quadrant III, and (1,−2)
in Quadrant IV. If a point other than the origin happens to lie on the axes, we typically refer to
the point as lying on the positive or negative x-axis (if y = 0) or on the positive or negative y-axis
(if x = 0). For example, (0, 4) lies on the positive y-axis whereas (−117, 0) lies on the negative
x-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of mathematics is symmetry.5 There are many types of
symmetry in mathematics, but three of them can be discussed easily using Cartesian Coordinates.

Definition 1.1. Two points (a, b) and (c, d) in the plane are said to be

• symmetric about the x-axis if a = c and b = −d

• symmetric about the y-axis if a = −c and b = d

• symmetric about the origin if a = −c and b = −d

5According to Carl. Jeff thinks symmetry is overrated.
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Schematically,

0 x

y

P (x, y)Q(−x, y)

S(x,−y)R(−x,−y)

In the above figure, P and S are symmetric about the x-axis, as are Q and R; P and Q are
symmetric about the y-axis, as are R and S; and P and R are symmetric about the origin, as are
Q and S.

Example 1.1.2. Let P be the point (−2, 3). Find the points which are symmetric to P about the:

1. x-axis 2. y-axis 3. origin

Check your answer by graphing.

Solution. The figure after Definition 1.1 gives us a good way to think about finding symmetric
points in terms of taking the opposites of the x- and/or y-coordinates of P (−2, 3).

1. To find the point symmetric about the x-axis, we replace the y-coordinate with its opposite
to get (−2,−3).

2. To find the point symmetric about the y-axis, we replace the x-coordinate with its opposite
to get (2, 3).

3. To find the point symmetric about the origin, we replace the x- and y-coordinates with their
opposites to get (2,−3).

x

y

P (−2, 3)

(−2,−3)

(2, 3)

(2,−3)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
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One way to visualize the processes in the previous example is with the concept of reflections. If
we start with our point (−2, 3) and pretend the x-axis is a mirror, then the reflection of (−2, 3)
across the x-axis would lie at (−2,−3). If we pretend the y-axis is a mirror, the reflection of (−2, 3)
across that axis would be (2, 3). If we reflect across the x-axis and then the y-axis, we would go
from (−2, 3) to (−2,−3) then to (2,−3), and so we would end up at the point symmetric to (−2, 3)
about the origin. We summarize and generalize this process below.

Reflections
To reflect a point (x, y) about the:

• x-axis, replace y with −y.

• y-axis, replace x with −x.

• origin, replace x with −x and y with −y.

1.1.1 Distance in the Plane

Another important concept in geometry is the notion of length. If we are going to unite Algebra
and Geometry using the Cartesian Plane, then we need to develop an algebraic understanding of
what distance in the plane means. Suppose we have two points, P (x1, y1) and Q (x2, y2) , in the
plane. By the distance d between P and Q, we mean the length of the line segment joining P with
Q. (Remember, given any two distinct points in the plane, there is a unique line containing both
points.) Our goal now is to create an algebraic formula to compute the distance between these two
points. Consider the generic situation below on the left.

P (x1, y1)

Q (x2, y2)

d

P (x1, y1)

Q (x2, y2)

d

(x2, y1)

With a little more imagination, we can envision a right triangle whose hypotenuse has length d as
drawn above on the right. From the latter figure, we see that the lengths of the legs of the triangle
are |x2 − x1| and |y2 − y1| so the Pythagorean Theorem gives us

|x2 − x1|2 + |y2 − y1|2 = d2

(x2 − x1)
2 + (y2 − y1)

2 = d2

(Do you remember why we can replace the absolute value notation with parentheses?) By extracting
the square root of both sides of the second equation and using the fact that distance is never
negative, we get

http://en.wikipedia.org/wiki/Pythagorean_Theorem
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Equation 1.1. The Distance Formula: The distance d between the points P (x1, y1) and
Q (x2, y2) is:

d =

√
(x2 − x1)

2 + (y2 − y1)
2

It is not always the case that the points P and Q lend themselves to constructing such a triangle.
If the points P and Q are arranged vertically or horizontally, or describe the exact same point, we
cannot use the above geometric argument to derive the distance formula. It is left to the reader to
verify Equation 1.1 for these cases.

Example 1.1.3. Find and simplify the distance between P (−2, 3) and Q(1,−3).

Solution.

d =
√

(x2 − x1)
2 + (y2 − y1)

2

=
√

(1− (−2))2 + (−3− 3)2

=
√

9 + 36

= 3
√

5

So, the distance is 3
√

5.

Example 1.1.4. Find all of the points with x-coordinate 1 which are 4 units from the point (3, 2).

Solution. We shall soon see that the points we wish to find are on the line x = 1, but for now
we’ll just view them as points of the form (1, y). Visually,

(1, y)

(3, 2)

x

y

distance is 4 units

2 3

−3

−2

−1

1

2

3

We require that the distance from (3, 2) to (1, y) be 4. The Distance Formula, Equation 1.1, yields
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d =
√

(x2 − x1)
2 + (y2 − y1)

2

4 =
√

(1− 3)2 + (y − 2)2

4 =
√

4 + (y − 2)2

42 =
(√

4 + (y − 2)2
)2

squaring both sides

16 = 4 + (y − 2)2

12 = (y − 2)2

(y − 2)2 = 12

y − 2 = ±
√

12 extracting the square root

y − 2 = ±2
√

3

y = 2± 2
√

3

We obtain two answers: (1, 2 + 2
√

3) and (1, 2− 2
√

3). The reader is encouraged to think about
why there are two answers.

Related to finding the distance between two points is the problem of finding the midpoint of the
line segment connecting two points. Given two points, P (x1, y1) and Q (x2, y2), the midpoint, M ,
of P and Q is defined to be the point on the line segment connecting P and Q whose distance from
P is equal to its distance from Q.

P (x1, y1)

Q (x2, y2)

M

If we think of reaching M by going ‘halfway over’ and ‘halfway up’ we get the following formula.

Equation 1.2. The Midpoint Formula: The midpoint M of the line segment connecting
P (x1, y1) and Q (x2, y2) is:

M =

(
x1 + x2

2
,
y1 + y2

2

)

If we let d denote the distance between P and Q, we leave it as an exercise to show that the distance
between P and M is d/2 which is the same as the distance between M and Q. This suffices to
show that Equation 1.2 gives the coordinates of the midpoint.
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Example 1.1.5. Find the midpoint of the line segment connecting P (−2, 3) and Q(1,−3).

Solution.

M =

(
x1 + x2

2
,
y1 + y2

2

)
=

(
(−2) + 1

2
,
3 + (−3)

2

)
=

(
−1

2
,
0

2

)
=

(
−1

2
, 0

)
The midpoint is

(
−1

2
, 0

)
.

We close with a more abstract application of the Midpoint Formula. We will revisit the following
example in Exercise 14 in Section 2.1.

Example 1.1.6. If a 6= b, prove the line y = x is a bisector of the line segment connecting the
points (a, b) and (b, a).

Solution. Recall from geometry that a bisector is a line which equally divides a line segment. To
prove y = x bisects the line segment connecting the (a, b) and (b, a), it suffices to show the midpoint
of this line segment lies on the line y = x. Applying Equation 1.2 yields

M =

(
a+ b

2
,
b+ a

2

)
=

(
a+ b

2
,
a+ b

2

)
Since the x and y coordinates of this point are the same, we find that the midpoint lies on the line
y = x, as required.



10 Relations and Functions

1.1.2 Exercises

1. Plot and label the points A(−3,−7), B(1.3,−2), C(π,
√

10), D(0, 8), E(−5.5, 0), F (−8, 4),
G(9.2,−7.8) and H(7, 5) in the Cartesian Coordinate Plane given below.

x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9
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2. For each point given in Exercise 1 above

• Identify the quadrant or axis in/on which the point lies.

• Find the point symmetric to the given point about the x-axis.

• Find the point symmetric to the given point about the y-axis.

• Find the point symmetric to the given point about the origin.
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3. For each of the following pairs of points, find the distance d between them and find the
midpoint M of the line segment connecting them.

(a) (1, 2), (−3, 5)

(b) (3,−10), (−1, 2)

(c)

(
1

2
, 4

)
,

(
3

2
,−1

)
(d)

(
−2

3
,
3

2

)
,

(
7

3
, 2

)
(e)

(
24

5
,
6

5

)
,

(
−11

5
,−19

5

)
.

(f)
(√

2,
√

3
)
,
(
−
√

8,−
√

12
)

(g)
(
2
√

45,
√

12
)
,
(√

20,
√

27
)
.

(h) (0, 0), (x, y)

4. Find all of the points of the form (x,−1) which are 4 units from the point (3, 2).

5. Find all of the points on the y-axis which are 5 units from the point (−5, 3).

6. Find all of the points on the x-axis which are 2 units from the point (−1, 1).

7. Find all of the points of the form (x,−x) which are 1 unit from the origin.

8. Let’s assume for a moment that we are standing at the origin and the positive y-axis points
due North while the positive x-axis points due East. Our Sasquatch-o-meter tells us that
Sasquatch is 3 miles West and 4 miles South of our current position. What are the coordinates
of his position? How far away is he from us? If he runs 7 miles due East what would his new
position be?

9. Verify the Distance Formula 1.1 for the cases when:

(a) The points are arranged vertically. (Hint: Use P (a, y1) and Q(a, y2).)

(b) The points are arranged horizontally. (Hint: Use P (x1, b) and Q(x2, b).)

(c) The points are actually the same point. (You shouldn’t need a hint for this one.)

10. Verify the Midpoint Formula by showing the distance between P (x1, y1) and M and the
distance between M and Q(x2, y2) are both half of the distance between P and Q.

11. Show that the points A, B and C below are the vertices of a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8) (b) A(−3, 1), B(4, 0) and C(0,−3)

12. Find a point D(x, y) such that the points A(−3, 1), B(4, 0), C(0,−3) and D are the corners
of a square. Justify your answer.

13. The world is not flat.6 Thus the Cartesian Plane cannot possibly be the end of the story.
Discuss with your classmates how you would extend Cartesian Coordinates to represent the
three dimensional world. What would the Distance and Midpoint formulas look like, assuming
those concepts make sense at all?

6There are those who disagree with this statement. Look them up on the Internet some time when you’re bored.
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1.1.3 Answers

1. The required points A(−3,−7), B(1.3,−2), C(π,
√

10), D(0, 8), E(−5.5, 0), F (−8, 4),
G(9.2,−7.8), and H(7, 5) are plotted in the Cartesian Coordinate Plane below.

x

y

A(−3,−7)

B(1.3,−2)

C(π,
√

10)

D(0, 8)

E(−5.5, 0)

F (−8, 4)

G(9.2,−7.8)

H(7, 5)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9
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2. (a) The point A(−3,−7) is

• in Quadrant III

• symmetric about x-axis with (−3, 7)

• symmetric about y-axis with (3,−7)

• symmetric about origin with (3, 7)

(b) The point B(1.3,−2) is

• in Quadrant IV

• symmetric about x-axis with (1.3, 2)

• symmetric about y-axis with (−1.3,−2)

• symmetric about origin with (−1.3, 2)

(c) The point C(π,
√

10) is

• in Quadrant I

• symmetric about x-axis with (π,−
√

10)

• symmetric about y-axis with (−π,
√

10)

• symmetric about origin with (−π,−
√

10)

(d) The point D(0, 8) is

• on the positive y-axis

• symmetric about x-axis with (0,−8)

• symmetric about y-axis with (0, 8)

• symmetric about origin with (0,−8)

(e) The point E(−5.5, 0) is

• on the negative x-axis

• symmetric about x-axis with (−5.5, 0)

• symmetric about y-axis with (5.5, 0)

• symmetric about origin with (5.5, 0)

(f) The point F (−8, 4) is

• in Quadrant II

• symmetric about x-axis with (−8,−4)

• symmetric about y-axis with (8, 4)

• symmetric about origin with (8,−4)

(g) The point G(9.2,−7.8) is

• in Quadrant IV

• symmetric about x-axis with (9.2, 7.8)

• symmetric about y-axis with (−9.2,−7.8)

• symmetric about origin with (−9.2, 7.8)

(h) The point H(7, 5) is

• in Quadrant I

• symmetric about x-axis with (7,−5)

• symmetric about y-axis with (−7, 5)

• symmetric about origin with (−7,−5)

3. (a) d = 5, M =

(
−1,

7

2

)
(b) d = 4

√
10, M = (1,−4)

(c) d =
√

26, M =

(
1,

3

2

)

(d) d =

√
37

2
, M =

(
5

6
,

7

4

)

(e) d =
√

74, M =

(
13

10
,−13

10

)
.

(f) d = 3
√

5, M =

(
−
√

2

2
,−
√

3

2

)

(g) d =
√

83, M =

(
4
√

5,
5
√

3

2

)
.

(h) d =
√
x2 + y2, M =

(x
2
,
y

2

)
4. (3 +

√
7,−1), (3−

√
7,−1)

5. (0, 3)

6. (−1 +
√

3, 0), (−1−
√

3, 0)

7.
(√

2
2 ,−

√
2
2

)
,
(
−
√
2
2 ,
√
2
2

)
8. (−3,−4), 5 miles, (4,−4)

11. (a) The distance from A to B is
√

13, the distance from A to C is
√

52, and the distance from B to
C is

√
65. Since (√

13
)2

+
(√

52
)2

=
(√

65
)2
,

we are guaranteed by the converse of the Pythagorean Theorem that the triangle is right.

http://en.wikipedia.org/wiki/Pythagorean_theorem#Converse
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1.2 Relations

We now turn our attention to sets of points in the plane.

Definition 1.2. A relation is a set of points in the plane.

Throughout this text we will see many different ways to describe relations. In this section we will
focus our attention on describing relations graphically, by means of the list (or roster) method and
algebraically. Depending on the situation, one method may be easier or more convenient to use
than another. Consider the set of points below

(−2, 1)

(4, 3)

(0,−3)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

These three points constitute a relation. Let us call this relation R. Above, we have a graphical
description of R. Although it is quite pleasing to the eye, it isn’t the most portable way to describe
R. The list (or roster) method of describing R simply lists all of the points which belong to R.
Hence, we write: R = {(−2, 1), (4, 3), (0,−3)}.1 The roster method can be extended to describe
infinitely many points, as the next example illustrates.

Example 1.2.1. Graph the following relations.

1. A = {(0, 0), (−3, 1), (4, 2), (−3, 2)}

2. HLS1 = {(x, 3) : −2 ≤ x ≤ 4}

3. HLS2 = {(x, 3) : −2 ≤ x < 4}

4. V = {(3, y) : y is a real number}

1We use ‘set braces’ {} to indicate that the points in the list all belong to the same set, in this case, R.
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Solution.

1. To graph A, we simply plot all of the points which belong to A, as shown below on the left.

2. Don’t let the notation in this part fool you. The name of this relation is HLS1, just like the
name of the relation in part 1 was R. The letters and numbers are just part of its name, just
like the numbers and letters of the phrase ‘King George III’ were part of George’s name. The
next hurdle to overcome is the description of HLS1 itself − a variable and some seemingly
extraneous punctuation have found their way into our nice little roster notation! The way
to make sense of the construction {(x, 3) : −2 ≤ x ≤ 4} is to verbalize the set braces {}
as ‘the set of’ and the colon : as ‘such that’. In words, {(x, 3) : −2 ≤ x ≤ 4} is: ‘the set
of points (x, 3) such that −2 ≤ x ≤ 4.’ The purpose of the variable x in this case is to
describe infinitely many points. All of these points have the same y-coordinate, 3, but the
x-coordinate is allowed to vary between −2 and 4, inclusive. Some of the points which belong
to HLS1 include some friendly points like: (−2, 3), (−1, 3), (0, 3), (1, 3), (2, 3), (3, 3), and
(4, 3). However, HLS1 also contains the points (0.829, 3),

(
−5

6 , 3
)
, (
√
π, 3), and so on. It is

impossible to list all of these points, which is why the variable x is used. Plotting several
friendly representative points should convince you that HLS1 describes the horizontal line
segment from the point (−2, 3) up to and including the point (4, 3).

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of A

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of HLS1

3. HLS2 is hauntingly similar to HLS1. In fact, the only difference between the two is that
instead of ‘−2 ≤ x ≤ 4’ we have ‘−2 ≤ x < 4’. This means that we still get a horizontal line
segment which includes (−2, 3) and extends to (4, 3), but does not include (4, 3) because of
the strict inequality x < 4. How do we denote this on our graph? It is a common mistake to
make the graph start at (−2, 3) end at (3, 3) as pictured below on the left. The problem with
this graph is that we are forgetting about the points like (3.1, 3), (3.5, 3), (3.9, 3), (3.99, 3),
and so forth. There is no real number that comes ‘immediately before’ 4, and so to describe
the set of points we want, we draw the horizontal line segment starting at (−2, 3) and draw
an ‘open circle’ at (4, 3) as depicted below on the right.
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x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

This is NOT the correct graph of HLS2

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of HLS2

4. Our last example, V , describes the set of points (3, y) such that y is a real number. All of
these points have an x-coordinate of 3, but the y-coordinate is free to be whatever it wants
to be, without restriction. Plotting a few ‘friendly’ points of V should convince you that all
the points of V lie on a vertical line which crosses the x-axis at x = 3. Since there is no
restriction on the y-coordinate, we put arrows on the end of the portion of the line we draw
to indicate it extends indefinitely in both directions. The graph of V is below on the left.

x

y

1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graph of V

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

The graph of y = −2

The relation V in the previous example leads us to our final way to describe relations: alge-
braically. We can simply describe the points in V as those points which satisfy the equation
x = 3. Most likely, you have seen equations like this before. Depending on the context, ‘x = 3’
could mean we have solved an equation for x and arrived at the solution x = 3. In this case, how-
ever, ‘x = 3’ describes a set of points in the plane whose x-coordinate is 3. Similarly, the equation
y = −2 in this context corresponds to all points in the plane whose y-coordinate is −2. Since there
are no restrictions on the x-coordinate listed, we would graph the relation y = −2 as the horizontal
line above on the right. In general, we have the following.
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Equations of Vertical and Horizontal Lines

• The graph of the equation x = a is a vertical line through (a, 0).

• The graph of the equation y = b is a horizontal line through (0, b).

In the next section, and in many more after that, we shall explore the graphs of equations in great
detail.2 For now, we shall use our final example to illustrate how relations can be used to describe
entire regions in the plane.

Example 1.2.2. Graph the relation: R = {(x, y) : 1 < y ≤ 3}

Solution. The relation R consists of those points whose y-coordinate only is restricted between 1
and 3 excluding 1, but including 3. The x-coordinate is free to be whatever we like. After plotting
some3 friendly elements of R, it should become clear that R consists of the region between the
horizontal lines y = 1 and y = 3. Since R requires that the y-coordinates be greater than 1, but not
equal to 1, we dash the line y = 1 to indicate that those points do not belong to R. Graphically,

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of R

2In fact, much of our time in College Algebra will be spent examining the graphs of equations.
3The word ‘some’ is a relative term. It may take 5, 10, or 50 points until you see the pattern.
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1.2.1 Exercises

1. Graph the following relations.

(a) {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}
(b) {(−2, 2), (−2,−1), (3, 5), (3,−4)}
(c)

{(
n, 4− n2

)
: n = 0,±1,±2

}
(d)

{(
6
k , k
)

: k = ±1,±2,±3,±4,±5,±6
}

2. Graph the following relations.

(a) {(x,−2) : x > −4}
(b) {(2, y) : y ≤ 5}
(c) {(−2, y) : −3 < y < 4}
(d) {(x, y) : x ≤ 3}

(e) {(x, y) : y < 4}
(f) {(x, y) : x ≤ 3, y < 2}
(g) {(x, y) : x > 0, y < 4}
(h) {(x, y) : −

√
2 ≤ x ≤ 2

3 , π < y ≤ 9
2}

3. Describe the following relations using the roster method.

(a)

x

y

−4 −3 −2 −1 1
−1

1

2

3

4

The graph of relation A

(b)

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

The graph of relation B

(c)

x

y

−3 −2 −1 1 2 3

1

2

3

4

The graph of relation C

(d)

x

y

−4 −3 −2 −1 1 2 3

−3

−2

−1

1

2

3

The graph of relation D
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(e)

x

y

−1 1 2 3 4 5
−1

1

2

3

4

5

The graph of relation E
(f)

x

y

−4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

The graph of relation F

4. Graph the following lines.

(a) x = −2 (b) y = 3

5. What is another name for the line x = 0? For y = 0?

6. Some relations are fairly easy to describe in words or with the roster method but are rather
difficult, if not impossible, to graph. Discuss with your classmates how you might graph the
following relations. Please note that in the notation below we are using the ellipsis, . . . ,
to denote that the list does not end, but rather, continues to follow the established pattern
indefinitely. For the first two relations, give two examples of points which belong to the
relation and two points which do not belong to the relation.

(a) {(x, y) : x is an odd integer, and y is an even integer.}
(b) {(x, 1) : x is an irrational number }
(c) {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . .}
(d) {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . .}
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1.2.2 Answers

1. (a)

x

y

−3−2−1 1 2 3

1
2

3

4
5

6

7
8

9

(b)

x

y

−2−1 1 2 3

−4

−3
−2

−1

1

2
3

4

5

(c)

x

y

−2 −1 1 2

1

2

3

4

(d)

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−6

−5
−4

−3
−2

−1

1

2

3
4

5
6

2. (a)

x

y

−4 −3 −2 −1 1 2 3 4

−3

−1

(b)

x

y

1 2 3

−3

−2

−1

1

2

3

4

5

(c)

x

y

−3 −2 −1

−3
−2

−1

1

2
3

4

(d)

x

y

1 2 3

−3

−2

−1

1

2

3
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(e)

x

y

−3 −2 −1 1 2 3

1

2

3

4

(f)

x

y

1 2 3

−3

−2

−1

1

2

3

(g)

x

y

−1 1 2 3

1

2

3

4

(h)

x

y

−3 −2 −1 1

1

2

3

4

5

6

7

3. (a) A = {(−4,−1), (−3, 0), (−2, 1), (−1, 2), (0, 3), (1, 4)}
(b) B = {(x, y) : x > −2}
(c) C = {(x, y) : y ≥ 0}
(d) D = {(x, y) : −3 < x ≤ 2}
(e) E = {(x, y) : x ≥ 0,y ≥ 0}
(f) F = {(x, y) : −4 < x < 5, −3 < y < 2}

4. (a)

x

y

−3 −2 −1

1

2

3

The line x = −2

(b)

x

y

−3 −2 −1

1

2

3

The line y = 3

5. The line x = 0 is the y-axis and the line y = 0 is the x-axis.
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1.3 Graphs of Equations

In the previous section, we said that one could describe relations algebraically using equations. In
this section, we begin to explore this topic in greater detail. The main idea of this section is

The Fundamental Graphing Principle
The graph of an equation is the set of points which satisfy the equation. That is, a point (x, y) is
on the graph of an equation if and only if x and y satisfy the equation.

Example 1.3.1. Determine if (2,−1) is on the graph of x2 + y3 = 1.

Solution. To check, we substitute x = 2 and y = −1 into the equation and see if the equation is
satisfied

(2)2 + (−1)3 ?
= 1

3 6= 1

Hence, (2,−1) is not on the graph of x2 + y3 = 1.

We could spend hours randomly guessing and checking to see if points are on the graph of the
equation. A more systematic approach is outlined in the following example.

Example 1.3.2. Graph x2 + y3 = 1.

Solution. To efficiently generate points on the graph of this equation, we first solve for y

x2 + y3 = 1

y3 = 1− x2

3
√
y3 = 3

√
1− x2

y = 3
√

1− x2

We now substitute a value in for x, determine the corresponding value y, and plot the resulting
point, (x, y). For example, for x = −3, we substitute

y =
3
√

1− x2 = 3
√

1− (−3)2 = 3
√
−8 = −2,

so the point (−3,−2) is on the graph. Continuing in this manner, we generate a table of points
which are on the graph of the equation. These points are then plotted in the plane as shown below.
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x y (x, y)

−3 −2 (−3,−2)

−2 − 3
√

3 (−2,− 3
√

3)

−1 0 (−1, 0)

0 1 (0, 1)

1 0 (1, 0)

2 − 3
√

3 (2,− 3
√

3)

3 −2 (3,−2)

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Remember, these points constitute only a small sampling of the points on the graph of this
equation. To get a better idea of the shape of the graph, we could plot more points until we feel
comfortable ‘connecting the dots.’ Doing so would result in a curve similar to the one pictured
below on the far left.

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Don’t worry if you don’t get all of the little bends and curves just right − Calculus is where the
art of precise graphing takes center stage. For now, we will settle with our naive ‘plug and plot’
approach to graphing. If you feel like all of this tedious computation and plotting is beneath you,
then you can reach for a graphing calculator, input the formula as shown above, and graph.

Of all of the points on the graph of an equation, the places where the graph crosses the axes hold
special significance. These are called the intercepts of the graph. Intercepts come in two distinct
varieties: x-intercepts and y-intercepts. They are defined below.

Definition 1.3. Suppose the graph of an equation is given.

• A point at which a graph meets the x-axis is called an x-intercept of the graph.

• A point at which a graph meets the y-axis is called an y-intercept of the graph.

In our previous example the graph had two x-intercepts, (−1, 0) and (1, 0), and one y-intercept,
(0, 1). The graph of an equation can have any number of intercepts, including none at all! Since
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x-intercepts lie on the x-axis, we can find them by setting y = 0 in the equation. Similarly, since
y-intercepts lie on the y-axis, we can find them by setting x = 0 in the equation. Keep in mind,
intercepts are points and therefore must be written as ordered pairs. To summarize,

Steps for Finding the Intercepts of the Graph of an Equation

Given an equation involving x and y:

• the x-intercepts always have the form (x, 0); to find the x-intercepts of the graph, set y = 0
and solve for x.

• y-intercepts always have the form (0, y); to find the y-intercepts of the graph, set x = 0 and
solve for y.

Another fact which you may have noticed about the graph in the previous example is that it seems
to be symmetric about the y-axis. To actually prove this analytically, we assume (x, y) is a generic
point on the graph of the equation. That is, we assume x2 + y3 = 1. As we learned in Section 1.1,
the point symmetric to (x, y) about the y-axis is (−x, y). To show the graph is symmetric about
the y-axis, we need to show that (−x, y) is on the graph whenever (x, y) is. In other words, we
need to show (−x, y) satisfies the equation x2 + y3 = 1 whenever (x, y) does. Substituting gives

(−x)2 + (y)3 ?
= 1

x2 + y3 X
= 1

When we substituted (−x, y) into the equation x2 + y3 = 1, we obtained the original equation back
when we simplified. This means (−x, y) satisfies the equation and hence is on the graph. In this
way, we can check whether the graph of a given equation possesses any of the symmetries discussed
in Section 1.1. The results are summarized below.

Steps for Testing if the Graph of an Equation Possesses Symmetry

To test the graph of an equation for symmetry

• About the y-axis: Substitute (−x, y) into the equation and simplify. If the result is equivalent
to the original equation, the graph is symmetric about the y-axis.

• About the x-axis: Substitute (x,−y) into the equation and simplify. If the result is equiva-
lent to the original equation, the graph is symmetric about the x-axis.

• About the origin: Substitute (−x,−y) into the equation and simplify. If the result is
equivalent to the original equation, the graph is symmetric about the origin.

Intercepts and symmetry are two tools which can help us sketch the graph of an equation analyti-
cally, as evidenced in the next example.

Example 1.3.3. Find the x- and y-intercepts (if any) of the graph of (x − 2)2 + y2 = 1. Test for
symmetry. Plot additional points as needed to complete the graph.
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Solution. To look for x-intercepts, we set y = 0 and solve:

(x− 2)2 + y2 = 1

(x− 2)2 + 02 = 1

(x− 2)2 = 1√
(x− 2)2 =

√
1 extract square roots

x− 2 = ±1

x = 2± 1

x = 3, 1

We get two answers for x which correspond to two x-intercepts: (1, 0) and (3, 0). Turning our
attention to y-intercepts, we set x = 0 and solve:

(x− 2)2 + y2 = 1

(0− 2)2 + y2 = 1

4 + y2 = 1

y2 = −3

Since there is no real number which squares to a negative number (Do you remember why?), we
are forced to conclude that the graph has no y-intercepts.

Plotting the data we have so far, we get

(1, 0) (3, 0)

x

y

1 2 3 4

−2

−1

1

2

Moving along to symmetry, we can immediately dismiss the possibility that the graph is symmetric
about the y-axis or the origin. If the graph possessed either of these symmetries, then the fact
that (1, 0) is on the graph would mean (−1, 0) would have to be on the graph. (Why?) Since
(−1, 0) would be another x-intercept (and we’ve found all of these), the graph can’t have y-axis or
origin symmetry. The only symmetry left to test is symmetry about the x-axis. To that end, we
substitute (x,−y) into the equation and simplify

(x− 2)2 + y2 = 1

(x− 2)2 + (−y)2 ?
= 1

(x− 2)2 + y2 X
= 1

Since we have obtained our original equation, we know the graph is symmetric about the x-axis.
This means we can cut our ‘plug and plot’ time in half: whatever happens below the x-axis is
reflected above the x-axis, and vice-versa. Proceeding as we did in the previous example, we obtain
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x

y

1 2 3 4

−2

−1

1

2

A couple of remarks are in order. First, it is entirely possible to choose a value for x which does
not correspond to a point on the graph. For example, in the previous example, if we solve for y as
is our custom, we get:

y = ±
√

1− (x− 2)2.

Upon substituting x = 0 into the equation, we would obtain

y = ±
√

1− (0− 2)2 = ±
√

1− 4 = ±
√
−3,

which is not a real number. This means there are no points on the graph with an x-coordinate
of 0. When this happens, we move on and try another point. This is another drawback of the
‘plug-and-plot’ approach to graphing equations. Luckily, we will devote much of the remainder
of this book developing techniques which allow us to graph entire families of equations quickly.1

Second, it is instructive to show what would have happened had we tested the equation in the last
example for symmetry about the y-axis. Substituting (−x, y) into the equation yields

(x− 2)2 + y2 = 1

(−x− 2)2 + y2 ?
= 1

((−1)(x+ 2))2 + y2 ?
= 1

(x+ 2)2 + y2 ?
= 1.

This last equation does not appear to be equivalent to our original equation. However, to prove
it is not symmetric about the y-axis, we need to find a point (x, y) on the graph whose reflection
(−x, y) is not. Our x-intercept (1, 0) fits this bill nicely, since if we substitute (−1, 0) into the
equation we get

(x− 2)2 + y2 ?
= 1

(−1− 2)2 + 02 6= 1

9 6= 1.

This proves that (−1, 0) is not on the graph.

1Without the use of a calculator, if you can believe it!
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1.3.1 Exercises

1. For each equation given below

• Find the x- and y-intercept(s) of the graph, if any exist.

• Following the procedure in Example 1.3.2, create a table of sample points on the graph
of the equation.

• Plot the sample points and create a rough sketch of the graph of the equation.

• Test for symmetry. If the equation appears to fail any of the symmetry tests, find a
point on the graph of the equation whose reflection fails to be on the graph as was done
at the end of Example 1.3.3

(a) y = x2 + 1

(b) y = x2 − 2x− 8

(c) y = x3 − x
(d) y = x3

4 − 3x

(e) y =
√
x− 2

(f) y = 2
√
x+ 4− 2

(g) 3x− y = 7

(h) 3x− 2y = 10

(i) (x+ 2)2 + y2 = 16

(j) x2 − y2 = 1

(k) 4y2 − 9x2 = 36

(l) x3y = −4

2. The procedures which we have outlined in the Examples of this section and used in the exer-
cises given above all rely on the fact that the equations were “well-behaved”. Not everything
in Mathematics is quite so tame, as the following equations will show you. Discuss with your
classmates how you might approach graphing these equations. What difficulties arise when
trying to apply the various tests and procedures given in this section? For more information,
including pictures of the curves, each curve name is a link to its page at www.wikipedia.org.
For a much longer list of fascinating curves, click here.

(a) x3 + y3 − 3xy = 0 Folium of Descartes

(b) x4 = x2 + y2 Kampyle of Eudoxus

(c) y2 = x3 + 3x2 Tschirnhausen cubic

(d) (x2 + y2)2 = x3 + y3 Crooked egg

http://en.wikipedia.org/wiki/List_of_curves
http://en.wikipedia.org/wiki/Folium_of_descartes
http://en.wikipedia.org/wiki/Kampyle_of_Eudoxus
http://en.wikipedia.org/wiki/Tschirnhausen_cubic
http://en.wikipedia.org/wiki/Crooked_egg_curve
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1.3.2 Answers

1. (a) y = x2 + 1

The graph has no x-intercepts

y-intercept: (0, 1)

x y (x, y)

−2 5 (−2, 5)

−1 2 (−1, 2)

0 1 (0, 1)

1 2 (1, 2)

2 5 (2, 5)

x

y

−2−1 1 2

1

2

3

4

5

The graph is not symmetric about the
x-axis (e.g. (2, 5) is on the graph but
(2,−5) is not)

The graph is symmetric about the
y-axis

The graph is not symmetric about the
origin (e.g. (2, 5) is on the graph but
(−2,−5) is not)

(b) y = x2 − 2x− 8

x-intercepts: (4, 0), (−2, 0)

y-intercept: (0,−8)

x y (x, y)

−3 7 (−3, 7)

−2 0 (−2, 0)

−1 −5 (−1,−5)

0 −8 (0,−8)

1 −9 (1,−9)

2 −8 (2,−8)

3 −5 (3,−5)

4 0 (4, 0)

5 7 (5, 7)

x

y

−3−2−1 1 2 3 4 5

−9
−8
−7
−6
−5
−4
−3
−2

1
2
3
4
5
6
7

The graph is not symmetric about the
x-axis (e.g. (−3, 7) is on the graph but
(−3,−7) is not)

The graph is not symmetric about the
y-axis (e.g. (−3, 7) is on the graph but
(3, 7) is not)

The graph is not symmetric about the
origin (e.g. (−3, 7) is on the graph but
(3,−7) is not)
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(c) y = x3 − x

x-intercepts: (−1, 0), (0, 0), (1, 0)

y-intercept: (0, 0)

x y (x, y)

−2 −6 (−2,−6)

−1 0 (−1, 0)

0 0 (0, 0)

1 0 (1, 0)

2 6 (2, 6)

x

y

−2−1 1 2

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

The graph is not symmetric about the
x-axis. (e.g. (2, 6) is on the graph but
(2,−6) is not)

The graph is not symmetric about the
y-axis. (e.g. (2, 6) is on the graph but
(−2, 6) is not)

The graph is symmetric about the
origin.

(d) y = x3

4 − 3x

x-intercepts:
(
±2
√

3, 0
)

y-intercept: (0, 0)

x y (x, y)

−4 −4 (−4,−4)

−3 9
4

(
−3, 9

4

)
−2 4 (−2, 4)

−1 11
4

(
−1, 11

4

)
0 0 (0, 0)

1 −11
4

(
1,−11

4

)
2 −4 (2,−4)

3 −9
4

(
3,−9

4

)
4 4 (4, 4)

x

y

−4−3−2−1 1 2 3 4−1

−2

−3

−4

1

2

3

4

The graph is not symmetric about the
x-axis (e.g. (−4,−4) is on the graph
but (−4, 4) is not)

The graph is not symmetric about the
y-axis (e.g. (−4,−4) is on the graph
but (4,−4) is not)

The graph is symmetric about the
origin



30 Relations and Functions

(e) y =
√
x− 2

x-intercept: (2, 0)

The graph has no y-intercepts

x y (x, y)

2 0 (2, 0)

3 1 (3, 1)

6 2 (6, 2)

11 3 (11, 3)

x

y

1 2 3 4 5 6 7 8 9 10 11

1

2

3

The graph is not symmetric about the
x-axis (e.g. (3, 1) is on the graph but
(3,−1) is not)

The graph is not symmetric about the
y-axis (e.g. (3, 1) is on the graph but
(−3, 1) is not)

The graph is not symmetric about the
origin (e.g. (3, 1) is on the graph but
(−3,−1) is not)

(f) y = 2
√
x+ 4− 2

x-intercept: (−3, 0)

y-intercept: (0, 2)

x y (x, y)

−4 −2 (−4,−2)

−3 0 (−3, 0)

−2 2
√

2− 2
(
−2,
√

2− 2
)

−1 2
√

3− 2
(
−2,
√

3− 2
)

0 2 (0, 2)

1 2
√

5− 2
(
−2,
√

5− 2
)

x

y

−4−3−2−1 1 2

−3

−2

−1

1

2

3

The graph is not symmetric about the
x-axis (e.g. (−4,−2) is on the graph
but (−4, 2) is not)

The graph is not symmetric about the
y-axis (e.g. (−4,−2) is on the graph
but (4,−2) is not)

The graph is not symmetric about the
origin (e.g. (−4,−2) is on the graph
but (4, 2) is not)
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(g) 3x− y = 7
Re-write as: y = 3x− 7.

x-intercept: (7
3 , 0)

y-intercept: (0,−7)

x y (x, y)

−2 −13 (−2,−13)

−1 −10 (−1,−10)

0 −7 (0,−7)

1 −4 (1,−4)

2 −1 (2,−1)

3 2 (3, 2)

x

y

−2−1 1 2 3

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

The graph is not symmetric about the
x-axis (e.g. (3, 2) is on the graph but
(3,−2) is not)

The graph is not symmetric about the
y-axis (e.g. (3, 2) is on the graph but
(−3, 2) is not)

The graph is not symmetric about the
origin (e.g. (3, 2) is on the graph but
(−3,−2) is not)

(h) 3x− 2y = 10
Re-write as: y = 3x−10

2 .

x-intercepts:
(

10
3 , 0

)
y-intercept: (0,−5)

x y (x, y)

−2 −8 (−2,−8)

−1 −13
2

(
−1,−13

2

)
0 −5 (0,−5)

1 −7
2

(
1,−7

2

)
2 −2 (2,−2)

x

y

−3−2−1 1 2 3 4

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

The graph is not symmetric about the
x-axis (e.g. (2,−2) is on the graph but
(2, 2) is not)

The graph is not symmetric about the
y-axis (e.g. (2,−2) is on the graph but
(−2,−2) is not)

The graph is not symmetric about the
origin (e.g. (2,−2) is on the graph but
(−2, 2) is not)
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(i) (x+ 2)2 + y2 = 16
Re-write as y = ±

√
16− (x+ 2)2.

x-intercepts: (−6, 0), (2, 0)

y-intercepts:
(
0,±2

√
3
)

x y (x, y)

−6 0 (−6, 0)

−4 ±2
√

3
(
−4,±2

√
3
)

−2 ±4 (−2,±4)

0 ±2
√

3
(
0,±2

√
3
)

2 0 (2, 0)

x

y

−7−6−5−4−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

The graph is symmetric about the
x-axis

The graph is not symmetric about the
y-axis (e.g. (−6, 0) is on the graph but
(6, 0) is not)

The graph is not symmetric about the
origin (e.g. (−6, 0) is on the graph but
(6, 0) is not)

(j) x2 − y2 = 1
Re-write as: y = ±

√
x2 − 1.

x-intercepts: (−1, 0), (1, 0)

The graph has no y-intercepts

x y (x, y)

−3 ±
√

8 (−3,±
√

8)

−2 ±
√

3 (−2,±
√

3)

−1 0 (−1, 0)

1 0 (1, 0)

2 ±
√

3 (2,±
√

3)

3 ±
√

8 (3,±
√

8)

x

y

−3−2−1 1 2 3

−3

−2

−1

1

2

3

The graph is symmetric about the
x-axis

The graph is symmetric about the
y-axis

The graph is symmetric about the
origin
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(k) 4y2 − 9x2 = 36

Re-write as: y = ±
√

9x2+36
2 .

The graph has no x-intercepts

y-intercepts: (0,±3)

x y (x, y)

−4 ±3
√

5
(
−4,±3

√
5
)

−2 ±3
√

2
(
−2,±3

√
2
)

0 ±3 (0,±3)

2 ±3
√

2
(
2,±3

√
2
)

4 ±3
√

5
(
4,±3

√
5
)

x

y

−4−3−2−1 1 2 3 4

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

The graph is symmetric about the
x-axis

The graph is symmetric about the
y-axis

The graph is symmetric about the
origin

(l) x3y = −4

Re-write as: y = − 4

x3
.

The graph has no x-intercepts

The graph has no y-intercepts

x y (x, y)

−2 1
2 (−2, 1

2)

−1 4 (−1, 4)

−1
2 32 (−1

2 , 32)
1
2 −32 (1

2 ,−32)

1 −4 (1,−4)

2 −1
2 (2,−1

2)

x

y

−2 −1 1 2

−32

−4

4

32

The graph is not symmetric about the
x-axis (e.g. (1,−4) is on the graph but
(1, 4) is not)

The graph is not symmetric about the
y-axis (e.g. (1,−4) is on the graph but
(−1,−4) is not)

The graph is symmetric about the
origin
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1.4 Introduction to Functions

One of the core concepts in College Algebra is the function. There are many ways to describe a
function and we begin by defining a function as a special kind of relation.

Definition 1.4. A relation in which each x-coordinate is matched with only one y-coordinate is
said to describe y as a function of x.

Example 1.4.1. Which of the following relations describe y as a function of x?

1. R1 = {(−2, 1), (1, 3), (1, 4), (3,−1)}

2. R2 = {(−2, 1), (1, 3), (2, 3), (3,−1)}

Solution. A quick scan of the points in R1 reveals that the x-coordinate 1 is matched with
two different y-coordinates: namely 3 and 4. Hence in R1, y is not a function of x. On the
other hand, every x-coordinate in R2 occurs only once which means each x-coordinate has only one
corresponding y-coordinate. So, R2 does represent y as a function of x.

Note that in the previous example, the relation R2 contained two different points with the same
y-coordinates, namely (1, 3) and (2, 3). Remember, in order to say y is a function of x, we just
need to ensure the same x-coordinate isn’t used in more than one point.1

To see what the function concept means geometrically, we graph R1 and R2 in the plane.

x

y

−2 −1 1 2 3
−1

1

2

3

4

The graph of R1

x

y

−2 −1 1 2 3
−1

1

2

3

4

The graph of R2

The fact that the x-coordinate 1 is matched with two different y-coordinates in R1 presents itself
graphically as the points (1, 3) and (1, 4) lying on the same vertical line, x = 1. If we turn our
attention to the graph of R2, we see that no two points of the relation lie on the same vertical line.
We can generalize this idea as follows

Theorem 1.1. The Vertical Line Test: A set of points in the plane represents y as a function
of x if and only if no two points lie on the same vertical line.

1We will have occasion later in the text to concern ourselves with the concept of x being a function of y. In this
case, R1 represents x as a function of y; R2 does not.
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It is worth taking some time to meditate on the Vertical Line Test; it will check to see how well
you understand the concept of ‘function’ as well as the concept of ‘graph’.

Example 1.4.2. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x.

x

y

1 2 3

−1

1

2

3

4

The graph of R

x

y

−1 1

−1

1

2

3

4

The graph of S

Solution. Looking at the graph of R, we can easily imagine a vertical line crossing the graph
more than once. Hence, R does not represent y as a function of x. However, in the graph of S,
every vertical line crosses the graph at most once, and so S does represent y as a function of x.

In the previous test, we say that the graph of the relation R fails the Vertical Line Test, whereas
the graph of S passes the Vertical Line Test. Note that in the graph of R there are infinitely many
vertical lines which cross the graph more than once. However, to fail the Vertical Line Test, all you
need is one vertical line that fits the bill, as the next example illustrates.

Example 1.4.3. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x.

x

y

−1 1

−1

1

2

3

4

The graph of S1

x

y

−1 1

−1

1

2

3

4

The graph of S2



36 Relations and Functions

Solution. Both S1 and S2 are slight modifications to the relation S in the previous example whose
graph we determined passed the Vertical Line Test. In both S1 and S2, it is the addition of the
point (1, 2) which threatens to cause trouble. In S1, there is a point on the curve with x-coordinate
1 just below (1, 2), which means that both (1, 2) and this point on the curve lie on the vertical line
x = 1. (See the picture below.) Hence, the graph of S1 fails the Vertical Line Test, so y is not a
function of x here. However, in S2 notice that the point with x-coordinate 1 on the curve has been
omitted, leaving an ‘open circle’ there. Hence, the vertical line x = 1 crosses the graph of S2 only
at the point (1, 2). Indeed, any vertical line will cross the graph at most once, so we have that the
graph of S2 passes the Vertical Line Test. Thus it describes y as a function of x.

x

y

−1

−1

1

2

3

4

S1 and the line x = 1

Suppose a relation F describes y as a function of x. The sets of x- and y-coordinates are given
special names.

Definition 1.5. Suppose F is a relation which describes y as a function of x.

• The set of the x-coordinates of the points in F is called the domain of F .

• The set of the y-coordinates of the points in F is called the range of F .

We demonstrate finding the domain and range of functions given to us either graphically or via the
roster method in the following example.

Example 1.4.4. Find the domain and range of the following functions

1. F = {(−3, 2), (0, 1), (4, 2), (5, 2)}

2. G is the function graphed below:
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x

y

−1 1

−1

1

2

3

4

The graph of G

Solution. The domain of F is the set of the x-coordinates of the points in F : {−3, 0, 4, 5} and
the range of F is the set of the y-coordinates: {1, 2}.2

To determine the domain and range of G, we need to determine which x and y values occur as
coordinates of points on the given graph. To find the domain, it may be helpful to imagine collapsing
the curve to the x-axis and determining the portion of the x-axis that gets covered. This is called
projecting the curve to the x-axis. Before we start projecting, we need to pay attention to two
subtle notations on the graph: the arrowhead on the lower left corner of the graph indicates that the
graph continues to curve downwards to the left forever more; and the open circle at (1, 3) indicates
that the point (1, 3) isn’t on the graph, but all points on the curve leading up to that point are on
the curve.

project down

project up

x

y

−1 1

−1

1

2

3

4

The graph of G

x

y

−1 1

−1

1

2

3

4

The graph of G

2When listing numbers in a set, we list each number only once, in increasing order.
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We see from the figure that if we project the graph of G to the x-axis, we get all real numbers less
than 1. Using interval notation, we write the domain of G is (−∞, 1). To determine the range of
G, we project the curve to the y-axis as follows:

project left

project right

x

y

−1 1

−1

1

2

3

4

The graph of G

x

y

−1 1

−1

1

2

3

4

The graph of G

Note that even though there is an open circle at (1, 3), we still include the y value of 3 in our range,
since the point (−1, 3) is on the graph of G. We see that the range of G is all real numbers less
than or equal to 4, or, in interval notation: (−∞, 4].

All functions are relations, but not all relations are functions. Thus the equations which described
the relations in Section1.2 may or may not describe y as a function of x. The algebraic representation
of functions is possibly the most important way to view them so we need a process for determining
whether or not an equation of a relation represents a function. (We delay the discussion of finding
the domain of a function given algebraically until Section 1.5.)

Example 1.4.5. Determine which equations represent y as a function of x:

1. x3 + y2 = 1

2. x2 + y3 = 1

3. x2y = 1− 3y

Solution. For each of these equations, we solve for y and determine whether each choice of x will
determine only one corresponding value of y.

1.
x3 + y2 = 1

y2 = 1− x3√
y2 =

√
1− x3 extract square roots

y = ±
√

1− x3
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If we substitute x = 0 into our equation for y, we get: y = ±
√

1− 03 = ±1, so that (0, 1)
and (0,−1) are on the graph of this equation. Hence, this equation does not represent y as
a function of x.

2.
x2 + y3 = 1

y3 = 1− x2

3
√
y3 = 3

√
1− x2

y = 3
√

1− x2

For every choice of x, the equation y = 3
√

1− x2 returns only one value of y. Hence, this
equation describes y as a function of x.

3.
x2y = 1− 3y

x2y + 3y = 1

y
(
x2 + 3

)
= 1 factor

y =
1

x2 + 3

For each choice of x, there is only one value for y, so this equation describes y as a function of x.

Of course, we could always use our graphing calculator to verify our responses to the previous
example. For example, if we wanted to verify that the first equation does not represent y as a
function of x, we could enter the equation for y into the calculator as indicated below and graph.
Note that we need to enter both solutions − the positive and the negative square root − for y. The
resulting graph clearly fails the Vertical Line Test, so does not represent y as a function of x.
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1.4.1 Exercises

1. Determine which of the following relations represent y as a function of x. Find the domain
and range of those relations which are functions.

(a) {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}
(b) {(−3, 0), (1, 6), (2,−3), (4, 2), (−5, 6), (4,−9), (6, 2)}
(c) {(−3, 0), (−7, 6), (5, 5), (6, 4), (4, 9), (3, 0)}
(d) {(1, 2), (4, 4), (9, 6), (16, 8), (25, 10), (36, 12), . . .}
(e) {(x, y) : x is an odd integer, and y is an even integer}
(f) {(x, 1) : x is an irrational number}
(g) {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . . }
(h) {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . . }

(i) {(−2, y) : −3 < y < 4}
(j) {(x, 3) : −2 ≤ x < 4}

(k) {
(
x, x2

)
: x is a real number}

(l) {
(
x2, x

)
: x is a real number}

2. Determine which of the following relations represent y as a function of x. Find the domain
and range of those relations which are functions.

(a)

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

(b)

x

y

−4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

(c)

x

y

−2 −1 1 2

1

2

3

4

5

(d)

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
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(e)

x

y

1 2 3 4 5 6 7 8 9

1

2

3

(f)

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

(g)

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

(h)

x

y

−5 −4 −3 −2 −1 1 2 3

−2

−1

1

2

3

4

(i)

x

y

−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

(j)

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

(k)

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

(l)

x

y

−1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5
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3. Determine which of the following equations represent y as a function of x.

(a) y = x3 − x
(b) y =

√
x− 2

(c) x3y = −4

(d) x2 − y2 = 1

(e) y =
x

x2 − 9
(f) x = −6

(g) x = y2 + 4

(h) y = x2 + 4

(i) x2 + y2 = 4

(j) y =
√

4− x2

(k) x2 − y2 = 4

(l) x3 + y3 = 4

(m) 2x+ 3y = 4

(n) 2xy = 4

4. Explain why the height h of a Sasquatch is a function of its age N in years. Given that a
Sasquatch is 2 feet tall at birth, experiences growth spurts at ages 3, 23 and 57, and lives to
be about 150 years old with a maximum height of 9 feet, sketch a rough graph of the height
function.

5. Explain why the population P of Sasquatch in a given area is a function of time t. What
would be the range of this function?

6. Explain why the relation between your classmates and their email addresses may not be a
function. What about phone numbers and Social Security Numbers?

7. The process given in Example 1.4.5 for determining whether an equation of a relation rep-
resents y as a function of x breaks down if we cannot solve the equation for y in terms of x.
However, that does not prevent us from proving that an equation which fails to represent y
as a function of x actually fails to do so. What we really need is two points with the same
x-coordinate and different y-coordinates which both satisfy the equation so that the graph
of the relation would fail the Vertical Line Test 1.1. Discuss with your classmates how you
might find such points for the relations given below.

(a) x3 + y3 − 3xy = 0

(b) x4 = x2 + y2

(c) y2 = x3 + 3x2

(d) (x2 + y2)2 = x3 + y3
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1.4.2 Answers

1. (a) Function
domain = {−3, −2, −1, 0, 1, 2 ,3}
range = {0, 1, 4, 9}

(b) Not a function

(c) Function
domain = {−7,−3, 3, 4, 5, 6}
range = {0, 4, 5, 6, 9}

(d) Function
domain = {1, 4, 9, 16, 25, 36, . . .}
= {x : x is a perfect square}
range = {2, 4, 6, 8, 10, 12, . . .}
= {y : y is a positive even integer}

(e) Not a function

(f) Function
domain = {x : x is irrational}
range = {1}

(g) Function
domain = {x : x = 2n for some whole
number n}
range = {y : y is any whole number}

(h) Function
domain = {x : x is any integer}
range = {y : y = n2 for some integer n}

(i) Not a function

(j) Function
domain = [−2, 4), range = {3}

(k) Function
domain = (−∞,∞)
range = [0,∞)

(l) Not a function

2. (a) Function
domain = {−4, −3, −2, −1, 0, 1}
range = {−1, 0, 1, 2, 3, 4}

(b) Not a function

(c) Function
domain = (−∞,∞)
range = [1,∞)

(d) Not a function

(e) Function
domain = [2,∞)
range = [0,∞)

(f) Function
domain = (−∞,∞)
range = (0, 4]

(g) Not a function

(h) Function
domain = [−5,−3) ∪ (−3, 3)
range = (−2,−1) ∪ [0, 4)

(i) Function
domain = [−2,∞)
range = [−3,∞)

(j) Not a function

(k) Function
domain = [−5, 4)
range = [−4, 4)

(l) Function
domain = [0, 3) ∪ (3, 6]
range = (−4,−1] ∪ [0, 4]

3. (a) Function

(b) Function

(c) Function

(d) Not a function

(e) Function

(f) Not a function

(g) Not a function

(h) Function

(i) Not a function

(j) Function

(k) Not a function

(l) Function

(m) Function

(n) Function
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1.5 Function Notation

In Definition 1.4, we described a function as a special kind of relation − one in which each x-
coordinate is matched with only one y-coordinate. In this section, we focus more on the process
by which the x is matched with the y. If we think of the domain of a function as a set of inputs
and the range as a set of outputs, we can think of a function f as a process by which each input
x is matched with only one output y. Since the output is completely determined by the input x
and the process f , we symbolize the output with function notation: ‘f(x)’, read ‘f of x.’ In this
case, the parentheses here do not indicate multiplication, as they do elsewhere in algebra. This
could cause confusion if the context is not clear. In other words, f(x) is the output which results
by applying the process f to the input x. This relationship is typically visualized using a diagram
similar to the one below.

f

x
Domain
(Inputs)

y = f(x)
Range

(Outputs)

The value of y is completely dependent on the choice of x. For this reason, x is often called the
independent variable, or argument of f , whereas y is often called the dependent variable.

As we shall see, the process of a function f is usually described using an algebraic formula. For
example, suppose a function f takes a real number and performs the following two steps, in sequence

1. multiply by 3

2. add 4

If we choose 5 as our input, in step 1 we multiply by 3 to get (5)(3) = 15. In step 2, we add 4 to
our result from step 1 which yields 15 + 4 = 19. Using function notation, we would write f(5) = 19
to indicate that the result of applying the process f to the input 5 gives the output 19. In general,
if we use x for the input, applying step 1 produces 3x. Following with step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(x) = 3x+ 4. Notice that to check our
formula for the case x = 5, we replace the occurrence of x in the formula for f(x) with 5 to get
f(5) = 3(5) + 4 = 15 + 4 = 19, as required.
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Example 1.5.1. Suppose a function g is described by applying the following steps, in sequence

1. add 4

2. multiply by 3

Determine g(5) and find an expression for g(x).

Solution. Starting with 5, step 1 gives 5 + 4 = 9. Continuing with step 2, we get (3)(9) = 27. To
find a formula for g(x), we start with our input x. Step 1 produces x+ 4. We now wish to multiply
this entire quantity by 3, so we use a parentheses: 3(x+ 4) = 3x+ 12. Hence, g(x) = 3x+ 12. We
can check our formula by replacing x with 5 to get g(5) = 3(5) + 12 = 15 + 12 = 27X.

Most of the functions we will encounter in College Algebra will be described using formulas like
the ones we developed for f(x) and g(x) above. Evaluating formulas using this function notation
is a key skill for success in this and many other math courses.

Example 1.5.2. For f(x) = −x2 + 3x+ 4, find and simplify

1. f(−1), f(0), f(2)

2. f(2x), 2f(x)

3. f(x+ 2), f(x) + 2, f(x) + f(2)

Solution.

1. To find f(−1), we replace every occurrence of x in the expression f(x) with −1

f(−1) = −(−1)2 + 3(−1) + 4

= −(1) + (−3) + 4

= 0

Similarly, f(0) = −(0)2 + 3(0) + 4 = 4, and f(2) = −(2)2 + 3(2) + 4 = −4 + 6 + 4 = 6.

2. To find f(2x), we replace every occurrence of x with the quantity 2x

f(2x) = −(2x)2 + 3(2x) + 4

= −(4x2) + (6x) + 4

= −4x2 + 6x+ 4

The expression 2f(x) means we multiply the expression f(x) by 2

2f(x) = 2
(
−x2 + 3x+ 4

)
= −2x2 + 6x+ 8
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Note the difference between the answers for f(2x) and 2f(x). For f(2x), we are multiplying
the input by 2; for 2f(x), we are multiplying the output by 2. As we see, we get entirely
different results. Also note the practice of using parentheses when substituting one algebraic
expression into another; we highly recommend this practice as it will reduce careless errors.

3. To find f(x+ 2), we replace every occurrence of x with the quantity x+ 2

f(x+ 2) = −(x+ 2)2 + 3(x+ 2) + 4

= −
(
x2 + 4x+ 4

)
+ (3x+ 6) + 4

= −x2 − 4x− 4 + 3x+ 6 + 4

= −x2 − x+ 6

To find f(x) + 2, we add 2 to the expression for f(x)

f(x) + 2 =
(
−x2 + 3x+ 4

)
+ 2

= −x2 + 3x+ 6

Once again, we see there is a dramatic difference between modifying the input and modifying
the output. Finally, in f(x) + f(2) we are adding the value f(2) to the expression f(x).
From our work above, we see f(2) = 6 so that

f(x) + f(2) =
(
−x2 + 3x+ 4

)
+ 6

= −x2 + 3x+ 10

Notice that f(x+ 2), f(x) + 2 and f(x) + f(2) are three different expressions. Even though
function notation uses parentheses, as does multiplication, there is no general ‘distributive
property’ of function notation.

Suppose we wish to find r(3) for r(x) =
2x

x2 − 9
. Substitution gives

r(3) =
2(3)

(3)2 − 9
=

6

0
,

which is undefined. The number 3 is not an allowable input to the function r; in other words, 3 is
not in the domain of r. Which other real numbers are forbidden in this formula? We think back
to arithmetic. The reason r(3) is undefined is because substitution results in a division by 0. To
determine which other numbers result in such a transgression, we set the denominator equal to 0
and solve

x2 − 9 = 0

x2 = 9√
x2 =

√
9 extract square roots

x = ±3
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As long as we substitute numbers other than 3 and −3, the expression r(x) is a real number. Hence,
we write our domain in interval notation as (−∞,−3) ∪ (−3, 3) ∪ (3,∞). When a formula for a
function is given, we assume the function is valid for all real numbers which make arithmetic sense
when substituted into the formula. This set of numbers is often called the implied domain1 of
the function. At this stage, there are only two mathematical sins we need to avoid: division by 0
and extracting even roots of negative numbers. The following example illustrates these concepts.

Example 1.5.3. Find the domain2 of the following functions.

1. f(x) =
2

1− 4x

x− 3

2. g(x) =
√

4− 3x

3. h(x) = 5
√

4− 3x

4. r(x) =
4

6−
√
x+ 3

5. I(x) =
3x2

x

Solution.

1. In the expression for f , there are two denominators. We need to make sure neither of them is
0. To that end, we set each denominator equal to 0 and solve. For the ‘small’ denominator,
we get x− 3 = 0 or x = 3. For the ‘large’ denominator

1− 4x

x− 3
= 0

1 =
4x

x− 3

(1)(x− 3) =

(
4x

���x− 3

)
���

�(x− 3) clear denominators

x− 3 = 4x

−3 = 3x

−1 = x

So we get two real numbers which make denominators 0, namely x = −1 and x = 3. Our
domain is all real numbers except −1 and 3: (−∞,−1) ∪ (−1, 3) ∪ (3,∞).

1or, ‘implicit domain’
2The word ‘implied’ is, well, implied.
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2. The potential disaster for g is if the radicand3 is negative. To avoid this, we set 4− 3x ≥ 0

4− 3x ≥ 0

4 ≥ 3x
4

3
≥ x

Hence, as long as x ≤ 4
3 , the expression 4 − 3x ≥ 0, and the formula g(x) returns a real

number. Our domain is
(
−∞, 4

3

]
.

3. The formula for h(x) is hauntingly close to that of g(x) with one key difference − whereas
the expression for g(x) includes an even indexed root (namely a square root), the formula
for h(x) involves an odd indexed root (the fifth root.) Since odd roots of real numbers (even
negative real numbers) are real numbers, there is no restriction on the inputs to h. Hence,
the domain is (−∞,∞).

4. To find the domain of r, we notice that we have two potentially hazardous issues: not only
do we have a denominator, we have a square root in that denominator. To satisfy the square
root, we set the radicand x+ 3 ≥ 0 so x ≥ −3. Setting the denominator equal to zero gives

6−
√
x+ 3 = 0

6 =
√
x+ 3

62 =
(√
x+ 3

)2
36 = x+ 3

33 = x

Since we squared both sides in the course of solving this equation, we need to check our
answer. Sure enough, when x = 33, 6 −

√
x+ 3 = 6 −

√
36 = 0, and so x = 33 will cause

problems in the denominator. At last we can find the domain of r: we need x ≥ −3, but
x 6= 33. Our final answer is [−3, 33) ∪ (33,∞).

5. It’s tempting to simplify I(x) = 3x2

x = 3x, and, since there are no longer any denominators,
claim that there are no longer any restrictions. However, in simplifying I(x), we are assuming
x 6= 0, since 0

0 is undefined.4 Proceeding as before, we find the domain of I to be all real
numbers except 0: (−∞, 0) ∪ (0,∞).

It is worth reiterating the importance of finding the domain of a function before simplifying, as
evidenced by the function I in the previous example. Even though the formula I(x) simplifies to
3x, it would be inaccurate to write I(x) = 3x without adding the stipulation that x 6= 0. It would
be analogous to not reporting taxable income or some other sin of omission.

3The ‘radicand’ is the expression ‘inside’ the radical.
4More precisely, the fraction 0

0
is an ‘indeterminant form’. Much time will be spent in Calculus wrestling with

such creatures.
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Our next example shows how a function can be used to model real-world phenomena.

Example 1.5.4. The height h in feet of a model rocket above the ground t seconds after lift off is
given by

h(t) =

{
−5t2 + 100t, if 0 ≤ t ≤ 20

0, if t > 20

Find and interpret h(10) and h(60).

Solution. There are a few qualities of h which may be off-putting. The first is that, unlike
previous examples, the independent variable is t, not x. In this context, t is chosen because it
represents time. The second is that the function is broken up into two rules: one formula for values
of t between 0 and 20 inclusive, and another for values of t greater than 20. To find h(10), we first
notice that 10 is between 0 and 20 so we use the first formula listed: h(t) = −5t2 + 100t. Hence,
h(10) = −5(10)2 + 100(10) = 500. In terms of the model rocket, this means that 10 seconds after
lift off, the model rocket is 500 feet above the ground. To find h(60), we note that 60 is greater
than 20, so we use the rule h(t) = 0. This function returns a value of 0 regardless of what value is
substituted in for t, so h(60) = 0. This means that 60 seconds after lift off, the rocket is 0 feet above
the ground; in other words, a minute after lift off, the rocket has already returned to earth.

The type of function in the previous example is called a piecewise-defined function, or ‘piecewise’
function for short. Many real-world phenomena (e.g. postal rates,5 income tax formulas6) are
modeled by such functions. Also note that the domain of h in the above example is restricted to
t ≥ 0. For example, h(−3) is not defined because t = −3 doesn’t satisfy any of the conditions in any
of the function’s pieces. There is no inherent arithmetic reason which prevents us from calculating,
say, −5(−3)2 + 100(−3), it’s just that in this applied setting, t = −3 is meaningless. In this case,
we say h has an applied domain7 of [0,∞)

5See the United States Postal Service website http://www.usps.com/prices/first-class-mail-prices.htm
6See the Internal Revenue Service’s website http://www.irs.gov/pub/irs-pdf/i1040tt.pdf
7or, ‘explicit domain’
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1.5.1 Exercises

1. Suppose f is a function that takes a real number x and performs the following three steps in
the order given: (1) square root; (2) subtract 13; (3) make the quantity the denominator of
a fraction with numerator 4. Find an expression for f(x) and find its domain.

2. Suppose g is a function that takes a real number x and performs the following three steps in
the order given: (1) subtract 13; (2) square root; (3) make the quantity the denominator of
a fraction with numerator 4. Find an expression for g(x) and find its domain.

3. Suppose h is a function that takes a real number x and performs the following three steps in
the order given: (1) square root; (2) make the quantity the denominator of a fraction with
numerator 4; (3) subtract 13. Find an expression for h(x) and find its domain.

4. Suppose k is a function that takes a real number x and performs the following three steps in
the order given: (1) make the quantity the denominator of a fraction with numerator 4; (2)
square root; (3) subtract 13. Find an expression for k(x) and find its domain.

5. For f(x) = x2 − 3x+ 2, find and simplify the following:

(a) f(3)

(b) f(−1)

(c) f
(

3
2

)
(d) f(4x)

(e) 4f(x)

(f) f(−x)

(g) f(x− 4)

(h) f(x)− 4

(i) f
(
x2
)

6. Repeat Exercise 5 above for f(x) =
2

x3

7. Let f(x) = 3x2 + 3x− 2. Find and simplify the following:

(a) f(2)

(b) f(−2)

(c) f(2a)

(d) 2f(a)

(e) f(a+ 2)

(f) f(a) + f(2)

(g) f
(

2
a

)
(h) f(a)

2

(i) f(a+ h)

8. Let f(x) =


x+ 5, x ≤ −3√

9− x2, −3 < x ≤ 3

−x+ 5, x > 3

(a) f(−4)

(b) f(−3)

(c) f(3)

(d) f(3.001)

(e) f(−3.001)

(f) f(2)
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9. Let f(x) =


x2 if x ≤ −1√

1− x2 if −1 < x ≤ 1

x if x > 1

Compute the following function values.

(a) f(4)

(b) f(−3)

(c) f(1)

(d) f(0)

(e) f(−1)

(f) f(−0.999)

10. Find the (implied) domain of the function.

(a) f(x) = x4 − 13x3 + 56x2 − 19

(b) f(x) = x2 + 4

(c) f(x) =
x+ 4

x2 − 36

(d) f(x) =
√

6x− 2

(e) f(x) =
6√

6x− 2

(f) f(x) = 3
√

6x− 2

(g) f(x) =
6

4−
√

6x− 2

(h) f(x) =

√
6x− 2

x2 − 36

(i) f(x) =
3
√

6x− 2

x2 + 36

(j) s(t) =
t

t− 8

(k) Q(r) =

√
r

r − 8

(l) b(θ) =
θ√
θ − 8

(m) α(y) = 3

√
y

y − 8

(n) A(x) =
√
x− 7 +

√
9− x

(o) g(v) =
1

4− 1

v2

(p) u(w) =
w − 8

5−
√
w

11. The population of Sasquatch in Portage County can be modeled by the function P (t) =
150t

t+ 15
, where t = 0 represents the year 1803. What is the applied domain of P? What range

“makes sense” for this function? What does P (0) represent? What does P (205) represent?

12. Recall that the integers is the set of numbers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.8 The
greatest integer of x, bxc, is defined to be the largest integer k with k ≤ x.

(a) Find b0.785c, b117c, b−2.001c, and bπ + 6c
(b) Discuss with your classmates how bxc may be described as a piece-wise defined function.

HINT: There are infinitely many pieces!

(c) Is ba+ bc = bac+ bbc always true? What if a or b is an integer? Test some values, make
a conjecture, and explain your result.

8The use of the letter Z for the integers is ostensibly because the German word zahlen means ‘to count.’
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13. We have through our examples tried to convince you that, in general, f(a + b) 6= f(a) +
f(b). It has been our experience that students refuse to believe us so we’ll try again with a
different approach. With the help of your classmates, find a function f for which the following
properties are always true.

(a) f(0) = f(−1 + 1) = f(−1) + f(1)

(b) f(5) = f(2 + 3) = f(2) + f(3)

(c) f(−6) = f(0− 6) = f(0)− f(6)

(d) f(a+ b) = f(a) + f(b) regardless of what two numbers we give you for a and b.

How many functions did you find that failed to satisfy the conditions above? Did f(x) = x2

work? What about f(x) =
√
x or f(x) = 3x + 7 or f(x) =

1

x
? Did you find an attribute

common to those functions that did succeed? You should have, because there is only one
extremely special family of functions that actually works here. Thus we return to our previous
statement, in general, f(a+ b) 6= f(a) + f(b).
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1.5.2 Answers

1. f(x) =
4√

x− 13
Domain: [0, 169) ∪ (169,∞)

2. g(x) =
4√

x− 13
Domain: (13,∞)

3. h(x) =
4√
x
− 13

Domain: (0,∞)

4. k(x) =

√
4

x
− 13

Domain: (0,∞)

5. (a) 2

(b) 6

(c) −1

4

(d) 16x2 − 12x+ 2

(e) 4x2 − 12x+ 8

(f) x2 + 3x+ 2

(g) x2 − 11x+ 30

(h) x2 − 3x− 2

(i) x4 − 3x2 + 2

6. (a)
2

27
(b) −2

(c)
16

27

(d)
1

32x3

(e)
8

x3

(f) − 2

x3

(g)
2

(x− 4)3
=

2

x3 − 12x2 + 48x− 64

(h)
2

x3
− 4 =

2− 4x3

x3

(i)
2

x6

7. (a) 16

(b) 4

(c) 12a2 + 6a− 2

(d) 6a2 + 6a− 4

(e) 3a2 + 15a+ 16

(f) 3a2 + 3a+ 14

(g) 12
a2 + 6

a − 2

(h) 3a2

2 + 3a
2 − 1

(i) 3a2 + 6ah+ 3h2 + 3a+ 3h− 2

8. (a) f(−4) = 1

(b) f(−3) = 2

(c) f(3) = 0

(d) f(3.001) = 1.999

(e) f(−3.001) = 1.999

(f) f(2) =
√

5

9. (a) f(4) = 4

(b) f(−3) = 9

(c) f(1) = 0

(d) f(0) = 1

(e) f(−1) = 1

(f) f(−0.999) ≈ 0.0447101778
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10. (a) (−∞,∞)

(b) (−∞,∞)

(c) (−∞,−6) ∪ (−6, 6) ∪ (6,∞)

(d)
[

1
3 ,∞

)
(e)

(
1
3 ,∞

)
(f) (−∞,∞)

(g)
[

1
3 , 3
)
∪ (3,∞)

(h)
[

1
3 , 6
)
∪ (6,∞)

(i) (−∞,∞)

(j) (−∞, 8) ∪ (8,∞)

(k) [0, 8) ∪ (8,∞)

(l) (8,∞)

(m) (−∞, 8) ∪ (8,∞)

(n) [7, 9]

(o)
(
−∞,−1

2

)
∪
(
−1

2 , 0
)
∪
(
0, 1

2

)
∪
(

1
2 ,∞

)
(p) [0, 25) ∪ (25,∞)

11. The applied domain of P is [0,∞). The range is some subset of the natural numbers because
we cannot have fractional Sasquatch. This was a bit of a trick question and we’ll address the
notion of mathematical modeling more thoroughly in later chapters. P (0) = 0 means that
there were no Sasquatch in Portage County in 1803. P (205) ≈ 139.77 would mean there were
139 or 140 Sasquatch in Portage County in 2008.

12. (a) b0.785c = 0, b117c = 117, b−2.001c = −3, and bπ + 6c = 9
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1.6 Function Arithmetic

In the previous section we used the newly defined function notation to make sense of expressions
such as ‘f(x) + 2’ and ‘2f(x)’ for a given function f . It would seem natural, then, that functions
should have their own arithmetic which is consistent with the arithmetic of real numbers. The
following definitions allow us to add, subtract, multiply and divide functions using the arithmetic
we already know for real numbers.

Function Arithmetic

Suppose f and g are functions and x is an element common to the domains of f and g.

• The sum of f and g, denoted f + g, is the function defined by the formula:

(f + g)(x) = f(x) + g(x)

• The difference of f and g, denoted f − g, is the function defined by the formula:

(f − g)(x) = f(x)− g(x)

• The product of f and g, denoted fg, is the function defined by the formula:

(fg)(x) = f(x)g(x)

• The quotient of f and g, denoted
f

g
, is the function defined by the formula:(
f

g

)
(x) =

f(x)

g(x)
,

provided g(x) 6= 0.

In other words, to add two functions, we add their outputs; to subtract two functions, we subtract
their outputs, and so on. Note that while the formula (f + g)(x) = f(x) + g(x) looks suspiciously
like some kind of distributive property, it is nothing of the sort; the addition on the left hand side
of the equation is function addition, and we are using this equation to define the output of the
new function f + g as the sum of the real number outputs from f and g.1

Example 1.6.1. Let f(x) = 6x2 − 2x and g(x) = 3− 1

x
. Find and simplify expressions for

1. (f + g)(x)

2. (g − f)(x)

3. (fg)(x)

4.

(
g

f

)
(x)

1The author is well aware that this point is pedantic, and lost on most readers.



56 Relations and Functions

In addition, find the domain of each of these functions.

Solution.

1. (f + g)(x) is defined to be f(x) + g(x). To that end, we get

(f + g)(x) = f(x) + g(x)

=
(
6x2 − 2x

)
+

(
3− 1

x

)
= 6x2 − 2x+ 3− 1

x

=
6x3

x
− 2x2

x
+

3x

x
− 1

x
get common denominators

=
6x3 − 2x2 + 3x− 1

x

To find the domain of (f + g) we do so before we simplify, that is, at the step

(
6x2 − 2x

)
+

(
3− 1

x

)
We see x 6= 0, but everything else is fine. Hence, the domain is (−∞, 0) ∪ (0,∞).

2. (g − f)(x) is defined to be g(x)− f(x). To that end, we get

(g − f)(x) = g(x)− f(x)

=

(
3− 1

x

)
−
(
6x2 − 2x

)
= 3− 1

x
− 6x2 + 2x

=
3x

x
− 1

x
− 6x3

x
+

2x2

x
get common denominators

=
−6x3 + 2x2 + 3x− 1

x

Looking at the expression for (g − f) before we simplified(
3− 1

x

)
−
(
6x2 − 2x

)
we see, as before, x 6= 0 is the only restriction. The domain is (−∞, 0) ∪ (0,∞).
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3. (fg)(x) is defined to be f(x)g(x). Substituting yields

(fg)(x) = f(x)g(x)

=
(
6x2 − 2x

)(
3− 1

x

)
=

(
6x2 − 2x

)(3x− 1

x

)
=

(
2x(3x− 1)

1

)(
3x− 1

x

)
factor

=

(
2�x(3x− 1)

1

)(
3x− 1

�x

)
cancel

= 2(3x− 1)2

= 2
(
9x2 − 6x+ 1

)
= 18x2 − 12x+ 2

To determine the domain, we check the step just after we substituted

(
6x2 − 2x

)(
3− 1

x

)
which gives us, as before, the domain: (−∞, 0) ∪ (0,∞).

4.

(
g

f

)
(x) is defined to be

g(x)

f(x)
. Thus we have

(
g

f

)
(x) =

g(x)

f(x)

=
3− 1

x
6x2 − 2x

=
3− 1

x
6x2 − 2x

· x
x

simplify complex fractions

=

(
3− 1

x

)
x

(6x2 − 2x)x

=
3x− 1

(6x2 − 2x)x
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=
3x− 1

2x2(3x− 1)
factor

= ���
��: 1

(3x− 1)

2x2
���

��(3x− 1)
cancel

=
1

2x2

To find the domain, we consider the first step after substitution:

3− 1

x
6x2 − 2x

To avoid division by zero in the ‘little’ fraction, 1
x , we need x 6= 0. For the ‘big’ fraction we

set 6x2 − 2x = 0 and solve: 2x(3x− 1) = 0 and get x = 0, 1
3 . Thus we must exclude x = 1

3 as
well, resulting in a domain of (−∞, 0) ∪

(
0, 1

3

)
∪
(

1
3 ,∞

)
.

We close this section with concept of the difference quotient of a function. It is a critical tool
for Calculus and also a great way to practice function notation.2

Definition 1.6. Given a function, f , the difference quotient of f is the expression:

f(x+ h)− f(x)

h

Example 1.6.2. Find and simplify the difference quotients for the following functions

1. f(x) = x2 − x− 2 2. g(x) =
3

2x+ 1

Solution.

1. To find f(x+ h), we replace every occurrence of x in the formula f(x) = x2 − x− 2 with the
quantity (x+ h) to get

f(x+ h) = (x+ h)2 − (x+ h)− 2

= x2 + 2xh+ h2 − x− h− 2.

So the difference quotient is

f(x+ h)− f(x)

h
=

(
x2 + 2xh+ h2 − x− h− 2

)
−
(
x2 − x− 2

)
h

2You may need to brush up on your Intermediate Algebra skills, as well.
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=
x2 + 2xh+ h2 − x− h− 2− x2 + x+ 2

h

=
2xh+ h2 − h

h

=
h (2x+ h− 1)

h
factor

=
�h (2x+ h− 1)

�h
cancel

= 2x+ h− 1.

2. To find g(x + h), we replace every occurrence of x in the formula g(x) =
3

2x+ 1
with the

quantity (x+ h)

g(x+ h) =
3

2(x+ h) + 1

=
3

2x+ 2h+ 1
,

which yields

g(x+ h)− g(x)

h
=

3

2x+ 2h+ 1
− 3

2x+ 1
h

=

3

2x+ 2h+ 1
− 3

2x+ 1
h

· (2x+ 2h+ 1)(2x+ 1)

(2x+ 2h+ 1)(2x+ 1)

=
3(2x+ 1)− 3(2x+ 2h+ 1)

h(2x+ 2h+ 1)(2x+ 1)

=
6x+ 3− 6x− 6h− 3

h(2x+ 2h+ 1)(2x+ 1)

=
−6h

h(2x+ 2h+ 1)(2x+ 1)

=
−6�h

�h(2x+ 2h+ 1)(2x+ 1)

=
−6

(2x+ 2h+ 1)(2x+ 1)
.

For reasons which will become clear in Calculus, we do not expand the denominator.
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1.6.1 Exercises

1. Let f(x) =
√
x, g(x) = x+ 10 and h(x) =

1

x
.

(a) Compute the following function values.

i. (f + g)(4) ii. (g − h)(7) iii. (fh)(25) iv.

(
h

g

)
(3)

(b) Find the domain of the following functions then simplify their expressions.

i. (f + g)(x)

ii. (g − h)(x)

iii. (fh)(x)

iv.

(
h

g

)
(x)

v.
(g
h

)
(x)

vi. (h− f)(x)

2. Let f(x) = 3
√
x− 1, g(x) = 2x2 − 3x− 2 and h(x) =

3

2− x
.

(a) Compute the following function values.

i. (f + g)(4) ii. (g − h)(1) iii. (fh)(0) iv.

(
h

g

)
(−1)

(b) Find the domain of the following functions then simplify their expressions.

i. (f − g)(x) ii. (gh)(x) iii.

(
f

g

)
(x) iv.

(
f

h

)
(x)

3. Let f(x) =
√

6x− 2, g(x) = x2 − 36, and h(x) =
1

x− 4
.

(a) Compute the following function values.

i. (f + g)(3)

ii. (g − h)(8)

iii.

(
f

g

)
(4)

iv. (fh)(8)

v. (g + h)(−4)

vi.

(
h

g

)
(−12)

(b) Find the domain of the following functions and simplify their expressions.

i. (f + g)(x)

ii. (g − h)(x)

iii.

(
f

g

)
(x)

iv. (fh)(x)

v. (g + h)(x)

vi.

(
h

g

)
(x)
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4. Find and simplify the difference quotient
f(x+ h)− f(x)

h
for the following functions.

(a) f(x) = 2x− 5

(b) f(x) = −3x+ 5

(c) f(x) = 6

(d) f(x) = 3x2 − x
(e) f(x) = −x2 + 2x− 1

(f) f(x) = x3 + 1

(g) f(x) =
2

x

(h) f(x) =
3

1− x

(i) f(x) =
x

x− 9

(j) f(x) =
√
x 3

(k) f(x) = mx+ b where m 6= 0

(l) f(x) = ax2 + bx+ c where a 6= 0

3Rationalize the numerator. It won’t look ‘simplified’ per se, but work through until you can cancel the ‘h’.
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1.6.2 Answers

1. (a) i. (f + g)(4) = 16 ii. (g−h)(7) =
118

7
iii. (fh)(25) =

1

5
iv.

(
h

g

)
(3) =

1

39

(b) i. (f + g)(x) =
√
x+ x+ 10

Domain: [0,∞)

ii. (g − h)(x) = x+ 10− 1

x

Domain: (−∞, 0) ∪ (0,∞)

iii. (fh)(x) =
1√
x

Domain: (0,∞)

iv.

(
h

g

)
(x) =

1

x(x+ 10)

Domain: (−∞,−10)∪(−10, 0)∪(0,∞)

v.
(g
h

)
(x) = x(x+ 10)

Domain: (−∞, 0) ∪ (0,∞)

vi. (h− f)(x) =
1

x
−
√
x

Domain: (0,∞)

2. (a) i. (f + g)(4) = 23 ii. (g − h)(1) = −6 iii. (fh)(0) = −3

2
iv.

(
h

g

)
(−1) =

1

3

(b) i. (f − g)(x) = −2x2 + 3x+ 3
√
x+ 1

Domain: [0,∞)

ii. (gh)(x) = −6x− 3

Domain: (−∞, 2) ∪ (2,∞)

iii.

(
f

g

)
(x) =

3
√
x− 1

2x2 − 3x− 2

Domain: [0, 2) ∪ (2,∞)

iv.

(
f

h

)
(x) = −x

√
x+ 1

3x+ 2
√
x− 2

3

Domain: [0, 2) ∪ (2,∞)

3. (a) i. (f + g)(3) = −23

ii. (g − h)(8) =
111

4

iii.

(
f

g

)
(4) = −

√
22

20

iv. (fh)(8) =

√
46

4

v. (g + h)(−4) = −161

8

vi.

(
h

g

)
(−12) = − 1

1728

(b) i. (f + g)(x) = x2 − 36 +
√

6x− 2

Domain:

[
1

3
,∞
)

ii. (g − h)(x) = x2 − 36− 1

x− 4

Domain: (−∞, 4) ∪ (4,∞)

iii.

(
f

g

)
(x) =

√
6x− 2

x2 − 36

Domain:

[
1

3
, 6

)
∪ (6,∞)

iv. (fh)(x) =

√
6x− 2

x− 4

Domain:

[
1

3
, 4

)
∪ (4,∞)

v. (g + h)(x) = x2 − 36 +
1

x− 4

Domain: (−∞, 4) ∪ (4,∞)

vi.

(
h

g

)
(x) =

1

(x− 4) (x2 − 36)

Domain:
(−∞,−6) ∪ (−6, 4) ∪ (4, 6) ∪ (6,∞)
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4. (a) 2

(b) −3

(c) 0

(d) 6x+ 3h− 1

(e) −2x− h+ 2

(f) 3x2 + 3xh+ h2

(g) − 2

x(x+ h)

(h)
3

(1− x− h)(1− x)

(i)
−9

(x− 9)(x+ h− 9)

(j)
1√

x+ h+
√
x

(k) m

(l) 2ax+ ah+ b



64 Relations and Functions

1.7 Graphs of Functions

In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate
was matched with only one y-coordinate. We spent most of our time in that section looking at
functions graphically because they were, after all, just sets of points in the plane. Then in Section
1.5 we described a function as a process and defined the notation necessary to work with functions
algebraically. So now it’s time to look at functions graphically again, only this time we’ll do so with
the notation defined in Section 1.5. We start with what should not be a surprising connection.

The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(x). That is, the
point (x, y) is on the graph of f if and only if y = f(x).

Example 1.7.1. Graph f(x) = x2 − x− 6.

Solution. To graph f , we graph the equation y = f(x). To this end, we use the techniques
outlined in Section 1.3. Specifically, we check for intercepts, test for symmetry, and plot additional
points as needed. To find the x-intercepts, we set y = 0. Since y = f(x), this means f(x) = 0.

f(x) = x2 − x− 6

0 = x2 − x− 6

0 = (x− 3)(x+ 2) factor

x− 3 = 0 or x+ 2 = 0

x = −2, 3

So we get (−2, 0) and (3, 0) as x-intercepts. To find the y-intercept, we set x = 0. Using function
notation, this is the same as finding f(0) and f(0) = 02 − 0 − 6 = −6. Thus the y-intercept is
(0,−6). As far as symmetry is concerned, we can tell from the intercepts that the graph possesses
none of the three symmetries discussed thus far. (You should verify this.) We can make a table
analogous to the ones we made in Section 1.3, plot the points and connect the dots in a somewhat
pleasing fashion to get the graph below on the right.

x f(x) (x, f(x))

−3 6 (−3, 6)

−2 0 (−2, 0)

−1 −4 (−1,−4)

0 −6 (0,−6)

1 −6 (1,−6)

2 −4 (2,−4)

3 0 (3, 0)

4 6 (4, 6)

x

y

−3−2−1 1 2 3 4

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7
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Graphing piecewise-defined functions is a bit more of a challenge.

Example 1.7.2. Graph: f(x) =

{
4− x2 if x < 1

x− 3, if x ≥ 1

Solution. We proceed as before: finding intercepts, testing for symmetry and then plotting
additional points as needed. To find the x-intercepts, as before, we set f(x) = 0. The twist is that
we have two formulas for f(x). For x < 1, we use the formula f(x) = 4 − x2. Setting f(x) = 0
gives 0 = 4 − x2, so that x = ±2. However, of these two answers, only x = −2 fits in the domain
x < 1 for this piece. This means the only x-intercept for the x < 1 region of the x-axis is (−2, 0).
For x ≥ 1, f(x) = x − 3. Setting f(x) = 0 gives 0 = x − 3, or x = 3. Since x = 3 satisfies the
inequality x ≥ 1, we get (3, 0) as another x-intercept. Next, we seek the y-intercept. Notice that
x = 0 falls in the domain x < 1. Thus f(0) = 4 − 02 = 4 yields the y-intercept (0, 4). As far
as symmetry is concerned, you can check that the equation y = 4 − x2 is symmetric about the
y-axis; unfortunately, this equation (and its symmetry) is valid only for x < 1. You can also verify
y = x− 3 possesses none of the symmetries discussed in the Section 1.3. When plotting additional
points, it is important to keep in mind the restrictions on x for each piece of the function. The
sticking point for this function is x = 1, since this is where the equations change. When x = 1, we
use the formula f(x) = x− 3, so the point on the graph (1, f(1)) is (1,−2). However, for all values
less than 1, we use the formula f(x) = 4− x2. As we have discussed earlier in Section 1.2, there is
no real number which immediately precedes x = 1 on the number line. Thus for the values x = 0.9,
x = 0.99, x = 0.999, and so on, we find the corresponding y values using the formula f(x) = 4−x2.
Making a table as before, we see that as the x values sneak up to x = 1 in this fashion, the f(x)
values inch closer and closer1 to 4− 12 = 3. To indicate this graphically, we use an open circle at
the point (1, 3). Putting all of this information together and plotting additional points, we get

x f(x) (x, f(x))

0.9 3.19 (0.9, 3.19)

0.99 ≈ 3.02 (0.99, 3.02)

0.999 ≈ 3.002 (0.999, 3.002)

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

1We’ve just stepped into Calculus here!
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In the previous two examples, the x-coordinates of the x-intercepts of the graph of y = f(x) were
found by solving f(x) = 0. For this reason, they are called the zeros of f .

Definition 1.7. The zeros of a function f are the solutions to the equation f(x) = 0. In other
words, x is a zero of f if and only if (x, 0) is an x-intercept of the graph of y = f(x).

Of the three symmetries discussed in Section 1.3, only two are of significance to functions: symmetry
about the y-axis and symmetry about the origin.2 Recall that we can test whether the graph of an
equation is symmetric about the y-axis by replacing x with −x and checking to see if an equivalent
equation results. If we are graphing the equation y = f(x), substituting −x for x results in the
equation y = f(−x). In order for this equation to be equivalent to the original equation y = f(x)
we need f(−x) = f(x). In a similar fashion, we recall that to test an equation’s graph for symmetry
about the origin, we replace x and y with −x and −y, respectively. Doing this substitution in the
equation y = f(x) results in −y = f(−x). Solving the latter equation for y gives y = −f(−x). In
order for this equation to be equivalent to the original equation y = f(x) we need −f(−x) = f(x),
or, equivalently, f(−x) = −f(x). These results are summarized below.

Steps for testing if the graph of a function possesses symmetry

The graph of a function f is symmetric:

• About the y-axis if and only if f(−x) = f(x) for all x in the domain of f .

• About the origin if and only if f(−x) = −f(x) for all x in the domain of f .

For reasons which won’t become clear until we study polynomials, we call a function even if its
graph is symmetric about the y-axis or odd if its graph is symmetric about the origin. Apart from
a very specialized family of functions which are both even and odd,3 functions fall into one of three
distinct categories: even, odd, or neither even nor odd.

Example 1.7.3. Analytically determine if the following functions are even, odd, or neither even
nor odd. Verify your result with a graphing calculator.

1. f(x) =
5

2− x2

2. g(x) =
5x

2− x2

3. h(x) =
5x

2− x3

4. i(x) =
5x

2x− x3

5. j(x) = x2 − x

100
− 1

Solution. The first step in all of these problems is to replace x with −x and simplify.

2Why are we so dismissive about symmetry about the x-axis for graphs of functions?
3Any ideas?
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1.

f(x) =
5

2− x2

f(−x) =
5

2− (−x)2

f(−x) =
5

2− x2

f(−x) = f(x)

Hence, f is even. The graphing calculator furnishes the following:

This suggests4 the graph of f is symmetric about the y-axis, as expected.

2.

g(x) =
5x

2− x2

g(−x) =
5(−x)

2− (−x)2

g(−x) =
−5x

2− x2

It doesn’t appear that g(−x) is equivalent to g(x). To prove this, we check with an x value.
After some trial and error, we see that g(1) = 5 whereas g(−1) = −5. This proves that g is
not even, but it doesn’t rule out the possibility that g is odd. (Why not?) To check if g is
odd, we compare g(−x) with −g(x)

−g(x) = − 5x

2− x2

=
−5x

2− x2

−g(x) = g(−x)

Hence, g is odd. Graphically,

4‘Suggests’ is about the extent of what it can do.
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The calculator indicates the graph of g is symmetric about the origin, as expected.

3.

h(x) =
5x

2− x3

h(−x) =
5(−x)

2− (−x)3

h(−x) =
−5x

2 + x3

Once again, h(−x) doesn’t appear to be equivalent to h(x). We check with an x value, for
example, h(1) = 5 but h(−1) = −5

3 . This proves that h is not even and it also shows h is not
odd. (Why?) Graphically,

The graph of h appears to be neither symmetric about the y-axis nor the origin.

4.

i(x) =
5x

2x− x3

i(−x) =
5(−x)

2(−x)− (−x)3

i(−x) =
−5x

−2x+ x3

The expression i(−x) doesn’t appear to be equivalent to i(x). However, after checking some
x values, for example x = 1 yields i(1) = 5 and i(−1) = 5, it appears that i(−x) does, in
fact, equal i(x). However, while this suggests i is even, it doesn’t prove it. (It does, however,
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prove i is not odd.) To prove i(−x) = i(x), we need to manipulate our expressions for i(x)
and i(−x) and show they are equivalent. A clue as to how to proceed is in the numerators:
in the formula for i(x), the numerator is 5x and in i(−x) the numerator is −5x. To re-write
i(x) with a numerator of −5x, we need to multiply its numerator by −1. To keep the value
of the fraction the same, we need to multiply the denominator by −1 as well. Thus

i(x) =
5x

2x− x3

=
(−1)5x

(−1) (2x− x3)

=
−5x

−2x+ x3

Hence, i(x) = i(−x), so i is even. The calculator supports our conclusion.

5.

j(x) = x2 − x

100
− 1

j(−x) = (−x)2 − −x
100
− 1

j(−x) = x2 +
x

100
− 1

The expression for j(−x) doesn’t seem to be equivalent to j(x), so we check using x = 1 to
get j(1) = − 1

100 and j(−1) = 1
100 . This rules out j being even. However, it doesn’t rule out

j being odd. Examining −j(x) gives

j(x) = x2 − x

100
− 1

−j(x) = −
(
x2 − x

100
− 1
)

−j(x) = −x2 +
x

100
+ 1

The expression −j(x) doesn’t seem to match j(−x) either. Testing x = 2 gives j(2) = 149
50

and j(−2) = 151
50 , so j is not odd, either. The calculator gives:
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The calculator suggests that the graph of j is symmetric about the y-axis which would imply
that j is even. However, we have proven that is not the case.

There are two lessons to be learned from the last example. The first is that sampling function
values at particular x values is not enough to prove that a function is even or odd − despite the
fact that j(−1) = −j(1), j turned out not to be odd. Secondly, while the calculator may suggest
mathematical truths, it is the algebra which proves mathematical truths.5

1.7.1 General Function Behavior

The last topic we wish to address in this section is general function behavior. As you shall see in
the next several chapters, each family of functions has its own unique attributes and we will study
them all in great detail. The purpose of this section’s discussion, then, is to lay the foundation for
that further study by investigating aspects of function behavior which apply to all functions. To
start, we will examine the concepts of increasing, decreasing, and constant. Before defining
the concepts algebraically, it is instructive to first look at them graphically. Consider the graph of
the function f given on the next page.

Reading from left to right, the graph ‘starts’ at the point (−4,−3) and ‘ends’ at the point (6, 5.5). If
we imagine walking from left to right on the graph, between (−4,−3) and (−2, 4.5), we are walking
‘uphill’; then between (−2, 4.5) and (3,−8), we are walking ‘downhill’; and between (3,−8) and
(4,−6), we are walking ‘uphill’ once more. From (4,−6) to (5,−6), we ‘level off’, and then resume
walking ‘uphill’ from (5,−6) to (6, 5.5). In other words, for the x values between −4 and −2
(inclusive), the y-coordinates on the graph are getting larger, or increasing, as we move from left
to right. Since y = f(x), the y values on the graph are the function values, and we say that the
function f is increasing on the interval [−4,−2]. Analogously, we say that f is decreasing on the
interval [−2, 3] increasing once more on the interval [3, 4], constant on [4, 5], and finally increasing
once again on [5, 6]. It is extremely important to notice that the behavior (increasing, decreasing
or constant) occurs on an interval on the x-axis. When we say that the function f is increasing
on [−4,−2] we do not mention the actual y values that f attains along the way. Thus, we report
where the behavior occurs, not to what extent the behavior occurs.6 Also notice that we do not
say that a function is increasing, decreasing or constant at a single x value. In fact, we would run

5Or, in other words, don’t rely too heavily on the machine!
6The notions of how quickly or how slowly a function increases or decreases are explored in Calculus.
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into serious trouble in our previous example if we tried to do so because x = −2 is contained in an
interval on which f was increasing and one on which it is decreasing. (There’s more on this issue
and many others in the exercises.)

(−4,−3)

(−2, 4.5)

(3,−8)

(6, 5.5)

(4,−6)

(5,−6)

x

y

−4 −3 −2 −1 1 2 3 4 5 6 7

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

1

2

3

4

5

6

7

The graph of y = f(x)

We’re now ready for the more formal algebraic definitions of what it means for a function to be
increasing, decreasing or constant.

Definition 1.8. Suppose f is a function defined on an interval I. We say f is:

• increasing on I if and only if f(a) < f(b) for all real numbers a, b in I with a < b.

• decreasing on I if and only if f(a) > f(b) for all real numbers a, b in I with a < b.

• constant on I if and only if f(a) = f(b) for all real numbers a, b in I.

It is worth taking some time to see that the algebraic descriptions of increasing, decreasing, and
constant as stated in Definition 1.8 agree with our graphical descriptions given earlier. You should
look back through the examples and exercise sets in previous sections where graphs were given to
see if you can determine the intervals on which the functions are increasing, decreasing or constant.
Can you find an example of a function for which none of the concepts in Definition 1.8 apply?

Now let’s turn our attention to a few of the points on the graph. Clearly the point (−2, 4.5) does
not have the largest y value of all of the points on the graph of f − indeed that honor goes to
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(6, 5.5) − but (−2, 4.5) should get some sort of consolation prize for being ‘the top of the hill’
between x = −4 and x = 3. We say that the function f has a local maximum7 at the point
(−2, 4.5), because the y-coordinate 4.5 is the largest y-value (hence, function value) on the curve
‘near’8 x = −2. Similarly, we say that the function f has a local minimum9 at the point (3,−8),
since the y-coordinate −8 is the smallest function value near x = 3. Although it is tempting to
say that local extrema10 occur when the function changes from increasing to decreasing or vice
versa, it is not a precise enough way to define the concepts for the needs of Calculus. At the risk of
being pedantic, we will present the traditional definitions and thoroughly vet the pathologies they
induce in the exercises. We have one last observation to make before we proceed to the algebraic
definitions and look at a fairly tame, yet helpful, example.

If we look at the entire graph, we see the largest y value (hence the largest function value) is 5.5
at x = 6. In this case, we say the maximum11 of f is 5.5; similarly, the minimum12 of f is −8.
We formalize these concepts in the following definitions.

Definition 1.9. Suppose f is a function with f(a) = b.

• We say f has a local maximum at the point (a, b) if and only if there is an open interval
I containing a for which f(a) ≥ f(x) for all x in I. The value f(a) = b is called ‘a local
maximum value of f ’ in this case.

• We say f has a local minimum at the point (a, b) if and only if there is an open interval
I containing a for which f(a) ≤ f(x) for all x in I. The value f(a) = b is called ‘a local
minimum value of f ’ in this case.

• The value b is called the maximum of f if b ≥ f(x) for all x in the domain of f .

• The value b is called the minimum of f if b ≤ f(x) for all x in the domain of f .

It’s important to note that not every function will have all of these features. Indeed, it is possible
to have a function with no local or absolute extrema at all! (Any ideas of what such a function’s
graph would have to look like?) We shall see in the exercises examples of functions which have one
or two, but not all, of these features, some that have instances of each type of extremum and some
functions that seem to defy common sense. In all cases, though, we shall adhere to the algebraic
definitions above as we explore the wonderful diversity of graphs that functions provide to us.

Here is the ‘tame’ example which was promised earlier. It summarizes all of the concepts presented
in this section as well as some from previous sections so you should spend some time thinking
deeply about it before proceeding to the exercises.

7Also called ‘relative maximum’.
8We will make this more precise in a moment.
9Also called a ‘relative minimum’.

10‘Maxima’ is the plural of ‘maximum’ and ‘mimima’ is the plural of ‘minimum’. ‘Extrema’ is the plural of
‘extremum’ which combines maximum and minimum.

11Sometimes called the ‘absolute’ or ‘global’ maximum.
12Again, ‘absolute’ or ‘global’ minimum can be used.
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Example 1.7.4. Given the graph of y = f(x) below, answer all of the following questions.

(−2, 0) (2, 0)

(4,−3)(−4,−3)

(0, 3)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

1. Find the domain of f .

2. Find the range of f .

3. Determine f(2).

4. List the x-intercepts, if any exist.

5. List the y-intercepts, if any exist.

6. Find the zeros of f .

7. Solve f(x) < 0.

8. Determine the number of solutions to the
equation f(x) = 1.

9. List the intervals on which f is increasing.

10. List the intervals on which f is decreasing.

11. List the local maximums, if any exist.

12. List the local minimums, if any exist.

13. Find the maximum, if it exists.

14. Find the minimum, if it exists.

15. Does f appear to be even, odd, or neither?

Solution.

1. To find the domain of f , we proceed as in Section 1.4. By projecting the graph to the x-axis,
we see the portion of the x-axis which corresponds to a point on the graph is everything from
−4 to 4, inclusive. Hence, the domain is [−4, 4].

2. To find the range, we project the graph to the y-axis. We see that the y values from −3 to
3, inclusive, constitute the range of f . Hence, our answer is [−3, 3].

3. Since the graph of f is the graph of the equation y = f(x), f(2) is the y-coordinate of the
point which corresponds to x = 2. Since the point (2, 0) is on the graph, we have f(2) = 0.
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4. The x-intercepts are the points on the graph with y-coordinate 0, namely (−2, 0) and (2, 0).

5. The y-intercept is the point on the graph with x-coordinate 0, namely (0, 3).

6. The zeros of f are the x-coordinates of the x-intercepts of the graph of y = f(x) which are
x = −2, 2.

7. To solve f(x) < 0, we look for the x values of the points on the graph where the y-coordinate
is less than 0. Graphically, we are looking where the graph is below the x-axis. This happens
for the x values from −4 to −2 and again from 2 to 4. So our answer is [−4,−2) ∪ (2, 4].

8. To find where f(x) = 1, we look for points on the graph where the y-coordinate is 1. Even
though these points aren’t specified, we see that the curve has two points with a y value of
1, as seen in the graph below. That means there are two solutions to f(x) = 1.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

9. As we move from left to right, the graph rises from (−4,−3) to (0, 3). This means f is
increasing on the interval [−4, 0]. (Remember, the answer here is an interval on the x-axis.)

10. As we move from left to right, the graph falls from (0, 3) to (4,−3). This means f is decreasing
on the interval [0, 4]. (Remember, the answer here is an interval on the x-axis.)

11. The function has its only local maximum at (0, 3).

12. There are no local minimums. Why don’t (−4,−3) and (4,−3) count? Let’s consider the
point (−4,−3) for a moment. Recall that, in the definition of local minimum, there needs to
be an open interval I which contains x = −4 such that f(−4) < f(x) for all x in I different
from −4. But if we put an open interval around x = −4 a portion of that interval will lie
outside of the domain of f . Because we are unable to fulfill the requirements of the definition
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for a local minimum, we cannot claim that f has one at (−4,−3). The point (4,−3) fails for
the same reason − no open interval around x = 4 stays within the domain of f .

13. The maximum value of f is the largest y-coordinate which is 3.

14. The minimum value of f is the smallest y-coordinate which is −3.

15. The graph appears to be symmetric about the y-axis. This suggests13 that f is even.

.

With few exceptions, we will not develop techniques in College Algebra which allow us to determine
the intervals on which a function is increasing, decreasing or constant or to find the local maximums
and local minimums analytically; this is the business of Calculus.14 When we have need to find such
beasts, we will resort to the calculator. Most graphing calculators have ‘Minimum’ and ‘Maximum’
features which can be used to approximate these values, as demonstrated below.

Example 1.7.5. Let f(x) =
15x

x2 + 3
. Use a graphing calculator to approximate the intervals on

which f is increasing and those on which it is decreasing. Approximate all extrema.

Solution. Entering this function into the calculator gives

Using the Minimum and Maximum features, we get

13but does not prove
14Although, truth be told, there is only one step of Calculus involved, followed by several pages of algebra.
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To two decimal places, f appears to have its only local minimum at (−1.73,−4.33) and its only
local maximum at (1, 73, 4.33). Given the symmetry about the origin suggested by the graph, the
relation between these points shouldn’t be too surprising. The function appears to be increasing on
[−1.73, 1.73] and decreasing on (−∞,−1.73]∪ [1.73,∞). This makes −4.33 the (absolute) minimum
and 4.33 the (absolute) maximum.

Example 1.7.6. Find the points on the graph of y = (x−3)2 which are closest to the origin. Round
your answers to two decimal places.

Solution. Suppose a point (x, y) is on the graph of y = (x− 3)2. Its distance to the origin, (0, 0),
is given by

d =
√

(x− 0)2 + (y − 0)2

=
√
x2 + y2

=

√
x2 + [(x− 3)2]2 Since y = (x− 3)2

=
√
x2 + (x− 3)4

Given a value for x, the formula d =
√
x2 + (x− 3)4 is the distance from (0, 0) to the point (x, y)

on the curve y = (x − 3)2. What we have defined, then, is a function d(x) which we wish to
minimize over all values of x. To accomplish this task analytically would require Calculus so as
we’ve mentioned before, we can use a graphing calculator to find an approximate solution. Using
the calculator, we enter the function d(x) as shown below and graph.

Using the Minimum feature, we see above on the right that the (absolute) minimum occurs near
x = 2. Rounding to two decimal places, we get that the minimum distance occurs when x = 2.00.
To find the y value on the parabola associated with x = 2.00, we substitute 2.00 into the equation
to get y = (x − 3)2 = (2.00 − 3)2 = 1.00. So, our final answer is (2.00, 1.00).15 (What does the y
value listed on the calculator screen mean in this problem?)

15It seems silly to list a final answer as (2.00, 1.00). Indeed, Calculus confirms that the exact answer to this
problem is, in fact, (2, 1). As you are well aware by now, the author is a pedant, and as such, uses the decimal places
to remind the reader that any result garnered from a calculator in this fashion is an approximation, and should be
treated as such.
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1.7.2 Exercises

1. Sketch the graphs of the following functions. State the domain of the function, identify any
intercepts and test for symmetry.

(a) f(x) =
x− 2

3
(b) f(x) =

√
5− x (c) f(x) = 3

√
x (d) f(x) =

1

x2 + 1

2. Analytically determine if the following functions are even, odd or neither.

(a) f(x) = 7x

(b) f(x) = 7x+ 2

(c) f(x) =
1

x3

(d) f(x) = 4

(e) f(x) = 0

(f) f(x) = x6 − x4 + x2 + 9

(g) f(x) = −x5 − x3 + x

(h) f(x) = x4+x3+x2+x+1

(i) f(x) =
√

5− x

(j) f(x) = x2 − x− 6

3. Given the graph of y = f(x) below, answer all of the following questions.

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

(a) Find the domain of f .

(b) Find the range of f .

(c) Determine f(−2).

(d) List the x-intercepts, if any exist.

(e) List the y-intercepts, if any exist.

(f) Find the zeros of f .

(g) Solve f(x) ≥ 0.

(h) Determine the number of solutions to the
equation f(x) = 2.

(i) List the intervals where f is increasing.

(j) List the intervals where f is decreasing.

(k) List the local maximums, if any exist.

(l) List the local minimums, if any exist.

(m) Find the maximum, if it exists.

(n) Find the minimum, if it exists.

(o) Is f even, odd, or neither?
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4. Use your graphing calculator to approximate the local and absolute extrema of the following
functions. Approximate the intervals on which the function is increasing and those on which
it is decreasing. Round your answers to two decimal places.

(a) f(x) = x4 − 3x3 − 24x2 + 28x+ 48

(b) f(x) = x2/3(x− 4)

(c) f(x) =
√

9− x2

(d) f(x) = x
√

9− x2

5. Sketch the graphs of the following piecewise-defined functions.

(a) f(x) =

{
−2x− 4 if x < 0

3x if x ≥ 0

(b) f(x) =

{ √
x+ 4 if −4 ≤ x < 5√
x− 1 if x ≥ 5

(c) f(x) =


x2 if x ≤ −2

3− x if −2 < x < 2

4 if x ≥ 2

(d) f(x) =


1

x
if −6 < x < −1

x if −1 < x < 1
√
x if 1 < x < 9

6. Let f(x) = bxc, the greatest integer function defined in Exercise 12 in Section 1.5.

(a) Graph y = f(x). Be careful to correctly describe the behavior of the graph near the
integers.

(b) Is f even, odd, or neither? Explain.

(c) Discuss with your classmates which points on the graph are local minimums, local max-
imums or both. Is f ever increasing? Decreasing? Constant?

7. Use your graphing calculator to show that the following functions do not have any extrema,
neither local nor absolute.

(a) f(x) = x3 + x− 12 (b) f(x) = −5x+ 2

8. In Exercise 11 in Section 1.5, we saw that the population of Sasquatch in Portage County

could be modeled by the function P (t) =
150t

t+ 15
, where t = 0 represents the year 1803. Use

your graphing calculator to analyze the general function behavior of P . Will there ever be a
time when 200 Sasquatch roam Portage County?

9. One of the most important aspects of the Cartesian Coordinate Plane is its ability to put
Algebra into geometric terms and Geometry into algebraic terms. We’ve spent most of this
chapter looking at this very phenomenon and now you should spend some time with your
classmates reviewing what we’ve done. What major results do we have that tie Algebra and
Geometry together? What concepts from Geometry have we not yet described algebraically?
What topics from Intermediate Algebra have we not yet discussed geometrically?



1.7 Graphs of Functions 79

10. It’s now time to “thoroughly vet the pathologies induced” by the precise definitions of local
maximum and local minimum. We’ll do this by providing you and your classmates a series
of exercises to discuss. You will need to refer back to Definition 1.8 (Increasing, Decreasing
and Constant) and Definition 1.9 (Maximum and Minimum) during the discussion.

(a) Consider the graph of the function f given below.

x

y

−2 −1 1 2

−3

−2

−1

1

2

3

i. Show that f has a local maximum but not a local minimum at the point (−1, 1).

ii. Show that f has a local minimum but not a local maximum at the point (1, 1).

iii. Show that f has a local maximum AND a local minimum at the point (0, 1).

iv. Show that f is constant on the interval [−1, 1] and thus has both a local maximum
AND a local minimum at every point (x, f(x)) where −1 < x < 1.

(b) Using Example 1.7.4 as a guide, show that the function g whose graph is given below
does not have a local maximum at (−3, 5) nor does it have a local minimum at (3,−3).
Find its extrema, both local and absolute. What’s unique about the point (0,−4) on
this graph? Also find the intervals on which g is increasing and those on which g is
decreasing.

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1
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(c) We said earlier in the section that it is not good enough to say local extrema exist
where a function changes from increasing to decreasing or vice versa. As a previous
exercise showed, we could have local extrema when a function is constant so now we
need to examine some functions whose graphs do indeed change direction. Consider the
functions graphed below. Notice that all four of them change direction at an open circle
on the graph. Examine each for local extrema. What is the effect of placing the “dot”
on the y-axis above or below the open circle? What could you say if no function value
was assigned to x = 0?

i.

x

y

−2 −1 1 2
−1

1

2

3

4

Function I

ii.

x

y

−2 −1 1 2
−1

1

2

3

4

Function II

iii.

x

y

−2 −1 1 2
−1

1

2

3

4

Function III

iv.

x

y

−2 −1 1 2

1

2

3

4

5

Function IV
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1.7.3 Answers

1. (a) f(x) =
x− 2

3
Domain: (−∞,∞)

x-intercept: (2, 0)

y-intercept:
(
0,−2

3

)
No symmetry

x

y

−1 1 2 3 4

−1

1

(b) f(x) =
√

5− x
Domain: (−∞, 5]

x-intercept: (5, 0)

y-intercept: (0,
√

5)

No symmetry x

y

−4 −3 −2 −1 1 2 3 4 5

1

2

3

(c) f(x) = 3
√
x

Domain: (−∞,∞)

x-intercept: (0, 0)

y-intercept: (0, 0)

Symmetry about the origin

x

y

−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−2

−1

1

2

(d) f(x) =
1

x2 + 1
Domain: (−∞,∞)

No x-intercepts

y-intercept: (0, 1)

Symmetry about the y-axis

x

y

−2 −1 1 2

1

2. (a) f(x) = 7x is odd

(b) f(x) = 7x+ 2 is neither

(c) f(x) =
1

x3
is odd

(d) f(x) = 4 is even

(e) f(x) = 0 is even and odd

(f) f(x) = x6 − x4 + x2 + 9 is even

(g) f(x) = −x5 − x3 + x is odd

(h) f(x) = x4 + x3 + x2 + x+ 1 is neither

(i) f(x) =
√

5− x is neither

(j) f(x) = x2 − x− 6 is neither

3. (a) [−5, 3]

(b) [−5, 4]

(c) f(−2) = 2

(d) (−4, 0), (−1, 0), (1, 0)

(e) (0,−1)

(f) −4, −1, 1

(g) [−4,−1], [1, 3]

(h) 4

(i) [−5,−3], [0, 2]

(j) [−3, 0], [2, 3]

(k) (−3, 4), (2, 3)

(l) (0,−1)

(m) 4

(n) −5

(o) Neither
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4. (a) No absolute maximum
Absolute minimum f(4.55) ≈ −175.46
Local minimum at (−2.84,−91.32)
Local maximum at (0.54, 55.73)
Local minimum at (4.55,−175.46)
Increasing on [−2.84, 0.54], [4.55,∞)
Decreasing on (−∞,−2.84], [0.54, 4.55]

(b) No absolute maximum
No absolute minimum
Local maximum at (0, 0)
Local minimum at (1.60,−3.28)
Increasing on (−∞, 0], [1.60,∞)
Decreasing on [0, 1.60]

(c) Absolute maximum f(0) = 3
Absolute minimum f(±3) = 0
Local maximum at (0, 3)
No local minimum
Increasing on [−3, 0]
Decreasing on [0, 3]

(d) Absolute maximum f(2.12) ≈ 4.50
Absolute minimum f(−2.12) ≈ −4.50
Local maximum (2.12, 4.50)
Local minimum (−2.12,−4.50)
Increasing on [−2.12, 2.12]
Decreasing on [−3,−2.12], [2.12, 3]

5. (a)

x

y

−2 −1 1

−4

−3

−2

−1

1

2

3

(b)

x

y

−4 −3 −2 −1 1 2 3 4 5 6 7

1

2

3

(c)

x

y

−2 −1 1 2 3

1

2

3

4

5

6

(d)

x

y

−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9−1

1

2

3
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6. (a)

x

y ...

...

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

1

2

3

4

5

6

The graph of f(x) = bxc.

(b) Note that f(1.1) = 1, but f(−1.1) = −2, and so f is neither even nor odd.
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1.8 Transformations

In this section, we study how the graphs of functions change, or transform, when certain specialized
modifications are made to their formulas. The transformations we will study fall into three broad
categories: shifts, reflections, and scalings, and we will present them in that order. Suppose the
graph below is the complete graph of f .

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

The Fundamental Graphing Principle for Functions says that for a point (a, b) to be on the graph,
f(a) = b. In particular, we know f(0) = 1, f(2) = 3, f(4) = 3 and f(5) = 5. Suppose we wanted to
graph the function defined by the formula g(x) = f(x)+2. Let’s take a minute to remind ourselves
of what g is doing. We start with an input x to the function f and we obtain the output f(x).
The function g takes the output f(x) and adds 2 to it. In order to graph g, we need to graph the
points (x, g(x)). How are we to find the values for g(x) without a formula for f(x)? The answer is
that we don’t need a formula for f(x), we just need the values of f(x). The values of f(x) are the
y values on the graph of y = f(x). For example, using the points indicated on the graph of f , we
can make the following table.

x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x))

0 (0, 1) 1 3 (0, 3)

2 (2, 3) 3 5 (2, 5)

4 (4, 3) 3 5 (4, 5)

5 (5, 5) 5 7 (5, 7)

In general, if (a, b) is on the graph of y = f(x), then f(a) = b, so g(a) = f(a) + 2 = b+ 2. Hence,
(a, b+2) is on the graph of g. In other words, to obtain the graph of g, we add 2 to the y-coordinate
of each point on the graph of f . Geometrically, adding 2 to the y-coordinate of a point moves the
point 2 units above its previous location. Adding 2 to every y-coordinate on a graph en masse is
usually described as ‘shifting the graph up 2 units’. Notice that the graph retains the same basic
shape as before, it is just 2 units above its original location. In other words, we connect the four
points we moved in the same manner in which they were connected before. We have the results
side-by-side below.
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(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

6

7

y = f(x)

shift up 2 units
−−−−−−−−−−−−→

add 2 to each y-coordinate

(0, 3)

(2, 5)

(4, 5)

(5, 7)

x

y

1 2 3 4 5

1

2

4

5

6

7

y = g(x) = f(x) + 2

You’ll note that the domain of f and the domain of g are the same, namely [0, 5], but that the
range of f is [1, 5] while the range of g is [3, 7]. In general, shifting a function vertically like this
will leave the domain unchanged, but could very well affect the range. You can easily imagine what
would happen if we wanted to graph the function j(x) = f(x)− 2. Instead of adding 2 to each of
the y-coordinates on the graph of f , we’d be subtracting 2. Geometrically, we would be moving
the graph down 2 units. We leave it to the reader to verify that the domain of j is the same as f ,
but the range of j is [−1, 3]. What we have discussed is generalized in the following theorem.

Theorem 1.2. Vertical Shifts. Suppose f is a function and k is a positive number.

• To graph y = f(x) + k, shift the graph of y = f(x) up k units by adding k to the
y-coordinates of the points on the graph of f .

• To graph y = f(x) − k, shift the graph of y = f(x) down k units by subtracting k from
the y-coordinates of the points on the graph of f .

The key to understanding Theorem 1.2 and, indeed, all of the theorems in this section comes from
an understanding of the Fundamental Graphing Principle for Functions. If (a, b) is on the graph
of f , then f(a) = b. Substituting x = a into the equation y = f(x) + k gives y = f(a) + k = b+ k.
Hence, (a, b+k) is on the graph of y = f(x)+k, and we have the result. In the language of ‘inputs’
and ‘outputs’, Theorem 1.2 can be paraphrased as “Adding to, or subtracting from, the output of
a function causes the graph to shift up or down, respectively”. So what happens if we add to or
subtract from the input of the function?

Keeping with the graph of y = f(x) above, suppose we wanted to graph g(x) = f(x+ 2). In other
words, we are looking to see what happens when we add 2 to the input of the function.1 Let’s try
to generate a table of values of g based on those we know for f . We quickly find that we run into
some difficulties.

1We have spent a lot of time in this text showing you that f(x+ 2) and f(x) + 2 are, in general, wildly different
algebraic animals. We will see momentarily that the geometry is also dramatically different.
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x (x, f(x)) f(x) g(x) = f(x+ 2) (x, g(x))

0 (0, 1) 1 f(0 + 2) = f(2) = 3 (0, 3)

2 (2, 3) 3 f(2 + 2) = f(4) = 3 (2, 3)

4 (4, 3) 3 f(4 + 2) = f(6) =?

5 (5, 5) 5 f(5 + 2) = f(7) =?

When we substitute x = 4 into the formula g(x) = f(x+ 2), we are asked to find f(4 + 2) = f(6)
which doesn’t exist because the domain of f is only [0, 5]. The same thing happens when we
attempt to find g(5). What we need here is a new strategy. We know, for instance, f(0) = 1. To
determine the corresponding point on the graph of g, we need to figure out what value of x we must
substitute into g(x) = f(x + 2) so that the quantity x + 2, works out to be 0. Solving x + 2 = 0
gives x = −2, and g(−2) = f((−2) + 2) = f(0) = 1 so (−2, 1) on the graph of g. To use the fact
f(2) = 3, we set x+ 2 = 2 to get x = 0. Substituting gives g(0) = f(0 + 2) = f(2) = 3. Continuing
in this fashion, we get

x x+ 2 g(x) = f(x+ 2) (x, g(x))

−2 0 g(−2) = f(0) = 1 (−2, 1)

0 2 g(0) = f(2) = 3 (0, 3)

2 4 g(2) = f(4) = 3 (2, 3)

3 5 g(3) = f(5) = 5 (3, 5)

In summary, the points (0, 1), (2, 3), (4, 3) and (5, 5) on the graph of y = f(x) give rise to the
points (−2, 1), (0, 3), (2, 3) and (3, 5) on the graph of y = g(x), respectively. In general, if (a, b) is
on the graph of y = f(x), then f(a) = b. Solving x + 2 = a gives x = a − 2 so that g(a − 2) =
f((a − 2) + 2) = f(a) = b. As such, (a − 2, b) is on the graph of y = g(x). The point (a − 2, b) is
exactly 2 units to the left of the point (a, b) so the graph of y = g(x) is obtained by shifting the
graph y = f(x) to the left 2 units, as pictured below.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

−2 −1 1 2 3 4 5

2

3

4

5

y = f(x)

shift left 2 units
−−−−−−−−−−−−→

subtract 2 from each x-coordinate

(−2, 1)

(0, 3)
(2, 3)

(3, 5)

x

y

−2 −1 1 2 3 4 5

1

2

4

5

y = g(x) = f(x+ 2)

Note that while the ranges of f and g are the same, the domain of g is [−2, 3] whereas the domain
of f is [0, 5]. In general, when we shift the graph horizontally, the range will remain the same, but
the domain could change. If we set out to graph j(x) = f(x − 2), we would find ourselves adding
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2 to all of the x values of the points on the graph of y = f(x) to effect a shift to the right 2 units.
Generalizing, we have the following result.

Theorem 1.3. Horizontal Shifts. Suppose f is a function and h is a positive number.

• To graph y = f(x+ h), shift the graph of y = f(x) left h units by subtracting h from the
x-coordinates of the points on the graph of f .

• To graph y = f(x − h), shift the graph of y = f(x) right h units by adding h to the
x-coordinates of the points on the graph of f .

In other words, Theorem 1.3 says adding to or subtracting from the input to a function amounts to
shifting the graph left or right, respectively. Theorems 1.2 and 1.3 present a theme which will run
common throughout the section: changes to the outputs from a function affect the y-coordinates
of the graph, resulting in some kind of vertical change; changes to the inputs to a function affect
the x-coordinates of the graph, resulting in some kind of horizontal change.

Example 1.8.1.

1. Graph f(x) =
√
x. Plot at least three points.

2. Use your graph in 1 to graph g(x) =
√
x− 1.

3. Use your graph in 1 to graph j(x) =
√
x− 1.

4. Use your graph in 1 to graph m(x) =
√
x+ 3− 2.

Solution.

1. Owing to the square root, the domain of f is x ≥ 0, or [0,∞). We choose perfect squares to
build our table and graph below. From the graph we verify the domain of f is [0,∞) and the
range of f is also [0,∞).

x f(x) (x, f(x))

0 0 (0, 0)

1 1 (1, 1)

4 2 (4, 2)

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

y = f(x) =
√
x

2. The domain of g is the same as the domain of f , since the only condition on both functions
is that x ≥ 0. If we compare the formula for g(x) with f(x), we see that g(x) = f(x) − 1.
In other words, we have subtracted 1 from the output of the function f . By Theorem 1.2,
we know that in order to graph g, we shift the graph of f down one unit by subtracting
1 from each of the y-coordinates of the points on the graph of f . Applying this to the three
points we have specified on the graph, we move (0, 0) to (0,−1), (1, 1) to (1, 0), and (4, 2) to
(4, 1). The rest of the points follow suit, and we connect them with the same basic shape as
before. We confirm the domain of g is [0,∞) and find the range of g to be [−1,∞).
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(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

y = f(x) =
√
x

shift down 1 unit
−−−−−−−−−−−−→

subtract 1 from each y-coordinate

(0,−1)

(1, 0)

(4, 1)

x

y

1 2 3 4

1

2

y = g(x) =
√
x− 1

3. Solving x − 1 ≥ 0 gives x ≥ 1, so the domain of j is [1,∞). To graph j, we note that
j(x) = f(x − 1). In other words, we are subtracting 1 from the input of f . According to
Theorem 1.3, this induces a shift to the right of the graph of f . We add 1 to the x-coordinates
of the points on the graph of f and get the result below. The graph reaffirms the domain of
j is [1,∞) and tells us that the range is [0,∞).

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4 5

1

2

y = f(x) =
√
x

shift right 1 unit
−−−−−−−−−−−−→

add 1 to each x-coordinate

(1, 0)

(2, 1)

(5, 2)

x

y

2 3 4 5

1

2

y = j(x) =
√
x− 1

4. To find the domain of m, we solve x + 3 ≥ 0 and get [−3,∞). Comparing the formulas of
f(x) and m(x), we have m(x) = f(x+ 3)− 2. We have 3 being added to an input, indicating
a horizontal shift, and 2 being subtracted from an output, indicating a vertical shift. We
leave it to the reader to verify that, in this particular case, the order in which we perform
these transformations is immaterial; we will arrive at the same graph regardless as to which
transformation we apply first.2 We follow the convention ‘inputs first’,3 and to that end we
first tackle the horizontal shift. Letting m1(x) = f(x + 3) denote this intermediate step,
Theorem 1.3 tells us that the graph of y = m1(x) is the graph of f shifted to the left 3 units.
Hence, we subtract 3 from each of the x-coordinates of the points on the graph of f .

(0, 0)

(1, 1)

(4, 2)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = f(x) =
√
x

shift left 3 units
−−−−−−−−−−−−→

subtract 3 from each x-coordinate

(−3, 0)

(−2, 1)

(1, 2)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = m1(x) = f(x+ 3) =
√
x+ 3

2We shall see in the next example that order is generally important when applying more than one transformation
to a graph.

3We could equally have chosen the convention ‘outputs first’.
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Since m(x) = f(x+ 3)− 2 and f(x+ 3) = m1(x), we have m(x) = m1(x)− 2. We can apply
Theorem 1.2 and obtain the graph of m by subtracting 2 from the y-coordinates of each of
the points on the graph of m1(x). The graph verifies that the domain of m is [−3,∞) and
we find the range of m is [−2,∞).

(−3, 0)

(−2, 1)

(1, 2)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = m1(x) = f(x+ 3) =
√
x+ 3

shift down 2 units
−−−−−−−−−−−−→

subtract 2 from each y-coordinate

(−3,−2)

(−2,−1)

(1, 0)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = m(x) = m1(x)− 2 =
√
x+ 3− 2

Keep in mind that we can check our answer to any of these kinds of problems by showing that any
of the points we’ve moved lie on the graph of our final answer. For example, we can check that
(−3,−2) is on the graph of m, by computing m(−3) =

√
(−3) + 3− 2 =

√
0− 2 = −2X

We now turn our attention to reflections. We know from Section 1.1 that to reflect a point (x, y)
across the x-axis, we replace y with −y. If (x, y) is on the graph of f , then y = f(x), so replacing y
with −y is the same as replacing f(x) with −f(x). Hence, the graph of y = −f(x) is the graph of f
reflected across the x-axis. Similarly, the graph of y = f(−x) is the graph of f reflected across the
y-axis. Returning to inputs and outputs, multiplying the output from a function by −1 reflects its
graph across the x-axis, while multiplying the input to a function by −1 reflects the graph across
the y-axis.4

Theorem 1.4. Reflections. Suppose f is a function.

• To graph y = −f(x), reflect the graph of y = f(x) across the x-axis by multiplying the
y-coordinates of the points on the graph of f by −1.

• To graph y = f(−x), reflect the graph of y = f(x) across the y-axis by multiplying the
x-coordinates of the points on the graph of f by −1.

Applying Theroem 1.4 to the graph of y = f(x) given at the beginning of the section, we can graph
y = −f(x) by reflecting the graph of f about the x-axis

4The expressions −f(x) and f(−x) should look familiar - they are the quantities we used in Section 1.7 to test if
a function was even, odd, or neither. The interested reader is invited to explore the role of reflections and symmetry
of functions. What happens if you reflect an even function across the y-axis? What happens if you reflect an odd
function across the y-axis? What about the x-axis?



90 Relations and Functions

(0, 1)
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y = f(x)

reflect across x-axis
−−−−−−−−−−−−→

multiply each y-coordinate by −1

(0,−1)

(2,−3)

(4,−3)

(5,−5)

x

y
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y = −f(x)

By reflecting the graph of f across the y-axis, we obtain the graph of y = f(−x).

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

−1−2−3−4−5 1 2 3 4 5
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4

5

y = f(x)

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

(0, 1)

(−2, 3)

(−4, 3)

(−5, 5)

x

y

−1−2−3−4−5 1 2 3 4 5

2

3

4

5

y = f(−x)

With the addition of reflections, it is now more important than ever to consider the order of
transformations, as the next example illustrates.

Example 1.8.2. Let f(x) =
√
x. Use the graph of f from Example 1.8.1 to graph the following

functions below. Also, state their domains and ranges.

1. g(x) =
√
−x

2. j(x) =
√

3− x

3. m(x) = 3−
√
x

Solution.

1. The mere sight of
√
−x usually causes alarm, if not panic. When we discussed domains

in Section 1.5, we clearly banished negatives from the radicals of even roots. However, we
must remember that x is a variable, and as such, the quantity −x isn’t always negative. For
example, if x = −4, −x = 4, thus

√
−x =

√
−(−4) = 2 is perfectly well-defined. To find the
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domain analytically, we set −x ≥ 0 which gives x ≤ 0, so that the domain of g is (−∞, 0].
Since g(x) = f(−x), Theorem 1.4 tells us the graph of g is the reflection of the graph of f
across the y-axis. We can accomplish this by multiplying each x-coordinate on the graph
of f by −1, so that the points (0, 0), (1, 1), and (4, 2) move to (0, 0), (−1, 1), and (−4, 2),
respectively. Graphically, we see that the domain of g is (−∞, 0] and the range of g is the
same as the range of f , namely [0,∞).

(0, 0)

(1, 1)

(4, 2)

x

y

−1−2−3−4 1 2 3 4

1

2

y = f(x) =
√
x

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

(0, 0)(−1, 1)

(−4, 2)

x

y

−1−2−3−4 1 2 3 4

1

2

y = g(x) = f(−x) =
√
−x

2. To determine the domain of j(x) =
√

3− x, we solve 3 − x ≥ 0 and get x ≤ 3, or (−∞, 3].
To determine which transformations we need to apply to the graph of f to obtain the graph
of j, we rewrite j(x) =

√
−x+ 3 = f(−x+ 3). Comparing this formula with f(x) =

√
x, we

see that not only are we multiplying the input x by −1, which results in a reflection across
the y-axis, but also we are adding 3, which indicates a horizontal shift to the left. Does it
matter in which order we do the transformations? If so, which order is the correct order?
Let’s consider the point (4, 2) on the graph of f . We refer to the discussion leading up to
Theorem 1.3. We know f(4) = 2 and wish to find the point on y = j(x) = f(−x+ 3) which
corresponds to (4, 2). We set −x+ 3 = 4 and solve. Our first step is to subtract 3 from both
sides to get −x = 1. Subtracting 3 from the x-coordinate 4 is shifting the point (4, 2) to
the left. From −x = 1, we then multiply5 both sides by −1 to get x = −1. Multiplying the
x-coordinate by −1 corresponds to reflecting the point about the y-axis. Hence, we perform
the horizontal shift first, then follow it with the reflection about the y-axis. Starting with
f(x) =

√
x, we let j1(x) be the intermediate function which shifts the graph of f 3 units to

the left, j1(x) = f(x+ 3).

(0, 0)

(1, 1)

(4, 2)

x

y

−4 −3 −2 −1 1 2 3 4

1

2

y = f(x) =
√
x

shift left 3 units
−−−−−−−−−−−−→

subtract 3 from each x-coordinate

(−3, 0)

(−2, 1)

(1, 2)

x

y

−4 −3 −2 −1 1 2 3 4

1

2

y = j1(x) = f(x+ 3) =
√
x+ 3

To obtain the function j, we reflect the graph of j1 about y-axis. Theorem 1.4 tells us we
have j(x) = j1(−x). Putting it all together, we have j(x) = j1(−x) = f(−x+ 3) =

√
−x+ 3,

5Or divide - it amounts to the same thing.
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which is what we want.6 From the graph, we confirm the domain of j is (−∞, 3] and we get
the range is [0,∞).

(−3, 0)

(−2, 1)

(1, 2)

x

y

−4 −3 −2 −1 1 2 3 4

1

2

y = j1(x) =
√
x+ 3

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

(3, 0)

(2, 1)
(−1, 2)

x

y

−4 −3 −2 −1 1 2 3 4

2

y = j(x) = j1(−x) =
√
−x+ 3

3. The domain of m works out to be the domain of f , [0,∞). Rewriting m(x) = −
√
x + 3, we

see m(x) = −f(x) + 3. Since we are multiplying the output of f by −1 and then adding
3, we once again have two transformations to deal with: a reflection across the x-axis and
a vertical shift. To determine the correct order in which to apply the transformations, we
imagine trying to determine the point on the graph of m which corresponds to (4, 2) on the
graph of f . Since in the formula for m(x), the input to f is just x, we substitute to find
m(4) = −f(4) + 3 = −2 + 3 = 1. Hence, (4, 1) is the corresponding point on the graph of
m. If we closely examine the arithmetic, we see that we first multiply f(4) by −1, which
corresponds to the reflection across the x-axis, and then we add 3, which corresponds to
the vertical shift. If we define an intermediate function m1(x) = −f(x) to take care of the
reflection, we get

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

−2

−1

1

2

3

y = f(x) =
√
x

reflect across x-axis
−−−−−−−−−−−−→

multiply each y-coordinate by −1

(0, 0)

(1,−1)

(4,−2)

x

y

1 2 3 4

−1

−2

1

2

3

y = m1(x) = −f(x) = −
√
x

To shift the graph of m1 up 3 units, we set m(x) = m1(x) + 3. Since m1(x) = −f(x), when
we put it all together, we get m(x) = m1(x) + 3 = −f(x) + 3 = −

√
x + 3. We see from the

graph that the range of m is (−∞, 3].

6If we had done the reflection first, then j1(x) = f(−x). Following this by a shift left would give us j(x) =
j1(x + 3) = f(−(x + 3)) = f(−x − 3) =

√
−x− 3 which isn’t what we want. However, if we did the reflection first

and followed it by a shift to the right 3 units, we would have arrived at the function j(x). We leave it to the reader
to verify the details.
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(0, 0)

(1,−1)

(4,−2)

x

y

1 2 3 4

−1

−2

1

2

3

shift up 3 units
−−−−−−−−−−−−→

add 3 to each y-coordinate

(0, 3)
(1, 2)

(4, 1)

x

y

1 2 3 4

−1

−2

1

2

y = m1(x) = −
√
x y = m(x) = m1(x) + 3 = −

√
x+ 3

We now turn our attention to our last class of transformations, scalings. Suppose we wish to graph
the function g(x) = 2f(x) where f(x) is the function whose graph is given at the beginning of the
section. From its graph, we can build a table of values for g as before.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

x (x, f(x)) f(x) g(x) = 2f(x) (x, g(x))

0 (0, 1) 1 2 (0, 2)

2 (2, 3) 3 6 (2, 6)

4 (4, 3) 3 6 (4, 6)

5 (5, 5) 5 10 (5, 10)

In general, if (a, b) is on the graph of f , then f(a) = b so that g(a) = 2f(a) = 2b puts (a, 2b) on
the graph of g. In other words, to obtain the graph of g, we multiply all of the y-coordinates of
the points on the graph of f by 2. Multiplying all of the y-coordinates of all of the points on the
graph of f by 2 causes what is known as a ‘vertical scaling7 by a factor of 2’, and the results are

7Also called a ‘vertical stretch’, ‘vertical expansion’ or ‘vertical dilation’ by a factor of 2.
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given below.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

6

7

8

9

10

y = f(x)

vertical scaling by a factor of 2
−−−−−−−−−−−−−−−−−−−−→

multiply each y-coordinate by 2

(0, 2)

(2, 6)

(4, 6)

(5, 10)

x

y

1 2 3 4 5

1

3

4

5

6

7

8

9

10

y = 2f(x)

If we wish to graph y = 1
2f(x), we multiply the all of the y-coordinates of the points on the graph

of f by 1
2 . This creates a ‘vertical scaling8 by a factor of 1

2 ’ as seen below.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

vertical scaling by a factor of 1
2

−−−−−−−−−−−−−−−−−−−−→
multiply each y-coordinate by 1

2

(
0, 1

2

)
(
2, 3

2

)
(
4, 3

2

)
(
5, 5

2

)

x

y

1 2 3 4 5

1

2

3

4

5

y = 1
2
f(x)

These results are generalized in the following theorem.

Theorem 1.5. Vertical Scalings. Suppose f is a function and a > 0. To graph y = af(x),
multiply all of the y-coordinates of the points on the graph of f by a. We say the graph of f
has been vertically scaled by a factor of a.

• If a > 1, we say the graph of f has undergone a vertical stretch (expansion, dilation) by a
factor of a.

• If 0 < a < 1, we say the graph of f has undergone a vertical shrink (compression, contraction)
by a factor of 1

a .

A few remarks about Theorem 1.5 are in order. First, a note about the verbiage. To the authors, the
words ‘stretch’, ‘expansion’, and ‘dilation’ all indicate something getting bigger. Hence, ‘stretched

8Also called ‘vertical shrink,’‘vertical compression’ or ‘vertical contraction’ by a factor of 2.
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by a factor of 2’ makes sense if we are scaling something by multiplying it by 2. Similarly, we
believe words like ‘shrink’, ‘compression’ and ‘contraction’ all indicate something getting smaller,
so if we scale something by a factor of 1

2 , we would say it ‘shrinks by a factor of 2’ - not ‘shrinks by
a factor of 1

2 .’ This is why we have written the descriptions ‘stretch by a factor of a’ and ‘shrink by
a factor of 1

a ’ in the statement of the theorem. Second, in terms of inputs and outputs, Theorem 1.5
says multiplying the outputs from a function by positive number a causes the graph to be vertically
scaled by a factor of a. It is natural to ask what would happen if we multiply the inputs of a
function by a positive number. This leads us to our last transformation of the section.

Referring to the graph of f given at the beginning of this section, suppose we want to graph
g(x) = f(2x). In other words, we are looking to see what effect multiplying the inputs to f by 2
has on its graph. If we attempt to build a table directly, we quickly run into the same problem we
had in our discussion leading up to Theorem 1.3, as seen in the table on the left below. We solve
this problem in the same way we solved this problem before. For example, if we want to determine
the point on g which corresponds to the point (2, 3) on the graph of f , we set 2x = 2 so that x = 1.
Substituting x = 1 into g(x), we obtain g(1) = f(2 · 1) = f(2) = 3, so that (1, 3) is on the graph of
g. Continuing in this fashion, we obtain the table on the lower right.

x (x, f(x)) f(x) g(x) = f(2x) (x, g(x))

0 (0, 1) 1 f(2 · 0) = f(0) = 1 (0, 1)

2 (2, 3) 3 f(2 · 2) = f(4) = 3 (2, 3)

4 (4, 3) 3 f(2 · 4) = f(8) =?

5 (5, 5) 5 f(2 · 5) = f(10) =?

x 2x g(x) = f(2x) (x, g(x))

0 0 g(0) = f(0) = 1 (0, 0)

1 2 g(1) = f(2) = 3 (1, 3)

2 4 g(2) = f(4) = 3 (2, 3)
5
2 5 g

(
5
2

)
= f(5) = 5

(
5
2 , 5
)

In general, if (a, b) is on the graph of f , then f(a) = b. Hence g
(
a
2

)
= f

(
2 · a2

)
= f(a) = b so that(

a
2 , b
)

is on the graph of g. In other words, to graph g we divide the x-coordinates of the points on
the graph of f by 2. This results in a horizontal scaling9 by a factor of 1

2 .

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

horizontal scaling by a factor of 1
2

−−−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 1

2

(0, 1)

(1, 3)

(2, 3)

(
5
2
, 5
)

x

y

1 2 3 4 5

2

3

4

5

y = g(x) = f(2x)

If, on the other hand, we wish to graph y = f
(

1
2x
)
, we end up multiplying the x-coordinates

of the points on the graph of f by 2 which results in a horizontal scaling10 by a factor of 2, as
demonstrated below.

9Also called ‘horizontal shrink,’‘horizontal compression’ or ‘horizontal contraction’ by a factor of 2.
10Also called ‘horizontal stretch,’‘horizontal expansion’ or ‘horizontal dilation’ by a factor of 2.
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(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5 6 7 8 9 10

2

3

4

5

y = f(x)

horizontal scaling by a factor of 2
−−−−−−−−−−−−−−−−−−−−→

multiply each x-coordinate by 2

(0, 1)

(4, 3)

(8, 3)

(10, 5)

x

y

1 2 3 4 5 6 7 8 9 10

2

3

4

5

y = g(x) = f
(

1
2
x
)

We have the following theorem.

Theorem 1.6. Horizontal Scalings. Suppose f is a function and b > 0. To graph y = f(bx),
divide all of the x-coordinates of the points on the graph of f by b. We say the graph of f has
been horizontally scaled by a factor of 1

b .

• If 0 < b < 1, we say the graph of f has undergone a horizontal stretch (expansion, dilation)
by a factor of 1

b .

• If b > 1, we say the graph of f has undergone a horizontal shrink (compression, contraction)
by a factor of b.

Theorem 1.6 tells us that if we multiply the input to a function by b, the resulting graph is scaled
horizontally by a factor of 1

b since the x-values are divided by b to produce corresponding points
on the graph of f(bx). The next example explores how vertical and horizontal scalings sometimes
interact with each other and with the other transformations introduced in this section.

Example 1.8.3. Let f(x) =
√
x. Use the graph of f from Example 1.8.1 to graph the following

functions below. Also, state their domains and ranges.

1. g(x) = 3
√
x

2. j(x) =
√

9x

3. m(x) = 1−
√

x+3
2

Solution.

1. First we note that the domain of g is [0,∞) for the usual reason. Next, we have g(x) = 3f(x)
so by Theorem 1.5, we obtain the graph of g by multiplying all of the y-coordinates of the
points on the graph of f by 3. The result is a vertical scaling of the graph of f by a factor of
3. We find the range of g is also [0,∞).
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(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

3

4

5

6

y = f(x) =
√
x

vertical scale by a factor of 3
−−−−−−−−−−−−−−−−−−−−−→

multiply each y-coordinate by 3

(0, 0)

(1, 3)

(4, 6)

x

y

1 2 3 4

1

2

3

4

5

6

y = g(x) = 3f(x) = 3
√
x

2. To determine the domain of j, we solve 9x ≥ 0 to find x ≥ 0. Our domain is once again
[0,∞). We recognize j(x) = f(9x) and by Theorem 1.6, we obtain the graph of j by dividing
the x-coordinates of the points on the graph of f by 9. From the graph, we see the range of
j is also [0,∞).

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

y = f(x) =
√
x

horizontal scale by a factor of 1
9

−−−−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 1

9

(0, 0)

(
1
9
, 1
)

(
4
9
, 2
)

x

y

1 2 3 4

1

2

y = j(x) = f(9x) =
√

9x

3. Solving x+3
2 ≥ 0 gives x ≥ −3, so the domain of m is [−3,∞). To take advantage of what

we know of transformations, we rewrite m(x) = −
√

1
2x+ 3

2 + 1, or m(x) = −f
(

1
2x+ 3

2

)
+ 1.

Focusing on the inputs first, we note that the input to f in the formula for m(x) is 1
2x + 3

2 .
Multiplying the x by 1

2 corresponds to a horizontal stretch by a factor of 2, and adding the
3
2 corresponds to a shift to the left by 3

2 . As before, we resolve which to perform first by
thinking about how we would find the point on m corresponding to a point on f , in this case,
(4, 2). To use f(4) = 2, we solve 1

2x+ 3
2 = 4. Our first step is to subtract the 3

2 (the horizontal
shift) to obtain 1

2x = 5
2 . Next, we multiply by 2 (the horizontal stretch) and obtain x = 5.

We define two intermediate functions to handle first the shift, then the stretch. In accordance

with Theorem 1.3, m1(x) = f
(
x+ 3

2

)
=
√
x+ 3

2 will shift the graph of f to the left 3
2 units.
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(0, 0)

(1, 1)

(4, 2)

x

y

−1−2−3 1 2 3 4 5

1

2

−2

−1

y = f(x) =
√
x

shift left 3
2

units

−−−−−−−−−−−−→
subtract 3

2
from each x-coordinate

(
− 3

2
, 0
)

(
− 1

2
, 1
)

(
5
2
, 2
)

x

y

−1−2−3 1 2 3 4 5

2

−2

y = m1(x) = f
(
x+ 3

2

)
=
√
x+ 3

2

Next, m2(x) = m1

(
1
2x
)

=
√

1
2x+ 3

2 will, according to Theorem 1.6, horizontally stretch the

graph of m1 by a factor of 2.

(
− 3

2
, 0
)

(
− 1

2
, 1
)

(
5
2
, 2
)

x

y

−1−2−3 1 2 3 4 5

2

−2

y = m1(x) =
√
x+ 3

2

horizontal scale by a factor of 2

−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 2

(−3, 0)

(−1, 1)

(5, 2)

x

y

−1−2 1 2 3 4 5

2

−1

−2

y = m2(x) = m1

(
1
2
x
)

=
√

1
2
x+ 3

2

We now examine what’s happening to the outputs. From m(x) = −f
(

1
2x+ 3

2

)
+1, we see the

output from f is being multiplied by −1 (a reflection about the x-axis) and then a 1 is added
(a vertical shift up 1). As before, we can determine the correct order by looking at how the
point (4, 2) is moved. We have already determined that to make use of the equation f(4) = 2,
we need to substitute x = 5. We get m(5) = −f

(
1
2(5) + 3

2

)
+ 1 = −f(4) + 1 = −2 + 1 = −1.

We see that f(4) (the output from f) is first multiplied by −1 then the 1 is added meaning we
first reflect the graph about the x-axis then shift up 1. Theorem 1.4 tells us m3(x) = −m2(x)
will handle the reflection.

(−3, 0)

(−1, 1)

(5, 2)

x

y

−1−2 1 2 3 4 5

2

−1

−2

y = m2(x) =
√

1
2
x+ 3

2

reflect across x-axis

−−−−−−−−−−−−→
multiply each y-coordinate by −1

(−3, 0)

(−1,−1)

(5,−2)

x

y

−1−2 1 2 3 4 5

1

2

−2

y = m3(x) = −m2(x) = −
√

1
2
x+ 3

2
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Finally, to handle the vertical shift, Theorem 1.2 gives m(x) = m3(x) + 1, and we see that
the range of m is (−∞, 1].

(−3, 0)

(−1,−1)

(5,−2)

x

y

−1−2 1 2 3 4 5

1

2

−2

y = m3(x) = −m2(x) = −
√

1
2
x+ 3

2

shift up 1 unit

−−−−−−−−−−−−→
add 1 to each y-coordinate

(−3, 1)

(−1, 0)

(5,−1)

x

y

−1−2 1 2 3 4 5

2

−2

y = m(x) = m3(x) + 1 = −
√

1
2
x+ 3

2
+ 1

Some comments about Example 1.8.3 are in order. First, recalling the properties of radicals from
Intermediate Algebra, we know that the functions g and j are the same, since j and g have the
same domains and j(x) =

√
9x =

√
9
√
x = 3

√
x = g(x). (We invite the reader to verify that the

all of the points we plotted on the graph of g lie on the graph of j and vice-versa.) Hence, for
f(x) =

√
x, a vertical stretch by a factor of 3 and a horizontal shrink by a factor of 9 result in

the same transformation. While this kind of phenomenon is not universal, it happens commonly
enough with some of the families of functions studied in College Algebra that it is worthy of note.
Secondly, to graph the function m, we applied a series of four transformations. While it would have
been easier on the authors to simply inform the reader of which steps to take, we have strived to
explain why the order in which the transformations were applied made sense. We generalize the
procedure in the theorem below.

Theorem 1.7. Transformations. Suppose f is a function. To graph

g(x) = Af(Bx+H) +K

1. Subtract H from each of the x-coordinates of the points on the graph of f . This results in
a horizontal shift to the left if H > 0 or right if H < 0.

2. Divide the x-coordinates of the points on the graph obtained in Step 1 by B. This results
in a horizontal scaling, but may also include a reflection about the y-axis if B < 0.

3. Multiply the y-coordinates of the points on the graph obtained in Step 2 by A. This results
in a vertical scaling, but may also include a reflection about the x-axis if A < 0.

4. Add K to each of the y-coordinates of the points on the graph obtained in Step 3. This
results in a vertical shift up if K > 0 or down if K < 0.

Theorem 1.7 can be established by generalizing the techniques developed in this section. Suppose
(a, b) is on the graph of f . Then f(a) = b, and to make good use of this fact, we set Bx+H = a
and solve. We first subtract the H (causing the horizontal shift) and then divide by B. If B
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is a positive number, this induces only a horizontal scaling by a factor of 1
B . If B < 0, then

we have a factor of −1 in play, and dividing by it induces a reflection about the y-axis. So we
have x = a−H

B as the input to g which corresponds to the input x = a to f . We now evaluate
g
(
a−H
B

)
= Af

(
B · a−HB +H

)
+ K = Af(a) + K = Ab + K. We notice that the output from f is

first multiplied by A. As with the constant B, if A > 0, this induces only a vertical scaling. If
A < 0, then the −1 induces a reflection across the x-axis. Finally, we add K to the result, which is
our vertical shift. A less precise, but more intuitive way to paraphrase Theorem 1.7 is to think of
the quantity Bx+H is the ‘inside’ of the function f . What’s happening inside f affects the inputs
or x-coordinates of the points on the graph of f . To find the x-coordinates of the corresponding
points on g, we undo what has been done to x in the same way we would solve an equation. What’s
happening to the output can be thought of as things happening ‘outside’ the function, f . Things
happening outside affect the outputs or y-coordinates of the points on the graph of f . Here, we
follow the usual order of operations agreement: we first multiply by A then add K to find the
corresponding y-coordinates on the graph of g.

Example 1.8.4. Below is the complete graph of y = f(x). Use it to graph g(x) = 4−3f(1−2x)
2 .

(−2, 0) (2, 0)

(4,−3)(−4,−3)

(0, 3)

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Solution. We use Theorem 1.7 to track the five ‘key points’ (−4,−3), (−2, 0), (0, 3), (2, 0) and
(4,−3) indicated on the graph of f to their new locations. We first rewrite g(x) in the form
presented in Theorem 1.7, g(x) = −3

2f(−2x+ 1) + 2. We set −2x+ 1 equal to the x-coordinates of
the key points and solve. For example, solving −2x+ 1 = −4, we first subtract 1 to get −2x = −5
then divide by −2 to get x = 5

2 . Subtracting the 1 is a horizontal shift to the left 1 unit. Dividing by
−2 can be thought of as a two step process: dividing by 2 which compresses the graph horizontally
by a factor of 2 followed by dividing (multiplying) by −1 which causes a reflection across the y-axis.
We summarize the results in the table below.
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(a, f(a)) a −2x+ 1 = a x

(−4,−3) −4 −2x+ 1 = −4 x = 5
2

(−2, 0) −2 −2x+ 1 = −2 x = 3
2

(0, 3) 0 −2x+ 1 = 0 x = 1
2

(2, 0) 2 −2x+ 1 = 2 x = −1
2

(4,−3) 4 −2x+ 1 = 4 x = −3
2

Next, we take each of the x values and substitute them into g(x) = −3
2f(−2x + 1) + 2 to get the

corresponding y-values. Substituting x = 5
2 , and using the fact that f(−4) = −3, we get

g

(
5

2

)
= −3

2
f

(
−2

(
5

2

)
+ 1

)
+ 2 = −3

2
f(−4) + 2 = −3

2
(−3) + 2 =

9

2
+ 2 =

13

2

We see the output from f is first multiplied by −3
2 . Thinking of this as a two step process,

multiplying by 3
2 then by −1, we see we have a vertical stretch by a factor of 3

2 followed by a
reflection across the x-axis. Adding 2 results in a vertical shift up 2 units. Continuing in this
manner, we get the table below.

x g(x) (x, g(x))
5
2

13
2

(
5
2 ,

13
2

)
3
2 2

(
3
2 , 2
)

1
2 −5

2

(
1
2 ,−

5
2

)
−1

2 2
(
−1

2 , 2
)

−3
2

13
2

(
−3

2 ,
13
2

)
To graph g, we plot each of the points in the table above and connect them in the same order and
fashion as the points to which they correspond. Plotting f and g side-by-side gives

(−2, 0) (2, 0)

(4,−3)(−4,−3)

(0, 3)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

5

6

(
− 3

2
, 13

2

)

(
− 1

2
, 2
)

(
1
2
,− 5

2

)

(
3
2
, 2
)

(
5
2
, 13

2

)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

3

4

5

6
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The reader is strongly encouraged11 to graph the series of functions which shows the gradual trans-
formation of the graph of f into the graph of g. We have outlined the sequence of transformations
in the above exposition; all that remains is to plot all five intermediate stages.

Our last example turns the tables and asks for the formula of a function given a desired sequence
of transformations. If nothing else, it is a good review of function notation.

Example 1.8.5. Let f(x) = x2. Find and simplify the formula of the function g(x) whose graph
is the result of f undergoing the following sequence of transformations. Check your answer using
a graphing calculator.

1. Vertical shift up 2 units

2. Reflection across the x-axis

3. Horizontal shift right 1 unit

4. Horizontal stretch by a factor of 2

Solution. We build up to a formula for g(x) using intermediate functions as we’ve seen in previous
examples. We let g1 take care of our first step. Theorem 1.2 tells us g1(x) = f(x)+2 = x2+2. Next,
we reflect the graph of g1 about the x-axis using Theorem 1.4: g2(x) = −g1(x) = −

(
x2 + 2

)
=

−x2 − 2. We shift the graph to the right 1 unit, according to Theorem 1.3, by setting g3(x) =
g2(x− 1) = −(x− 1)2 − 2 = −x2 + 2x− 3. Finally, we induce a horizontal stretch by a factor of 2

using Theorem 1.6 to get g(x) = g3

(
1
2x
)

= −
(

1
2x
)2

+ 2
(

1
2x
)
− 3 which yields g(x) = −1

4x
2 +x− 3.

We use the calculator to graph the stages below to confirm our result.

shift up 2 units

−−−−−−−−−−−−→
add 2 to each y-coordinate

y = f(x) = x2 y = g1(x) = f(x) + 2 = x2 + 2

reflect across x-axis

−−−−−−−−−−−−→
multiply each y-coordinate by −1

y = g1(x) = x2 + 2 y = g2(x) = −g1(x) = −x2 − 2

11You really should do this once in your life.
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shift right 1 unit

−−−−−−−−−−−−→
add 1 to each x-coordinate

y = g2(x) = −x2 − 2 y = g3(x) = g2(x− 1) = −x2 + 2x− 3

horizontal stretch by a factor of 2

−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 2

y = g3(x) = −x2 + 2x− 3 y = g(x) = g3

(
1
2x
)

= −1
4x

2 + x− 3

We have kept the viewing window the same in all of the graphs above. This had the undesirable
consequence of making the last graph look ‘incomplete’ in that we cannot see the original shape
of f(x) = x2. Altering the viewing window results in a more complete graph of the transformed
function as seen below.

y = g(x)

This example brings our first chapter to a close. In the chapters which lie ahead, be on the lookout
for the concepts developed here to resurface as we study different families of functions.
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1.8.1 Exercises

1. The complete graph of y = f(x) is given below. Use it to graph the following functions.

x

y

(−2, 0)

(0, 4)

(2, 0)

(4,−2)

−4 −3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4

The graph of y = f(x)

(a) y = f(x)− 1

(b) y = f(x+ 1)

(c) y = 1
2f(x)

(d) y = f(2x)

(e) y = −f(x)

(f) y = f(−x)

(g) y = f(x+ 1)− 1

(h) y = 1− f(x)

(i) y = 1
2f(x+ 1)− 1

2. The complete graph of y = S(x) is given below. Use it to graph the following functions.

x

y

(−2, 0)

(−1,−3)

(0, 0)

(1, 3)

(2, 0)−2 −1 1

−3

−2

−1

1

2

3

The graph of y = S(x)

(a) y = S(x+ 1)

(b) y = S(−x+ 1)

(c) y = 1
2S(−x+ 1)

(d) y = 1
2S(−x+ 1) + 1
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3. The complete graph of y = f(x) is given below. Use it to graph the following functions.

(−3, 0)

(0, 3)

(3, 0)
x

y

−3 −2 −1 1 2 3

−1

1

2

3

(a) g(x) = f(x) + 3

(b) h(x) = f(x)− 1
2

(c) j(x) = f
(
x− 2

3

)
(d) a(x) = f(x+ 4)

(e) b(x) = f(x+ 1)− 1

(f) c(x) = 3
5f(x)

(g) d(x) = −2f(x)

(h) k(x) = f
(

2
3x
)

(i) m(x) = −1
4f(3x)

(j) n(x) = 4f(x− 3)− 6

(k) p(x) = 4 + f(1− 2x)

(l) q(x) = −1
2f
(
x+4

2

)
− 3

4. The graph of y = f(x) = 3
√
x is given below on the left and the graph of y = g(x) is given

on the right. Find a formula for g based on transformations of the graph of f . Check your
answer by confirming that the points shown on the graph of g satisfy the equation y = g(x).

x

y

−11−10−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

1

2

3

4

5

y = 3
√
x

x

y

−11−10−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

1

2

3

4

5

y = g(x)

5. For many common functions, the properties of algebra make a horizontal scaling the same
as a vertical scaling by (possibly) a different factor. For example, we stated earlier that√

9x = 3
√
x. With the help of your classmates, find the equivalent vertical scaling produced

by the horizontal scalings y = (2x)3, y = |5x|, y = 3
√

27x and y =
(

1
2x
)2

. What about

y = (−2x)3, y = | − 5x|, y = 3
√
−27x and y =

(
−1

2x
)2

?
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6. We mentioned earlier in the section that, in general, the order in which transformations are
applied matters, yet in our first example with two transformations the order did not matter.
(You could perform the shift to the left followed by the shift down or you could shift down
and then left to achieve the same result.) With the help of your classmates, determine the
situations in which order does matter and those in which it does not.

7. What happens if you reflect an even function across the y-axis?

8. What happens if you reflect an odd function across the y-axis?

9. What happens if you reflect an even function across the x-axis?

10. What happens if you reflect an odd function across the x-axis?

11. How would you describe symmetry about the origin in terms of reflections?

12. As we saw in Example 1.8.5, the viewing window on the graphing calculator affects how we see
the transformations done to a graph. Using two different calculators, find viewing windows
so that f(x) = x2 on the one calculator looks like g(x) = 3x2 on the other.
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1.8.2 Answers

1. (a) y = f(x)− 1

x

y

(−2,−1)

(0, 3)

(2,−1)

(4,−3)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(b) y = f(x+ 1)

x

y

(−3, 0)

(−1, 4)

(1, 0)

(3,−2)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(c) y = 1
2f(x)

x

y

(−2, 0)

(0, 2)

(2, 0) (4,−1)

−4 −3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4

(d) y = f(2x)

x

y

(−1, 0)

(0, 4)

(1, 0)

(2,−2)

−4 −3 −2 2 3 4

−4

−3

−2

1

2

3

4

(e) y = −f(x)

x

y

(−2, 0)

(0,−4)

(2, 0)

(4, 2)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(f) y = f(−x)

x

y

(2, 0)

(0, 4)

(−2, 0)

(−4,−2)

−4 −3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4
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(g) y = f(x+ 1)− 1

x

y

(−3,−1)

(−1, 3)

(1,−1)

(3,−3)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(h) y = 1− f(x)

x

y

(−2, 1)

(0,−3)

(2, 1)

(4, 3)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(i) y = 1
2f(x+ 1)− 1

x

y

(−3,−1)

(−1, 1)

(1,−1)

(3,−2)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

2. (a) y = S(x+ 1)

x

y

(−3, 0)

(−2,−3)

(−1, 0)

(0, 3)

(1, 0)−3 −2 −1

−3

−2

−1

1

2

3

(b) y = S(−x+ 1)

x

y

(3, 0)

(2,−3)

(1, 0)

(0, 3)

(−1, 0) 1 2 3

−3

−2

−1

1

2

3
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(c) y = 1
2S(−x+ 1)

x

y

(3, 0)

(
2,− 3

2

)

(1, 0)

(
0, 3

2

)

(−1, 0) 1 2 3

−2

−1

1

2

(d) y = 1
2S(−x+ 1) + 1

x

y

(3, 1)

(
2,− 1

2

)

(1, 1)

(
0, 5

2

)

(−1, 1)

−1 1 3

−1

1

2

3

3. (a) g(x) = f(x) + 3

(−3, 3)

(0, 6)

(3, 3)

x

y

−3 −2 −1 1 2 3

−1

1

2

3

4

5

6

(b) h(x) = f(x)− 1
2

(
−3,− 1

2

)

(
0, 5

2

)

(
3,− 1

2

)x

y

−3 −2 −1 1 2 3

−1

1

2

3

(c) j(x) = f
(
x− 2

3

)

(
− 7

3
, 0

)

(
2
3
, 3

)

(
11
3
, 0

)x

y

−3 −2 −1 1 2 3

−1

1

2

3

(d) a(x) = f(x+ 4)

(−7, 0)

(−4, 3)

(−1, 0)
x

y

−7 −6 −5 −4 −3 −2 −1

1

2

3

(e) b(x) = f(x+ 1)− 1

(−4,−1)

(−1, 2)

(2,−1)

x

y

−4 −3 −2 −1 1 2

−1

1

2

(f) c(x) = 3
5f(x)

(−3, 0)

(
0, 9

5

)

(3, 0)
x

y

−3 −2 −1 1 2 3

−1

1

2
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(g) d(x) = −2f(x)

(−3, 0)

(0,−6)

(3, 0)

x

y

−3 −2 −1 1 2 3

−6

−5

−4

−3

−2

−1

(h) k(x) = f
(

2
3x
)

(
− 9

2
, 0

)

(0, 3)

(
9
2
, 0

)x

y

−4 −3 −2 −1 1 2 3 4

−1

1

2

3

(i) m(x) = −1
4f(3x)

(−1, 0)

(
0,− 3

4

)
(1, 0)

x

y

−1 1

−1

(j) n(x) = 4f(x− 3)− 6

(0,−6)

(3, 6)

(6,−6)

x

y

1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

(k) p(x) = 4 + f(1− 2x) = f(−2x+ 1) + 4

(−1, 4)

(
1
2
, 7

)

(2, 4)

x

y

−1 1 2

−1

1

2

3

4

5

6

7

(l) q(x) = − 1
2f
(
x+4
2

)
− 3 = − 1

2f
(
1
2x+ 2

)
− 3

(−10,−3)

(
−4,− 9

2

)
(2,−3)

x

y

−10−9−8−7−6−5−4−3−2−1 1 2

−4

−3

−2

−1

4. g(x) = −2 3
√
x+ 3− 1 or g(x) = 2 3

√
−x− 3− 1



Chapter 2

Linear and Quadratic Functions

2.1 Linear Functions

We now begin the study of families of functions. Our first family, linear functions, are old friends as
we shall soon see. Recall from Geometry that two distinct points in the plane determine a unique
line containing those points, as indicated below.

P (x0, y0)

Q (x1, y1)

To give a sense of the ‘steepness’ of the line, we recall we can compute the slope of the line using
the formula below.

Equation 2.1. The slope m of the line containing the points P (x0, y0) and Q (x1, y1) is:

m =
y1 − y0

x1 − x0

,

provided x1 6= x0.

A couple of notes about Equation 2.1 are in order. First, don’t ask why we use the letter ‘m’ to
represent slope. There are many explanations out there, but apparently no one really knows for
sure.1 Secondly, the stipulation x1 6= x0 ensures that we aren’t trying to divide by zero. The reader
is invited to pause to think about what is happening geometrically; the anxious reader can skip
along to the next example.

Example 2.1.1. Find the slope of the line containing the following pairs of points, if it exists. Plot
each pair of points and the line containing them.

1See www.mathforum.org or www.mathworld.wolfram.com for discussions on this topic.

http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html
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1. P (0, 0), Q(2, 4)

2. P (−1, 2), Q(3, 4)

3. P (−2, 3), Q(2,−3)

4. P (−3, 2), Q(4, 2)

5. P (2, 3), Q(2,−1)

6. P (2, 3), Q(2.1,−1)

Solution. In each of these examples, we apply the slope formula, Equation 2.1.

1. m =
4− 0

2− 0
=

4

2
= 2

P

Q

x

y

1 2 3 4

1

2

3

4

2. m =
4− 2

3− (−1)
=

2

4
=

1

2 P

Q

x

y

−1 1 2 3

1

2

3

4

3. m =
−3− 3

2− (−2)
=
−6

4
= −3

2

P

Q

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

4. m =
2− 2

4− (−3)
=

0

7
= 0 P Q

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3
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5. m =
−1− 3

2− 2
=
−4

0
, which is undefined

P

Q

x

y

1 2

−3

−2

−1

1

2

3

6. m =
−1− 3

2.1− 2
=
−4

0.1
= −40

P

Q

x

y

1 2

−3

−2

−1

1

2

3

A few comments about Example 2.1.1 are in order. First, for reasons which will be made clear
soon, if the slope is positive then the resulting line is said to be increasing. If it is negative, we
say the line is decreasing. A slope of 0 results in a horizontal line which we say is constant, and
an undefined slope results in a vertical line.2 Second, the larger the slope is in absolute value, the
steeper the line. You may recall from Intermediate Algebra that slope can be described as the
ratio ‘ rise

run ’. For example, in the second part of Example 2.1.1, we found the slope to be 1
2 . We can

interpret this as a rise of 1 unit upward for every 2 units to the right we travel along the line, as
shown below.

‘over 2’

‘up 1’

x

y

−1 1 2 3

1

2

3

4

2Some authors use the unfortunate moniker ‘no slope’ when a slope is undefined. It’s easy to confuse the notions
of ‘no slope’ with ‘slope of 0’. For this reason, we will describe slopes of vertical lines as ‘undefined’.
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Using more formal notation, given points (x0, y0) and (x1, y1), we use the Greek letter delta ‘∆’ to
write ∆y = y1 − y0 and ∆x = x1 − x0. In most scientific circles, the symbol ∆ means ‘change in’.

Hence, we may write

m =
∆y

∆x
,

which describes the slope as the rate of change of y with respect to x. Rates of change abound
in the ‘real world,’ as the next example illustrates.

Example 2.1.2. At 6 AM, it is 24◦F; at 10 AM, it is 32◦F.

1. Find the slope of the line containing the points (6, 24) and (10, 32).

2. Interpret your answer to the first part in terms of temperature and time.

3. Predict the temperature at noon.

Solution.

1. For the slope, we have m = 32−24
10−6 = 8

4 = 2.

2. Since the values in the numerator correspond to the temperatures in ◦F, and the values in

the denominator correspond to time in hours, we can interpret the slope as 2 =
2

1
=

2◦ F

1 hour
,

or 2◦F per hour. Since the slope is positive, we know this corresponds to an increasing line.
Hence, the temperature is increasing at a rate of 2◦F per hour.

3. Noon is two hours after 10 AM. Assuming a temperature increase of 2◦F per hour, in two
hours the temperature should rise 4◦F. Since the temperature at 10 AM is 32◦F, we would
expect the temperature at noon to be 32 + 4 = 36◦F.

Now it may well happen that in the previous scenario, at noon the temperature is only 33◦F.
This doesn’t mean our calculations are incorrect. Rather, it means that the temperature change
throughout the day isn’t a constant 2◦F per hour. Mathematics is often used to describe, or model,
real world phenomena. Mathematical models are just that: models. The predictions we get out
of the models may be mathematically accurate, but may not resemble what happens in the real
world. We will discuss this more thoroughly in Section 2.5.

In Section 1.2, we discussed the equations of vertical and horizontal lines. Using the concept of
slope, we can develop equations for the other varieties of lines. Suppose a line has a slope of m and
contains the point (x0, y0). Suppose (x, y) is another point on the line, as indicated below.

(x0, y0)

(x, y)
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We have

m =
y − y0

x− x0

m (x− x0) = y − y0

y − y0 = m (x− x0)

y = m (x− x0) + y0.

We have just derived the point-slope form of a line.3

Equation 2.2. The point-slope form of the line with slope m containing the point (x0, y0) is
the equation y = m (x− x0) + y0.

Example 2.1.3. Write the equation of the line containing the points (−1, 3) and (2, 1).

Solution. In order to use Equation 2.2 we need to find the slope of the line in question. So we
use Equation 2.1 to get m = ∆y

∆x = 1−3
2−(−1) = −2

3 . We are spoiled for choice for a point (x0, y0).

We’ll use (−1, 3) and leave it to the reader to check that using (2, 1) results in the same equation.
Substituting into the point-slope form of the line, we get

y = m (x− x0) + y0

y = −2

3
(x− (−1)) + 3

y = −2

3
x− 2

3
+ 3

y = −2

3
x+

7

3
.

We can check our answer by showing that both (−1, 3) and (2, 1) are on the graph of y = −2
3x+ 7

3
algebraically, as we did in Section 1.3.

In simplifying the equation of the line in the previous example, we produced another form of a
line, the slope-intercept form. This is the familiar y = mx + b form you have probably seen in
Intermediate Algebra. The ‘intercept’ in ‘slope-intercept’ comes from the fact that if we set x = 0,
we get y = b. In other words, the y-intercept of the line y = mx+ b is (0, b).

Equation 2.3. The slope-intercept form of the line with slope m and y-intercept (0, b) is the
equation y = mx+ b.

Note that if we have slope m = 0, we get the equation y = b which matches our formula for a
horizontal line given in Section 1.2. The formula given in Equation 2.3 can be used to describe all
lines except vertical lines. All lines except vertical lines are functions (why?) and so we have finally
reached a good point to introduce linear functions.

3We can also understand this equation in terms of applying transformations to the function I(x) = x. See the
exercises.
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Definition 2.1. A linear function is a function of the form

f(x) = mx+ b,

where m and b are real numbers with m 6= 0. The domain of a linear function is (−∞,∞).

For the case m = 0, we get f(x) = b. These are given their own classification.

Definition 2.2. A constant function is a function of the form

f(x) = b,

where b is real number. The domain of a constant function is (−∞,∞).

Recall that to graph a function, f , we graph the equation y = f(x). Hence, the graph of a linear
function is a line with slope m and y-intercept (0, b); the graph of a constant function is a horizontal
line (with slope m = 0) and a y-intercept of (0, b). Now think back to Section 1.7.1, specifically
Definition 1.8 concerning increasing, decreasing and constant functions. A line with positive slope
was called an increasing line because a linear function with m > 0 is an increasing function.
Similarly, a line with a negative slope was called a decreasing line because a linear function with
m < 0 is a decreasing function. And horizontal lines were called constant because, well, we hope
you’ve already made the connection.

Example 2.1.4. Graph the following functions. Identify the slope and y-intercept.

1. f(x) = 3

2. f(x) = 3x− 1

3. f(x) =
3− 2x

4

4. f(x) =
x2 − 4

x− 2

Solution.

1. To graph f(x) = 3, we graph y = 3. This is a horizontal line (m = 0) through (0, 3).

2. The graph of f(x) = 3x− 1 is the graph of the line y = 3x− 1. Comparison of this equation
with Equation 2.3 yields m = 3 and b = −1. Hence, our slope is 3 and our y-intercept is
(0,−1). To get another point on the line, we can plot (1, f(1)) = (1, 2).

x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = 3

x

y

−2−1 1 2

−4

−3

−2

−1

1

2

3

4

f(x) = 3x− 1
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3. At first glance, the function f(x) = 3−2x
4 does not fit the form in Definition 2.1 but after some

rearranging we get f(x) = 3−2x
4 = 3

4 −
2x
4 = −1

2x+ 3
4 . We identify m = −1

2 and b = 3
4 . Hence,

our graph is a line with a slope of −1
2 and a y-intercept of

(
0, 3

4

)
. Plotting an additional

point, we can choose (1, f(1)) to get
(
1, 1

4

)
.

4. If we simplify the expression for f , we get

f(x) =
x2 − 4

x− 2
=
���

�(x− 2)(x+ 2)

���
�(x− 2)

= x+ 2.

If we were to state f(x) = x + 2, we would be committing a sin of omission. Remember, to
find the domain of a function, we do so before we simplify! In this case, f has big problems
when x = 2, and as such, the domain of f is (−∞, 2) ∪ (2,∞). To indicate this, we write
f(x) = x + 2, x 6= 2. So, except at x = 2, we graph the line y = x + 2. The slope m = 1
and the y-intercept is (0, 2). A second point on the graph is (1, f(1)) = (1, 3). Since our
function f is not defined at x = 2, we put an open circle at the point that would be on the
line y = x+ 2 when x = 2, namely (2, 4).

x

y

−3 −2 −1 1 2 3

1

2

f(x) =
3− 2x

4

x

y

−1 1 2 3

1

2

3

4

f(x) =
x2 − 4

x− 2

The last two functions in the previous example showcase some of the difficulty in defining a linear
function using the phrase ‘of the form’ as in Definition 2.1, since some algebraic manipulations
may be needed to rewrite a given function to match ‘the form.’ Keep in mind that the domains of
linear and constant functions are all real numbers, (−∞,∞), and so while f(x) = x2−4

x−2 simplified
to a formula f(x) = x + 2, f is not considered a linear function since its domain excludes x = 2.
However, we would consider

f(x) =
2x2 + 2

x2 + 1

to be a constant function since its domain is all real numbers (why?) and

f(x) =
2x2 + 2

x2 + 1
=

2���
��(

x2 + 1
)

���
��(

x2 + 1
) = 2

The following example uses linear functions to model some basic economic relationships.
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Example 2.1.5. The cost, C, in dollars, to produce x PortaBoy4 game systems for a local retailer
is given by C(x) = 80x+ 150 for x ≥ 0.

1. Find and interpret C(10).

2. How many PortaBoys can be produced for $15,000?

3. Explain the significance of the restriction on the domain, x ≥ 0.

4. Find and interpret C(0).

5. Find and interpret the slope of the graph of y = C(x).

Solution.

1. To find C(10), we replace every occurrence of x with 10 in the formula for C(x) to get
C(10) = 80(10) + 150 = 950. Since x represents the number of PortaBoys produced, and
C(x) represents the cost, in dollars, C(10) = 950 means it costs $950 to produce 10 PortaBoys
for the local retailer.

2. To find how many PortaBoys can be produced for $15,000, we set the cost, C(x), equal to
15000, and solve for x

C(x) = 15000

80x+ 150 = 15000

80x = 14850

x =
14850

80
= 185.625

Since we can only produce a whole number amount of PortaBoys, we can produce 185
PortaBoys for $15,000.

3. The restriction x ≥ 0 is the applied domain, as discussed in Section 1.5. In this context,
x represents the number of PortaBoys produced. It makes no sense to produce a negative
quantity of game systems.5

4. To find C(0), we replace every occurrence of x with 0 in the formula for C(x) to get C(0) =
80(0)+150 = 150. This means it costs $150 to produce 0 PortaBoys. The $150 is often called
the fixed or start-up cost of this venture. (What might contribute to this cost?)

4The similarity of this name to PortaJohn is deliberate.
5Actually, it makes no sense to produce a fractional part of a game system, either, as we saw in the previous part

of this example. This absurdity, however, seems quite forgivable in some textbooks but not to us.

file:www.toilets.com
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5. If we were to graph y = C(x), we would be graphing the portion of the line y = 80x + 150
for x ≥ 0. We recognize the slope, m = 80. Like any slope, we can interpret this as a rate of
change. In this case, C(x) is the cost in dollars, while x measures the number of PortaBoys
so

m =
∆y

∆x
=

∆C

∆x
= 80 =

80

1
=

$80

1 PortaBoy
.

In other words, the cost is increasing at a rate of $80 per PortaBoy produced. This is often
called the variable cost for this venture.

The next example asks us to find a linear function to model a related economic problem.

Example 2.1.6. The local retailer in Example 2.1.5 has determined that the number of PortaBoy
game systems sold in a week, x, is related to the price of each system, p, in dollars. When the
price was $220, 20 game systems were sold in a week. When the systems went on sale the following
week, 40 systems were sold at $190 a piece.

1. Find a linear function which fits this data. Use the weekly sales, x, as the independent
variable and the price p, as the dependent variable.

2. Find a suitable applied domain.

3. Interpret the slope.

4. If the retailer wants to sell 150 PortaBoys next week, what should the price be?

5. What would the weekly sales be if the price were set at $150 per system?

Solution.

1. We recall from Section 1.5 the meaning of ‘independent’ and ‘dependent’ variable. Since x
is to be the independent variable, and p the dependent variable, we treat x as the input
variable and p as the output variable. Hence, we are looking for a function of the form
p(x) = mx + b. To determine m and b, we use the fact that 20 PortaBoys were sold during
the week the price was 220 dollars and 40 units were sold when the price was 190 dollars.
Using function notation, these two facts can be translated as p(20) = 220 and p(40) = 190.
Since m represents the rate of change of p with respect to x, we have

m =
∆p

∆x
=

190− 220

40− 20
=
−30

20
= −1.5.

We now have determined p(x) = −1.5x+ b. To determine b, we can use our given data again.
Using p(20) = 220, we substitute x = 20 into p(x) = 1.5x+ b and set the result equal to 220:
−1.5(20) + b = 220. Solving, we get b = 250. Hence, we get p(x) = −1.5x + 250. We can
check our formula by computing p(20) and p(40) to see if we get 220 and 190, respectively.
Incidentally, this equation is sometimes called the price-demand6 equation for this venture.

6Or simply the demand equation
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2. To determine the applied domain, we look at the physical constraints of the problem. Cer-
tainly, we can’t sell a negative number of PortaBoys, so x ≥ 0. However, we also note that the
slope of this linear function is negative, and as such, the price is decreasing as more units are
sold. Another constraint, then, is that the price, p(x) ≥ 0. Solving −1.5x + 250 ≥ 0 results

in −1.5x ≥ −250 or x ≤ 500

3
= 166.6. Since x represents the number of PortaBoys sold in a

week, we round down to 166. As a result, a reasonable applied domain for p is [0, 166].

3. The slope m = −1.5, once again, represents the rate of change of the price of a system with
respect to weekly sales of PortaBoys. Since the slope is negative, we have that the price
is decreasing at a rate of $1.50 per PortaBoy sold. (Said differently, you can sell one more
PortaBoy for every $1.50 drop in price.)

4. To determine the price which will move 150 PortaBoys, we find p(150) = −1.5(150)+250 = 25.
That is, the price would have to be $25.

5. If the price of a PortaBoy were set at $150, we have p(x) = 150, or, −1.5x+250 = 150. Solving,
we get −1.5x = −100 or x = 66.6. This means you would be able to sell 66 PortaBoys a week
if the price were $150 per system.

Not all real-world phenomena can be modeled using linear functions. Nevertheless, it is possible to
use the concept of slope to help analyze non-linear functions using the following:

Definition 2.3. Let f be a function defined on the interval [a, b]. The average rate of change
of f over [a, b] is defined as:

∆f

∆x
=
f(b)− f(a)

b− a

Geometrically, if we have the graph of y = f(x), the average rate of change over [a, b] is the slope of
the line which connects (a, f(a)) and (b, f(b)). This is called the secant line through these points.
For that reason, some textbooks use the notation msec for the average rate of change of a function.
Note that for a linear function m = msec, or in other words, its rate of change over an interval is
the same as its average rate of change.
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(a, f(a))

(b, f(b))

y = f(x)

The graph of y = f(x) and its secant line through (a, f(a)) and (b, f(b))

The interested reader may question the adjective ‘average’ in the phrase ‘average rate of change.’
In the figure above, we can see that the function changes wildly on [a, b], yet the slope of the secant
line only captures a snapshot of the action at a and b. This situation is entirely analogous to the
average speed on a trip. Suppose it takes you 2 hours to travel 100 miles. Your average speed is
100 miles
2 hours = 50 miles per hour. However, it is entirely possible that at the start of your journey, you

traveled 25 miles per hour, then sped up to 65 miles per hour, and so forth. The average rate of
change is akin to your average speed on the trip. Your speedometer measures your speed at any
one instant along the trip, your instantaneous rates of change, and this is one of the central
themes of Calculus.7

When interpreting rates of change, we interpret them the same way we did slopes. In the context
of functions, it may be helpful to think of the average rate of change as:

change in outputs

change in inputs

Example 2.1.7. The revenue of selling x units at a price p per unit is given by the formula R = xp.
Suppose we are in the scenario of Examples 2.1.5 and 2.1.6.

1. Find and simplify an expression for the weekly revenue R as a function of weekly sales, x.

2. Find and interpret the average rate of change of R over the interval [0, 50].

3. Find and interpret the average rate of change of R as x changes from 50 to 100 and compare
that to your result in part 2.

4. Find and interpret the average rate of change of weekly revenue as weekly sales increase from
100 PortaBoys to 150 PortaBoys.

Solution.
7Here we go again...
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1. Since R = xp, we substitute p(x) = −1.5x+ 250 from Example 2.1.6 to get

R(x) = x(−1.5x+ 250) = −1.5x2 + 250x

2. Using Definition 2.3, we get the average rate of change is

∆R

∆x
=
R(50)−R(0)

50− 0
=

8750− 0

50− 0
= 175.

Interpreting this slope as we have in similar situations, we conclude that for every additional
PortaBoy sold during a given week, the weekly revenue increases $175.

3. The wording of this part is slightly different than that in Definition 2.3, but its meaning is to
find the average rate of change of R over the interval [50, 100]. To find this rate of change,
we compute

∆R

∆x
=
R(100)−R(50)

100− 50
=

10000− 8750

50
= 25.

In other words, for each additional PortaBoy sold, the revenue increases by $25. Note while
the revenue is still increasing by selling more game systems, we aren’t getting as much of an
increase as we did in part 2 of this example. (Can you think of why this would happen?)

4. Translating the English to the mathematics, we are being asked to find the average rate of
change of R over the interval [100, 150]. We find

∆R

∆x
=
R(150)−R(100)

150− 100
=

3750− 10000

50
= −125.

This means that we are losing $125 dollars of weekly revenue for each additional PortaBoy
sold. (Can you think why this is possible?)

We close this section with a new look at difference quotients, first introduced in Section 1.5. If we
wish to compute the average rate of change of a function f over the interval [x, x + h], then we
would have

∆f

∆x
=
f(x+ h)− f(x)

(x+ h)− x
=
f(x+ h)− f(x)

h

As we have indicated, the rate of change of a function (average or otherwise) is of great importance
in Calculus.8

8So, we are not torturing you with these for nothing.
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2.1.1 Exercises

1. Find both the point-slope form and the slope-intercept form of the line with the given slope
which passes through the given point.

(a) m = 1
7 , P (−1, 4)

(b) m = −
√

2, P (0,−3)

(c) m = −5, P (
√

3, 2
√

3)

(d) m = 678, P (−1,−12)

2. Find the slope-intercept form of the line which passes through the given points.

(a) P (0, 0), Q(−3, 5)

(b) P (−1,−2), Q(3,−2)

(c) P (5, 0), Q(0,−8)

(d) P (3,−5), Q(7, 4)

3. Water freezes at 0◦ Celsius and 32◦ Fahrenheit and it boils at 100◦C and 212◦F.

(a) Find a linear function F that expresses temperature in the Fahrenheit scale in terms of
degrees Celsius. Use this function to convert 20◦C into Fahrenheit.

(b) Find a linear function C that expresses temperature in the Celsius scale in terms of
degrees Fahrenheit. Use this function to convert 110◦F into Celsius.

(c) Is there a temperature n such that F (n) = C(n)?

4. A salesperson is paid $200 per week plus 5% commission on her weekly sales of x dollars.
Find a linear function that represents her total weekly pay in terms of x. What must her
weekly sales be in order for her to earn $475.00 for the week?

5. Jeffey can walk comfortably at 3 miles per hour. Find a linear function d that represents the
total distance Jeffey can walk in t hours, assuming he doesn’t take any breaks.

6. Carl can stuff 6 envelopes per minute. Find a linear function E that represents the total
number of envelopes Carl can stuff after t hours, assuming he doesn’t take any breaks.

7. Find all of the points on the line y = 2x+ 1 which are 4 units from the point (−1, 3).

8. Economic forces beyond anyone’s control have changed the cost function for PortaBoys to
C(x) = 105x+ 175. Rework Example 2.1.5 with this new cost function.

9. In response to the economic forces in the exercise above, the local retailer sets the selling
price of a PortaBoy at $250. Remarkably, 30 units were sold each week. When the systems
went on sale for $220, 40 units per week were sold. Rework Examples 2.1.6 and 2.1.7 with
this new data. What difficulties do you encounter?

10. Legend has it that a bull Sasquatch in rut will howl approximately 9 times per hour when it is
40◦F outside and only 5 times per hour if it’s 70◦F . Assuming that the number of howls per
hour, N , can be represented by a linear function of temperature Fahrenheit, find the number
of howls per hour he’ll make when it’s only 20◦F outside. What is the applied domain of this
function? Why?
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11. (Parallel Lines) Recall from Intermediate Algebra that parallel lines have the same slope.
(Please note that two vertical lines are also parallel to one another even though they have
an undefined slope.) In the exercises below, you are given a line and a point which is not on
that line. Find the line parallel to the given line which passes through the given point.

(a) y = 3x+ 2, P (0, 0) (b) y = −6x+ 5, P (3, 2)

12. (Perpendicular Lines) Recall from Intermediate Algebra that two non-vertical lines are per-
pendicular if and only if they have negative reciprocal slopes. That is to say, if one line has
slope m1 and the other has slope m2 then m1 ·m2 = −1. (You will be guided through a proof
of this result in the next exercise.) Please note that a horizontal line is perpendicular to a
vertical line and vice versa, so we assume m1 6= 0 and m2 6= 0. In the exercises below, you are
given a line and a point which is not on that line. Find the line perpendicular to the given
line which passes through the given point.

(a) y = 1
3x+ 2, P (0, 0) (b) y = −6x+ 5, P (3, 2)

13. We shall now prove that y = m1x + b1 is perpendicular to y = m2x + b2 if and only if
m1 ·m2 = −1. To make our lives easier we shall assume that m1 > 0 and m2 < 0. We can
also “move” the lines so that their point of intersection is the origin without messing things
up, so we’ll assume b1 = b2 = 0. (Take a moment with your classmates to discuss why this is
okay.) Graphing the lines and plotting the points O(0, 0) , P (1,m1) and Q(1,m2) gives us
the following set up.

P

O

Q

x

y

The line y = m1x will be perpendicular to the line y = m2x if and only if 4OPQ is a right
triangle. Let d1 be the distance from O to P , let d2 be the distance from O to Q and let d3

be the distance from P to Q. Use the Pythagorean Theorem to show that 4OPQ is a right
triangle if and only if m1 ·m2 = −1 by showing d2

1 + d2
2 = d2

3 if and only if m1 ·m2 = −1.
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14. Show that if a 6= b, the line containing the points (a, b) and (b, a) is perpendicular to the line
y = x.

Note: Coupled with the result from Example 1.1.6 on page 9, we have now shown that the
line y = x is a perpendicular bisector of the line segment connecting (a, b) and (b, a). This
means the points (a, b) and (b, a) are symmetric about the line y = x. (Can you see why?)
We will revisit this symmetry in section 5.2.

15. The function defined by I(x) = x is called the Identity Function.

(a) Discuss with your classmates why this name makes sense.

(b) Show that the point-slope form of a line (Equation 2.2) can be obtained from I using a
sequence of the transformations defined in Section 1.8.

16. Compute the average rate of change of the given function over the specified interval.

(a) f(x) = x3, [−1, 2]

(b) f(x) =
1

x
, [1, 5]

(c) f(x) =
√
x, [0, 16]

(d) f(x) = x2, [−3, 3]

(e) f(x) =
x+ 4

x− 3
, [5, 7]

(f) f(x) = 3x2 + 2x− 7, [−4, 2]

17. Compute the average rate of change of the given function over the interval [x, x + h]. Here
we assume [x, x+ h] is in the domain of each function.

(a) f(x) = x3

(b) f(x) =
1

x

(c) f(x) =
x+ 4

x− 3

(d) f(x) = 3x2 + 2x− 7

18. With the help of your classmates find several “real-world” examples of rates of change that
are used to describe non-linear phenomena.
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2.1.2 Answers

1. (a) y − 4 = 1
7(x+ 1)

y = 1
7x+ 29

7

(b) y + 3 = −
√

2(x− 0)
y = −

√
2x− 3

(c) y − 2
√

3 = −5(x−
√

3)
y = −5x+ 7

√
3

(d) y + 12 = 678(x+ 1)
y = 678x+ 666

2. (a) y = −5
3x

(b) y = −2

(c) y = 8
5x− 8

(d) y = 9
4x−

47
4

3. (a) F (C) = 9
5C + 32

(b) C(F ) = 5
9F −

160
9

(c) F (−40) = −40 = C(−40).

4. W (x) = 200 + .05x, She must make $5500 in weekly sales.

5. d(t) = 3t, t ≥ 0. 6. E(t) = 360t, t ≥ 0. 7. (−1,−1) and
(

11
5 ,

27
5

)
10. N(T ) = − 2

15T + 43
3

Having a negative number of howls makes no sense and since N(107.5) = 0 we can put an
upper bound of 107.5◦ on the domain. The lower bound is trickier because there’s nothing
other than common sense to go on. As it gets colder, he howls more often. At some point
it will either be so cold that he freezes to death or he’s howling non-stop. So we’re going to
say that he can withstand temperatures no lower than −60◦ so that the applied domain is
[−60, 107.5].

11. (a) y = 3x (b) y = −6x+ 20

12. (a) y = −3x (b) y = 1
6x+ 3

2

15. (a)
23 − (−1)3

2− (−1)
= 3

(b)
1
5 −

1
1

5− 1
= −1

5

(c)

√
16−

√
0

16− 0
=

1

4

(d)
32 − (−3)2

3− (−3)
= 0

(e)
7+4
7−3 −

5+4
5−3

7− 5
= −7

8

(f)
(3(2)2 + 2(2)− 7)− (3(−4)2 + 2(−4)− 7)

2− (−4)
= −4

16. (a) 3x2 + 3xh+ h2

(b)
−1

x(x+ h)

(c)
−7

(x− 3)(x+ h− 3)

(d) 6x+ 3h+ 2
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2.2 Absolute Value Functions

There are a few ways to describe what is meant by the absolute value |x| of a real number x. You
may have been taught that |x| is the distance from the real number x to the 0 on the number. So,
for example, |5| = 5 and | − 5| = 5, since each is 5 units from 0 on the number line.

distance is 5 units distance is 5 units

−5 −4 −3 −2 −1 0 1 2 3 4 5

Another way to define absolute value is by the equation |x| =
√
x2. Using this definition, we have

|5| =
√

(5)2 =
√

25 = 5 and | − 5| =
√

(−5)2 =
√

25 = 5. The long and short of both of these
procedures is that |x| takes negative real numbers and assigns them to their positive counterparts
while it leaves positive numbers alone. This last description is the one we shall adopt, and is
summarized in the following definition.

Definition 2.4. The absolute value of a real number x, denoted |x|, is given by

|x| =

{
−x, if x < 0

x, if x ≥ 0

In Definition 2.4, we define |x| using a piecewise-defined function. (See page 49 in Section 1.5.) To
check that this definition agrees with what we previously understood as absolute value, note that
since 5 ≥ 0, to find |5| we use the rule |x| = x, so |5| = 5. Similarly, since −5 < 0, we use the
rule |x| = −x, so that | − 5| = −(−5) = 5. This is one of the times when it’s best to interpret the
expression ‘−x’ as ‘the opposite of x’ as opposed to ‘negative x.’ Before we embark on studying
absolute value functions, we remind ourselves of the properties of absolute value.

Theorem 2.1. Properties of Absolute Value: Let a, b, and x be real numbers and let n be
an integer.a Then

• Product Rule: |ab| = |a||b|

• Power Rule: |an| = |a|n whenever an is defined

• Quotient Rule:
∣∣∣a
b

∣∣∣ =
|a|
|b|

, provided b 6= 0

• |x| = 0 if and only if x = 0.

• For c > 0, |x| = c if and only if x = c or x = −c.

• For c < 0, |x| = c has no solution.

aRecall that this means n = 0,±1,±2, . . . .

The proof of the Product and Quotient Rules in Theorem 2.1 boils down to checking four cases:
when both a and b are positive; when they are both negative; when one is positive and the other
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is negative; when one or both are zero. For example, suppose we wish to show |ab| = |a||b|. We
need to show this equation is true for all real numbers a and b. If a and b are both positive, then
so is ab. Hence, |a| = a, |b| = b, and |ab| = ab. Hence, the equation |ab| = |a||b| is the same as
ab = ab which is true. If both a and b are negative, then ab is positive. Hence, |a| = −a, |b| = −b,
and |ab| = ab. The equation |ab| = |a||b| becomes ab = (−a)(−b), which is true. Suppose a is
positive and b is negative. Then ab is negative, and we have |ab| = −ab, |a| = a and |b| = −b.
The equation |ab| = |a||b| reduces to −ab = a(−b) which is true. A symmetric argument shows the
equation |ab| = |a||b| holds when a is negative and b is positive. Finally, if either a or b (or both)
are zero, then both sides of |ab| = |a||b| are zero, and so the equation holds in this case, too. All
of this rhetoric has shown that the equation |ab| = |a||b| holds true in all cases. The proof of the
Quotient Rule is very similar, with the exception that b 6= 0. The Power Rule can be shown by
repeated application of the Product Rule. The last three properties can be proved using Definition
2.4 and by looking at the cases when x ≥ 0, in which case |x| = x, or when x < 0, in which case
|x| = −x. For example, if c > 0, and |x| = c, then if x ≥ 0, we have x = |x| = c. If, on the other
hand, x < 0, then −x = |x| = c, so x = −c. The remaining properties are proved similarly and are
left for the exercises.

To graph functions involving absolute value we make liberal use of Definition 2.4, as the next
example illustrates.

Example 2.2.1. Graph each of the following functions. Find the zeros of each function and the
x- and y-intercepts of each graph, if any exist. From the graph, determine the domain and range
of each function, list the intervals on which the function is increasing, decreasing, or constant, and
find the relative and absolute extrema, if they exist.

1. f(x) = |x|

2. g(x) = |x− 3|

3. h(x) = |x| − 3

4. i(x) = 4− 2|3x+ 1|

Solution.

1. To find the zeros of f , we set f(x) = 0. We get |x| = 0, which, by Theorem 2.1 gives us x = 0.
Since the zeros of f are the x-coordinates of the x-intercepts of the graph of y = f(x), we get
(0, 0) is our only x-intercept. To find the y-intercept, we set x = 0, and find y = f(0) = 0, so
that (0, 0) is our y-intercept as well.1 With Section 2.1 under our belts, we can use Definition
2.4 to get

f(x) = |x| =

{
−x, if x < 0

x, if x ≥ 0

Hence, for x < 0, we are graphing the line y = −x; for x ≥ 0, we have the line y = x.
Proceeding as we did in Section 1.7, we get

1Actually, since functions can have at most one y-intercept (why?), as soon as we found (0, 0) as the x-intercept,
we knew this was also the y-intercept.
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x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|, x < 0

x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|, x ≥ 0

Notice we have an ‘open circle’ at (0, 0) in the graph when x < 0. As we have seen before,
this is due to the fact the points on y = −x approach (0, 0) as the x-values approach 0. Since
x is required to be strictly less than zero on this stretch, however, the open circle is drawn.
However, notice that when x ≥ 0, we get to fill in the point at (0, 0), which effectively ‘plugs’
the hole indicated by the open circle. Hence, we get

x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|

By projecting the graph to the x-axis, we see that the domain is (−∞,∞). Projecting to
the y-axis gives us the range [0,∞). The function is increasing on [0,∞) and decreasing on
(−∞, 0]. The relative minimum value of f is the same as the absolute minimum, namely 0
which occurs at (0, 0). There is no relative maximum value of f . There is also no absolute
maximum value of f , since the y values on the graph extend infinitely upwards.

2. To find the zeros of g, we set g(x) = |x − 3| = 0. By Theorem 2.1, we get x − 3 = 0 so
that x = 3. Hence, the x-intercept is (3, 0). To find our y-intercept, we set x = 0 so that
y = g(0) = |0 − 3| = 3, and so (0, 3) is our y-intercept. To graph g(x) = |x − 3|, we use
Definition 2.4 to rewrite as

g(x) = |x− 3| =

{
−(x− 3), if x− 3 < 0

x− 3, if x− 3 ≥ 0

Simplifying, we get

g(x) =

{
−x+ 3, if x < 3

x− 3, if x ≥ 3
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As before, the open circle we introduce at (3, 0) from the graph of y = −x+ 3 is filled by the
point (3, 0) from the line y = x− 3. We determine the domain as (−∞,∞) and the range as
[0,∞). The function g is increasing on [3,∞) and decreasing on (−∞, 3]. The relative and
absolute minimum value of g is 0 which occurs at (3, 0). As before, there is no relative or
absolute maximum value of g.

3. Setting h(x) = 0 to look for zeros gives |x| − 3 = 0. Before we can use any of the properties
in Theorem 2.1, we need to isolate the absolute value. Doing so gives |x| = 3 so that x = 3
or x = −3. As a result, we have a pair of x-intercepts: (−3, 0) and (3, 0). Setting x = 0 gives
y = h(0) = |0| − 3 = −3, so our y-intercept is (0,−3). As before, we rewrite the absolute
value in h to get

h(x) =

{
−x− 3, if x < 0

x− 3, if x ≥ 0

Once again, the open circle at (0,−3) from one piece of the graph of h is filled by the point
(0,−3) from the other piece of h. From the graph, we determine the domain of h is (−∞,∞)
and the range is [−3,∞). On [0,∞), h is increasing; on (−∞, 0] it is decreasing. The relative
minimum occurs at the point (0,−3) on the graph, and we see −3 is both the relative and
absolute minimum value of h. Also, h has no relative or absolute maximum value.

x

y

1 2 3 4 5

1

2

3

4

g(x) = |x− 3|

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

h(x) = |x| − 3

4. As before, we set i(x) = 0 to find the zeros of i to get 4− 2|3x+ 1| = 0. Once again, we need
to isolate the absolute value expression before we apply Theorem 2.1. So 4 − 2|3x + 1| = 0
becomes 2|3x+ 1| = 4 and hence, |3x+ 1| = 2. Applying Theorem 2.1, we get 3x+ 1 = 2 or
3x + 1 = −2, from which we get x = 1

3 or x = −1. Our x-intercepts are
(

1
3 , 0
)

and (−1, 0).
Substituting x = 0 gives y = i(0) = 4− 2|3(0) + 1| = 2, for a y-intercept of (0, 2). Rewriting
the formula for i(x) without absolute values gives

i(x) =

{
4− 2(−(3x+ 1)), if 3x+ 1 < 0

4− 2(3x+ 1), if 3x+ 1 ≥ 0
=

{
6x+ 6, if x < −1

3

−6x+ 2, if x ≥ −1
3

The usual analysis near the trouble spot, x = −1
3 gives the ‘corner’ of this graph is

(
−1

3 , 4
)
,

and we get the distinctive ‘∨’ shape:
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x

y

−1 1

−3

−2

−1

1

2

3

i(x) = 4− 2|3x + 2|

The domain of i is (−∞,∞) while the range is (−∞, 4]. The function i is increasing on(
−∞,−1

3

]
and decreasing on

[
−1

3 ,∞
)
. The relative maximum occurs at the point

(
−1

3 , 4
)

and the relative and absolute maximum value of i is 4. Since the graph of i extends downwards
forever more, there is no absolute minimum value. As we can see from the graph, there is no
relative minimum, either.

Note that all of the functions in the previous example bear the characteristic ‘∨’ shape as the graph
of y = |x|. In fact, we could have graphed all of the functions g, h, and i in Example 2.2.1 starting
with the graph of f(x) = |x| and applying transformations as in Section 1.8. For example, the for
the function g, we have g(x) = |x− 3| = f(x− 3). Theorem 1.3 tells us this causes the graph of f
to be shifted to the right 3 units. Choosing three representative points on the graph of f , (−1, 1),
(0, 0) and (1, 1), we can graph g as follows.

x

y

(−1, 1)

(0, 0)

(1, 1)

−3 −2 −1 1 2 3 4 5

1

2

3

4

f(x) = |x|

shift right 3 unit
−−−−−−−−−−−−→

add 3 to each x-coordinate

x

y

(2, 1)

(3, 0)

(4, 1)

−3 −2 −1 1 2 4 5

1

2

3

4

g(x) = f(x− 3) = |x− 3|

Similarly, the graph of h in Example 2.2.1 can be understood via Theorem 1.2 as a vertical shift
down 3 units. The function i can be graphed using Theorem 1.7 by finding the final destinations
of the three points (−1, 1), (0, 0) and (1, 1) and connecting them in the characteristic ‘∨’ fashion.
While the methods in Section 1.8 can be used to graph an entire family of absolute value functions,
not all functions involving absolute values posses the characteristic ‘∨’ shape, as the next example
illustrates.

Example 2.2.2. Graph each of the following functions. Find the zeros of each function and the
x- and y-intercepts of each graph, if any exist. From the graph, determine the domain and range
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of each function, list the intervals on which the function is increasing, decreasing, or constant, and
find the relative and absolute extrema, if they exist.

1. f(x) =
|x|
x

2. g(x) = |x+ 2| − |x− 3|+ 1

Solution.

1. We first note that, due to the fraction in the formula of f(x), x 6= 0. Thus the domain is

(−∞, 0) ∪ (0,∞). To find the zeros of f , we set f(x) = |x|
x = 0. This last equation implies

|x| = 0, which, from Theorem 2.1, implies x = 0. However, x = 0 is not in the domain of f ,
which means we have, in fact, no x-intercepts. For the same reason, we have no y-intercepts,
since f(0) is undefined. Re-writing the absolute value in the function gives

f(x) =


−x
x
, if x < 0

x

x
, if x > 0

=

{
−1, if x < 0

1, if x > 0

To graph this function, we graph two horizontal lines: y = −1 for x < 0 and y = 1 for x > 0.
We have open circles at (0,−1) and (0, 1) (Can you explain why?) so we get

x

y

−3 −2 −1 1 2 3

f(x) =
|x|
x

As we found earlier, the domain is (−∞, 0) ∪ (0,∞). The range consists of just 2 y values:
{−1, 1}.2 The function f is constant on (−∞, 0) and (0,∞). The local minimum value of f
is the absolute minimum value of f , namely −1; the local maximum and absolute maximum
values for f also coincide − they both are 1. Every point on the graph of f is simultaneously
a relative maximum and a relative minimum. (Can you see why in light of Definition 1.9?
This was explored in the exercises in Section 1.7.2.)

2. To find the zeros of g, we set g(x) = 0. The result is |x + 2| − |x − 3| + 1 = 0. Attempting
to isolate the absolute value term is complicated by the fact that there are two terms with
absolute values. In this case, it easier to proceed using cases by re-writing the function g with
two separate applications of Definition 2.4 to remove each instance of the absolute values, one
at a time. In the first round we get

g(x) =

{
−(x+ 2)− |x− 3|+ 1, if x+ 2 < 0

(x+ 2)− |x− 3|+ 1, if x+ 2 ≥ 0
=

{
−x− 1− |x− 3|, if x < −2

x+ 3− |x− 3|, if x ≥ −2

2These are set braces, not parentheses or brackets. We used this same ‘set builder’ notation in Section 1.4.
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Given that

|x− 3| =

{
−(x− 3), if x− 3 < 0

x− 3, if x− 3 ≥ 0
=

{
−x+ 3, if x < 3

x− 3, if x ≥ 3
,

we need to break up the domain again at x = 3. Note that if x < −2, then x < 3, so we
replace |x − 3| with −x + 3 for that part of the domain, too. Our completed revision of the
form of g yields

g(x) =


−x− 1− (−x+ 3), if x < −2

x+ 3− (−x+ 3), if x ≥ −2 and x < 3

x+ 3− (x− 3), if x ≥ 3

=


−4, if x < −2

2x, if −2 ≤ x < 3

6, if x ≥ 3

To solve g(x) = 0, we see that the only piece which contains a variable is g(x) = 2x for −2 ≤ x < 3.
Solving 2x = 0 gives x = 0. Since x = 0 is in the interval [−2, 3), we keep this solution and have
(0, 0) as our only x-intercept. Accordingly, the y-intercept is also (0, 0). To graph g, we start with
x < −2 and graph the horizontal line y = −4 with an open circle at (−2,−4). For −2 ≤ x < 3,
we graph the line y = 2x and the point (−2,−4) patches the hole left by the previous piece. An
open circle at (3, 6) completes the graph of this part. Finally, we graph the horizontal line y = 6
for x ≥ 3, and the point (3, 6) fills in the open circle left by the previous part of the graph. The
finished graph is

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

5

6

g(x) = |x + 2| − |x− 3| + 1

The domain of g is all real numbers, (−∞,∞), and the range of g is all real numbers between
−4 and 6 inclusive, [−4, 6]. The function is increasing on [−2, 3] and constant on (−∞,−2] and
[3,∞). The relative minimum value of f is 4 which matches the absolute minimum. The relative
and absolute maximum values also coincide at 6. Every point on the graph of y = g(x) for x < −2
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and x > 3 yields both a relative minimum and relative maximum. The point (−2,−4), however,
gives only a relative minimum and the point (3, 6) yields only a relative maximum. (Recall the
exercises in Section 1.7.2 which dealt with constant functions.)

Many of the applications that the authors are aware of involving absolute values also involve
absolute value inequalities. For that reason, we save our discussion of applications for Section 2.4.
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2.2.1 Exercises

1. Graph each of the following functions using transformations or the definition of absolute
value, as appropriate. Find the zeros of each function and the x- and y-intercepts of each
graph, if any exist. From the graph, determine the domain and range of each function, list
the intervals on which the function is increasing, decreasing, or constant, and find the relative
and absolute extrema, if they exist.

(a) f(x) = |x+ 4|

(b) f(x) = |x|+ 4

(c) f(x) = |4x|

(d) f(x) = −3|x|

(e) f(x) = 3|x+ 4| − 4

(f) f(x) =
|x+ 4|
x+ 4

(g) f(x) =
|2− x|
2− x

(h) f(x) =
1

3
|2x− 1|

(i) f(x) = |x+ 4|+ |x− 2|

2. With the help of your classmates, prove the second, third and fifth properties listed in The-
orem 2.1.

3. With the help of your classmates, find a function involving absolute values whose graph is
given below.

x

y

−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8

1

2

3

4

4. With the help of your classmates, prove the following two properties of absolute value.

(a) (The Triangle Inequality) For all real numbers a and b, |a+ b| ≤ |a|+ |b|.
(b) If |f(x)| = |g(x)| then either f(x) = g(x) or f(x) = −g(x).

5. Use the result from Exercise 4b above to solve the following equations. Interpret your results
graphically.

(a) |3x− 2| = |2x+ 7|
(b) |3x+ 1| = |4x|

(c) |1− 2x| = |x+ 1|
(d) |2− 5x| = 5|x+ 1|
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2.2.2 Answers

1. (a) f(x) = |x+ 4|
f(−4) = 0
x-intercept (−4, 0)
y-intercept (0, 4)
Domain (−∞,∞)
Range [0,∞)
Decreasing on (−∞,−4]
Increasing on [−4,∞)
Relative and absolute min. at (−4, 0)
No relative or absolute maximum

x

y

−8 −7 −6 −5 −4 −3 −2 −1 1

1

2

3

4

(b) f(x) = |x|+ 4
No zeros
No x-intercepts
y-intercept (0, 4)
Domain (−∞,∞)
Range [4,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Relative and absolute minimum at (0, 4)
No relative or absolute maximum

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

5

6

7

8

(c) f(x) = |4x|
f(0) = 0
x-intercepts (0, 0)
y-intercept (0, 0)
Domain (−∞,∞)
Range [0,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Relative and absolute minimum at (0, 0)
No relative or absolute maximum

x

y

−2 −1 1 2

1

2

3

4

5

6

7

8



2.2 Absolute Value Functions 137

(d) f(x) = −3|x|
f(0) = 0
x-intercepts (0, 0)
y-intercept (0, 0)
Domain (−∞,∞)
Range (−∞, 0]
Increasing on (−∞, 0]
Decreasing on [0,∞)
Relative and absolute maximum at (0, 0)
No relative or absolute minimum

x

y

−2 −1 1 2

−6

−5

−4

−3

−2

−1

(e) f(x) = 3|x+ 4| − 4
f
(
−16

3

)
= 0, f

(
−8

3

)
= 0

x-intercepts
(
−16

3 , 0
)
,
(
−8

3 , 0
)

y-intercept (0, 8)
Domain (−∞,∞)
Range [−4,∞)
Decreasing on (−∞,−4]
Increasing on [−4,∞)
Relative and absolute min. at (−4,−4)
No relative or absolute maximum

x

y

−8−7−6−5−4−3−2−1 1

−4

−3

−2

−1

1

2

3

4

5

6

7

8

(f) f(x) =
|x+ 4|
x+ 4

No zeros
No x-intercept
y-intercept (0, 1)
Domain (−∞,−4) ∪ (−4,∞)
Range {−1, 1}
Constant on (−∞,−4)
Constant on (−4,∞)
Absolute minimum at every point (x,−1)

where x < −4
Absolute maximum at every point (x, 1)
where x > −4
Relative maximum AND minimum at ev-
ery point on the graph

x

y

−8 −7 −6 −5 −4 −3 −2 −1 1
−1

1

(g) f(x) =
|2− x|
2− x

No zeros
No x-intercept
y-intercept (0, 1)
Domain (−∞, 2) ∪ (2,∞)
Range {−1, 1}
Constant on (−∞, 2)
Constant on (2,∞)
Absolute minimum at every point (x,−1)

where x > 2
Absolute maximum at every point (x, 1)
where x < 2
Relative maximum AND minimum at ev-
ery point on the graph

x

y

−3 −2 −1 1 2 3 4 5
−1

1
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(h) f(x) = 1
3 |2x− 1|

f
(

1
2

)
= 0

x-intercepts
(

1
2 , 0
)

y-intercept
(
0, 1

3

)
Domain (−∞,∞)
Range [0,∞)
Decreasing on

(
−∞, 1

2

]

Increasing on
[

1
2 ,∞

)
Relative and absolute min. at

(
1
2 , 0
)

No relative or absolute maximum

x

y

−3 −2 −1 1 2 3 4

1

2

(i) Re-write f(x) = |x+ 4|+ |x− 2| as

f(x) =


−2x− 2 if x < −4

6 if −4 ≤ x < 2

2x+ 2 if x ≥ 2
No zeros
No x-intercept
y-intercept (0, 6)
Domain (−∞,∞)
Range [6,∞)
Decreasing on (−∞,−4]
Constant on [−4, 2]
Increasing on [2,∞)
Absolute minimum at every point (x, 6)
where −4 ≤ x ≤ 2
No absolute maximum

Relative minimum at every point (x, 6)
where −4 ≤ x ≤ 2
Relative maximum at every point (x, 6)
where −4 < x < 2

x

y

−5 −4 −3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

3. f(x) = ||x| − 4|

5. (a) x = −1 or x = 9

(b) x = 1 or x = −1
7

(c) x = 0 or x = 2

(d) x = − 3
10
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2.3 Quadratic Functions

You may recall studying quadratic equations in Intermediate Algebra. In this section, we review
those equations in the context of our next family of functions: the quadratic functions.

Definition 2.5. A quadratic function is a function of the form

f(x) = ax2 + bx+ c,

where a, b, and c are real numbers with a 6= 0. The domain of a quadratic function is (−∞,∞).

Example 2.3.1. Graph each of the following quadratic functions. Find the zeros of each function
and the x- and y-intercepts of each graph, if any exist. From the graph, determine the domain and
range of each function, list the intervals on which the function is increasing, decreasing, or constant
and find the relative and absolute extrema, if they exist.

1. f(x) = x2 − 4x+ 3. 2. g(x) = −2(x− 3)2 + 1.

Solution.

1. To find the zeros of f , we set f(x) = 0 and solve the equation x2 − 4x + 3 = 0. Factoring
gives us (x− 3)(x− 1) = 0 so that x = 3 or x = 1. The x-intercepts are then (1, 0) and (3, 0).
To find the y-intercept, we set x = 0 and find that y = f(0) = 3. Hence, the y-intercept is
(0, 3). Plotting additional points, we get

x

y

−1 1 2 3 4 5

−1

1

2

3

4

5

6

7

8

f(x) = x2 − 4x+ 3

From the graph, we see the domain is (−∞,∞) and the range is [−1,∞). The function f
is increasing on [2,∞) and decreasing on (−∞, 2]. A relative minimum occurs at the point
(2,−1) and the value −1 is both the relative and absolute minimum of f .
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2. Note that the formula for g(x) doesn’t match the form given in Definition 2.5. However, if we
took the time to expand g(x) = −2(x− 3)2 + 1, we would get g(x) = −2x2 + 12x− 17 which
does match with Definition 2.5. When we find the zeros of g, we can use either formula, since
both are equivalent. Using the formula which was given to us, we get

g(x) = 0

−2(x− 3)2 + 1 = 0

−2(x− 3)2 = −1

(x− 3)2 =
1

2
divide by −2

x− 3 = ±
√

1

2
extract square roots

x− 3 = ±
√

2

2
rationalize the denominator

x = 3±
√

2

2

x =
6±
√

2

2
get a common denominator

Hence, we have two x-intercepts:
(

6+
√

2
2 , 0

)
and

(
6−
√

2
2 , 0

)
. (The inquisitive reader may

wonder what we would have done had we chosen to set the expanded form of g(x) equal to
zero. Since −2x2 + 12x − 17 does not factor nicely, we would have had to resort to other
methods, which are reviewed later in this section, to solve −2x2 + 12x − 17 = 0.) To find
the y-intercept, we set x = 0 and get g(0) = −17. Our y-intercept is then (0,−17). Plotting
some additional points, we get

x

y

−1 1 2 3 4 5

−17
−16
−15
−14
−13

−12
−11
−10

−9
−8
−7
−6
−5

−4
−3

−2
−1

1

g(x) = −2(x− 3)2 + 1
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The domain of g is (−∞,∞) and the range is (−∞, 1]. The function g is increasing on (−∞, 3]
and decreasing on [3,∞). The relative maximum occurs at the point (3, 1) with 1 being both the
relative and absolute maximum value of g.

Hopefully the previous examples have reminded you of some of the basic characteristics of the
graphs of quadratic equations. First and foremost, the graph of y = ax2 + bx + c where a, b, and
c are real numbers with a 6= 0 is called a parabola. If the coefficient of x2, a, is positive, the
parabola opens upwards; if a is negative, it opens downwards, as illustrated below.1

vertex

a > 0

vertex

a < 0

Graphs of y = ax2 + bx+ c.

The point at which the relative minimum (if a > 0) or relative maximum (if a < 0) occurs is called
the vertex of the parabola. Note that each of the parabolas above is symmetric about the dashed
vertical line which contains its vertex. This line is called the axis of symmetry of the parabola.
As you may recall, there are two ways to quickly find the vertex of a parabola, depending on which
form we are given. The results are summarized below.

Equation 2.4. Vertex Formulas for Quadratic Functions: Suppose a, b, c, h, and k are
real numbers with a 6= 0.

• If f(x) = a(x− h)2 + k, the vertex of the graph of y = f(x) is the point (h, k).

• If f(x) = ax2 + bx+ c, the vertex of the graph of y = f(x) is the point

(
− b

2a
, f

(
− b

2a

))
.

Example 2.3.2. Use Equation 2.4 to find the vertex of the graphs in Example 2.3.1.

Solution.

1. The formula f(x) = x2−4x+3 is in the form f(x) = ax2 +bx+c. We identify a = 1, b = −4,
and c = 3, so that

− b

2a
= − −4

2(1)
= 2,

and

f

(
− b

2a

)
= f(2) = −1,

so the vertex is (2,−1) as previously stated.

1We will justify the role of a in the behavior of the parabola later in the section.
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2. We see that the formula g(x) = −2(x−3)2 +1 is in the form g(x) = a(x−h)2 +k. We identify
a = −2, x− h as x− 3 (so h = 3), and k = 1 and get the vertex (3, 1), as required.

The formula f(x) = a(x− h)2 + k, a 6= 0 in Equation 2.4 is sometimes called the standard form
of a quadratic function; the formula f(x) = ax2 + bx + c, a 6= 0 is sometimes called the general
form of a quadratic function.

To see why the formulas in Equation 2.4 produce the vertex, let us first consider a quadratic function
in standard form. If we consider the graph of the equation y = a(x − h)2 + k we see that when
x = h, we get y = k, so (h, k) is on the graph. If x 6= h, then x−h 6= 0 and so (x−h)2 is a positive
number. If a > 0, then a(x − h)2 is positive, and so y = a(x − h)2 + k is always a number larger
than k. That means that when a > 0, (h, k) is the lowest point on the graph and thus the parabola
must open upwards, making (h, k) the vertex. A similar argument shows that if a < 0, (h, k) is the
highest point on the graph, so the parabola opens downwards, and (h, k) is also the vertex in this
case. Alternatively, we can apply the machinery in Section 1.8. The vertex of the parabola y = x2

is easily seen to be the origin, (0, 0). We leave it to the reader to convince oneself that if we apply
any of the transformations in Section 1.8 (shifts, reflections, and/or scalings) to y = x2, the vertex
of the resulting parabola will always be the point the graph corresponding to (0, 0). To obtain the
formula f(x) = a(x− h)2 + k, we start with g(x) = x2 and first define g1(x) = ag(x) = ax2. This
is results in a vertical scaling and/or reflection.2 Since we multiply the output by a, we multiply
the y-coordinates on the graph of g by a, so the point (0, 0) remains (0, 0) and remains the vertex.
Next, we define g2(x) = g1(x− h) = a(x− h)2. This induces a horizontal shift right or left h units3

moves the vertex, in either case, to (h, 0). Finally, f(x) = g2(x) + k = a(x− h)2 + k which effects
a vertical shift up or down k units4 resulting in the vertex moving from (h, 0) to (h, k).

To verify the vertex formula for a quadratic function in general form, we complete the square to
convert the general form into the standard form.5

f(x) = ax2 + bx+ c

= a

(
x2 +

b

a
x

)
+ c

= a

(
x2 +

b

a
x+

b2

4a2

)
+ c− a

(
b2

4a2

)
complete the square

= a

(
x+

b

2a

)2

+
4ac− b2

4a
factor; get a common denominator

Comparing this last expression with the standard form, we identify (x − h) as
(
x+ b

2a

)
so that

h = − b

2a
. Instead of memorizing the value k = 4ac−b2

4a , we see that f
(
− b

2a

)
= 4ac−b2

4a . As such,

2Just a scaling if a > 0. If a < 0, there is a reflection involved.
3Right if h > 0, left if h < 0.
4Up if k > 0, down if k < 0
5Actually, we could also take the standard form, f(x) = a(x− h)2 + k, expand it, and compare the coefficients of

it and the general form to deduce the result. However, we will have another use for the completed square form of the
general form of a quadratic, so we’ll proceed with the conversion.
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we have derived the vertex formula for the general form as well. Note that the value a plays the
exact same role in both the standard and general equations of a quadratic function − it is the
coefficient of x2 in each. No matter what the form, if a > 0, the parabola opens upwards; if a < 0,
the parabola opens downwards.

Now that we have the completed square form of the general form of a quadratic function, it is time
to remind ourselves of the quadratic formula. In a function context, it gives us a means to find
the zeros of a quadratic function in general form.

Equation 2.5. The Quadratic Formula: If a, b, c are real numbers with a 6= 0, then the
solutions to ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac

2a
.

Assuming the conditions of Equation 2.5, the solutions to ax2 + bx+ c = 0 are precisely the zeros
of f(x) = ax2 + bx+ c. We have shown an equivalent formula for f is

f(x) = a

(
x+

b

2a

)2

+
4ac− b2

4a
.

Hence, an equation equivalent to ax2 + bx+ c = 0 is

a

(
x+

b

2a

)2

+
4ac− b2

4a
= 0.

Solving gives

a

(
x+

b

2a

)2

+
4ac− b2

4a
= 0

a

(
x+

b

2a

)2

= −4ac− b2

4a

1

a

[
a

(
x+

b

2a

)2
]

=
1

a

(
b2 − 4ac

4a

)
(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
= ±

√
b2 − 4ac

4a2
extract square roots

x+
b

2a
= ±

√
b2 − 4ac

2a

x = − b

2a
±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a
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In our discussions of domain, we were warned against having negative numbers underneath the
square root. Given that

√
b2 − 4ac is part of the Quadratic Formula, we will need to pay special

attention to the radicand b2 − 4ac. It turns out that the quantity b2 − 4ac plays a critical role in
determining the nature of the solutions to a quadratic equation. It is given a special name and is
discussed below.

Definition 2.6. If a, b, c are real numbers with a 6= 0, then the discriminant of the quadratic
equation ax2 + bx+ c = 0 is the quantity b2 − 4ac.

Theorem 2.2. Discriminant Trichotomy: Let a, b, and c be real numbers with a 6= 0.

• If b2 − 4ac < 0, the equation ax2 + bx+ c = 0 has no real solutions.

• If b2 − 4ac = 0, the equation ax2 + bx+ c = 0 has exactly one real solution.

• If b2 − 4ac > 0, the equation ax2 + bx+ c = 0 has exactly two real solutions.

The proof of Theorem 2.2 stems from the position of the discriminant in the quadratic equation,
and is left as a good mental exercise for the reader. The next example exploits the fruits of all of
our labor in this section thus far.

Example 2.3.3. The profit function for a product is defined by the equation Profit = Revenue−
Cost, or P (x) = R(x)−C(x). Recall from Example 2.1.7 that the weekly revenue, in dollars, made
by selling x PortaBoy Game Systems is given by R(x) = −1.5x2 + 250x. The cost, in dollars, to
produce x PortaBoy Game Systems is given in Example 2.1.5 as C(x) = 80x+ 150, x ≥ 0.

1. Determine the weekly profit function, P (x).

2. Graph y = P (x). Include the x- and y-intercepts as well as the vertex and axis of symmetry.

3. Interpret the zeros of P .

4. Interpret the vertex of the graph of y = P (x).

5. Recall the weekly price-demand equation for PortaBoys is: p(x) = −1.5x + 250, where p(x)
is the price per PortaBoy, in dollars, and x is the weekly sales. What should the price per
system be in order to maximize profit?

Solution.

1. To find the profit function P (x), we subtract

P (x) = R(x)− C(x) =
(
−1.5x2 + 250x

)
− (80x+ 150) = −1.5x2 + 170x− 150.

2. To find the x-intercepts, we set P (x) = 0 and solve −1.5x2 + 170x − 150 = 0. The mere
thought of trying to factor the left hand side of this equation could do serious psychological
damage, so we resort to the quadratic formula, Equation 2.5. Identifying a = −1.5, b = 170,
and c = −150, we obtain
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x =
−b±

√
b2 − 4ac

2a

=
−170±

√
1702 − 4(−1.5)(−150)

2(−1.5)

=
−170±

√
28000

−3

=
170± 20

√
70

3

We get two x-intercepts:
(

170−20
√

70
3 , 0

)
and

(
170+20

√
70

3 , 0
)

. To find the y-intercept, we set

x = 0 and find y = P (0) = −150 for a y-intercept of (0,−150). To find the vertex, we use
the fact that P (x) = −1.5x2 + 170x− 150 is in the general form of a quadratic function and
appeal to Equation 2.4. Substituting a = −1.5 and b = 170, we get x = − 170

2(−1.5) = 170
3 .

To find the y-coordinate of the vertex, we compute P
(

170
3

)
= 14000

3 and find our vertex is(
170
3 , 14000

3

)
. The axis of symmetry is the vertical line passing through the vertex so it is the

line x = 170
3 . To sketch a reasonable graph, we approximate the x-intercepts, (0.89, 0) and

(112.44, 0), and the vertex, (56.67, 4666.67). (Note that in order to get the x-intercepts and
the vertex to show up in the same picture, we had to scale the x-axis differently than the
y-axis. This results in the left-hand x-intercept and the y-intercept being uncomfortably close
to each other and to the origin in the picture.)

x

y

10 20 30 40 50 60 70 80 90 100 110 120

1000

2000

3000

4000

3. The zeros of P are the solutions to P (x) = 0, which we have found to be approximately
0.89 and 112.44. Since P represents the weekly profit, P (x) = 0 means the weekly profit
is $0. Sometimes, these values of x are called the ‘break-even’ points of the profit function,
since these are places where the revenue equals the cost; in other words we gave sold enough
product to recover the cost spent to make the product. More importantly, we see from the
graph that as long as x is between 0.89 and 112.44, the graph y = P (x) is above the x-axis,
meaning y = P (x) > 0 there. This means that for these values of x, a profit is being made.
Since x represents the weekly sales of PortaBoy Game Systems, we round the zeros to positive
integers and have that as long as 1, but no more than 112 game systems are sold weekly, the
retailer will make a profit.
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4. From the graph, we see the maximum value of P occurs at the vertex, which is approximately
(56.67, 4666.67). As above, x represents the weekly sales of PortaBoy systems, so we can’t
sell 56.67 game systems. Comparing P (56) = 4666 and P (57) = 4666.5, we conclude we will
make a maximum profit of $4666.50 if we sell 57 game systems.

5. In the previous part, we found we need to sell 57 PortaBoys per week to maximize profit.
To find the price per PortaBoy, we substitute x = 57 into the price-demand function to get
p(57) = −1.5(57) + 250 = 164.5. The price should be set at $164.50.

We conclude this section with a more complicated absolute value function.

Example 2.3.4. Graph f(x) = |x2 − x− 6|.

Solution. Using the definition of absolute value, Definition 2.4, we have

f(x) =

{
−
(
x2 − x− 6

)
, if x2 − x− 6 < 0

x2 − x− 6, if x2 − x− 6 ≥ 0

The trouble is that we have yet to develop any analytic techniques to solve nonlinear inequalities
such as x2 − x− 6 < 0. You won’t have to wait long; this is one of the main topics of Section 2.4.
Nevertheless, we can attack this problem graphically. To that end, we graph y = g(x) = x2−x− 6
using the intercepts and the vertex. To find the x-intercepts, we solve x2 − x − 6 = 0. Factoring
gives (x − 3)(x + 2) = 0 so x = −2 or x = 3. Hence, (−2, 0) and (3, 0) are x-intercepts. The y-
intercept is found by setting x = 0, (0,−6). To find the vertex, we find x = − b

2a = − −1
2(1) = 1

2 , and

y =
(

1
2

)2−(1
2

)
−6 = −25

4 = −6.25. Plotting, we get the parabola seen below on the left. To obtain
points on the graph of y = f(x) = |x2−x−6|, we can take points on the graph of g(x) = x2−x−6
and apply the absolute value to each of the y values on the parabola. We see from the graph of g
that for x ≤ −2 or x ≥ 3, the y values on the parabola are greater than or equal to zero (since the
graph is on or above the x-axis), so the absolute value leaves this portion of the graph alone. For
x between −2 and 3, however, the y values on the parabola are negative. For example, the point
(0,−6) on y = x2 − x− 6 would result in the point (0, | − 6|) = (0,−(−6)) = (0, 6) on the graph of
f(x) = |x2 − x − 6|. Proceeding in this manner for all points with x-coordinates between −2 and
3 results in the graph seen above on the right.
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y = g(x) = x2 − x− 6

x

y
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y = f(x) = |x2 − x− 6|

If we take a step back and look at the graphs of g and f in the last example, we notice that to
obtain the graph of f from the graph of g, we reflect a portion of the graph of g about the x-axis.
We can see this analytically by substituting g(x) = x2−x− 6 into the formula for f(x) and calling
to mind Theorem 1.4 from Section 1.8.

f(x) =

{
−g(x), if g(x) < 0
g(x), if g(x) ≥ 0

The function f is defined so that when g(x) is negative (i.e., when its graph is below the x-axis),
the graph of f is its refection across the x-axis. This is a general template to graph functions
of the form f(x) = |g(x)|. From this perspective, the graph of f(x) = |x| can be obtained by
reflection the portion of the line g(x) = x which is below the x-axis back above the x-axis creating
the characteristic ‘∨’ shape.
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2.3.1 Exercises

1. Graph each of the following quadratic functions. Find the x- and y-intercepts of each graph,
if any exist. If it is given in the general form, convert it into standard form. Find the
domain and range of each function and list the intervals on which the function is increasing
or decreasing. Identify the vertex and the axis of symmetry and determine whether the vertex
yields a relative and absolute maximum or minimum.

(a) f(x) = x2 + 2

(b) f(x) = −(x+ 2)2

(c) f(x) = x2 − 2x− 8

(d) f(x) = −2(x+ 1)2 + 4

(e) f(x) = 2x2 − 4x− 1

(f) f(x) = −3x2 + 4x− 7

(g) f(x) = −3x2 + 5x+ 4

(h) 6 f(x) = x2 − 1

100
x− 1

2. Graph f(x) = |1− x2|

3. Find all of the points on the line y = 1− x which are 2 units from (1,−1)

4. With the help of your classmates, show that if a quadratic function f(x) = ax2 + bx+ c has
two real zeros then the x-coordinate of the vertex is the midpoint of the zeros.

5. Assuming no air resistance or forces other than the Earth’s gravity, the height above the
ground at time t of a falling object is given by s(t) = −4.9t2 + v0t+ s0 where s is in meters, t
is in seconds, v0 is the object’s initial velocity in meters per second and s0 is its initial position
in meters.

(a) What is the applied domain of this function?

(b) Discuss with your classmates what each of v0 > 0, v0 = 0 and v0 < 0 would mean.

(c) Come up with a scenario in which s0 < 0.

(d) Let’s say a slingshot is used to shoot a marble straight up from the ground (s0 = 0) with
an initial velocity of 15 meters per second. What is the marble’s maximum height above
the ground? At what time will it hit the ground?

(e) Now shoot the marble from the top of a tower which is 25 meters tall. When does it hit
the ground?

(f) What would the height function be if instead of shooting the marble up off of the tower,
you were to shoot it straight DOWN from the top of the tower?

6. The International Silver Strings Submarine Band holds a bake sale each year to fund their
trip to the National Sasquatch Convention. It has been determined that the cost in dollars
of baking x cookies is C(x) = 0.1x + 25 and that the demand function for their cookies is
p = 10− .01x. How many cookies should they bake in order to maximize their profit?

6We have already seen the graph of this function. It was used as an example in Section 1.7 to show how the
graphing calculator can be misleading.
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7. The two towers of a suspension bridge are 400 feet apart. The parabolic cable7 attached to
the tops of the towers is 10 feet above the point on the bridge deck that is midway between
the towers. If the towers are 100 feet tall, find the height of the cable directly above a point
of the bridge deck that is 50 feet to the right of the left-hand tower.

8. What is the largest rectangular area one can enclose with 14 inches of string?

9. Solve the following quadratic equations for the indicated variable.

(a) x2 − 10y2 = 0 for x

(b) y2 − 4y = x2 − 4 for x

(c) x2 −mx = 1 for x

(d) −gt2 +v0t+s0 = 0 for t (Assume g 6= 0.)

(e) y2 − 3y = 4x for y

(f) y2 − 4y = x2 − 4 for y

7The weight of the bridge deck forces the bridge cable into a parabola and a free hanging cable such as a power
line does not form a parabola. We shall see in Exercise 13 in Section 6.5 what shape a free hanging cable makes.
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2.3.2 Answers

1. (a) f(x) = x2 + 2
No x-intercepts
y-intercept (0, 2)
Domain: (−∞,∞)
Range: [2,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Vertex (0, 2) is a minimum
Axis of symmetry x = 0 x

y

−2 −1 1 2

1

2

3

4

5

6

7

8

9

10

(b) f(x) = −(x+ 2)2

x-intercept (−2, 0)
y-intercept (0,−4)
Domain: (−∞,∞)
Range: (−∞, 0]
Increasing on (−∞,−2]
Decreasing on [−2,∞)
Vertex (−2, 0) is a maximum
Axis of symmetry x = −2

x

y

−4 −3 −2 −1

−8

−7

−6

−5

−4

−3

−2

−1

(c) f(x) = x2 − 2x− 8 = (x− 1)2 − 9
x-intercepts (−2, 0) and (4, 0)
y-intercept (0,−8)
Domain: (−∞,∞)
Range: [−9,∞)
Decreasing on (−∞, 1]
Increasing on [1,∞)
Vertex (1,−9) is a minimum
Axis of symmetry x = 1

x

y

−2 −1 1 2 3 4

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

(d) f(x) = −2(x+ 1)2 + 4
x-intercepts (−1−

√
2, 0) and (−1 +

√
2, 0)

y-intercept (0, 2)
Domain: (−∞,∞)
Range: (−∞, 4])
Increasing on (−∞,−1]
Decreasing on [−1,∞)
Vertex (−1, 4) is a maximum
Axis of symmetry x = −1

x

y

−3 −2 −1 1

−4

−3

−2

−1

1

2

3

4
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(e) f(x) = 2x2 − 4x− 1 = 2(x− 1)2 − 3

x-intercepts
(

2−
√
6

2 , 0
)

and
(

2+
√
6

2 , 0
)

y-intercept (0,−1)
Domain: (−∞,∞)
Range: [−3,∞)
Increasing on [1,∞)
Decreasing on (−∞, 1]
Vertex (1,−3) is a minimum
Axis of symmetry x = 1

x

y

−1 1 2 3

−3

−2

−1

1

2

3

4

(f) f(x) = −3x2 + 4x− 7 = −3(x− 2
3)2 − 17

3
No x-intercepts
y-intercept (0,−7)
Domain: (−∞,∞)
Range: (−∞,−17

3 ]
Increasing on (−∞, 2

3 ]
Decreasing on [2

3 ,∞)
Vertex (2

3 ,−
17
3 ) is a maximum

Axis of symmetry x = 2
3

x

y

1 2

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

(g) f(x) = −3x2 + 5x+ 4 = −3
(
x− 5

6

)2
+ 73

12

x-intercepts
(

5−
√
73

6 , 0
)

and
(

5+
√
73

6 , 0
)

y-intercept (0, 4)
Domain: (−∞,∞)
Range:

(
−∞, 73

12

]
Increasing on

(
−∞, 5

6

]
Decreasing on

[
5
6 ,∞

)
Vertex

(
5
6 ,

73
12

)
is a minimum

Axis of symmetry x = 5
6

x

y

−1 1 2 3

−3

−2

−1

1

2

3

4

5

6
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(h) f(x) = x2 − 1
100x− 1 =

(
x− 1

200

)2 − 40001
40000

x-intercepts
(

1+
√

40001
200

)
and

(
1−
√

40001
200

)
y-intercept (0,−1)
Domain: (−∞,∞)
Range:

[
−40001

40000 ,∞
)

Decreasing on
(
−∞, 1

200

]
Increasing on

[
1

200 ,∞
)

Vertex
(

1
200 ,−

40001
40000

)
is a minimum8

Axis of symmetry x = 1
200

x

y

−2 −1 1 2

1

2

3

4

5

6

7

8

2. y = |1− x2|

x

y

−2 −1 1 2

1

2

3

4

5

6

7

3.

(
3−
√

7

2
,
−1 +

√
7

2

)
,

(
3 +
√

7

2
,
−1−

√
7

2

)

5. (a) The applied domain is [0,∞).

(d) The height function is this case is s(t) = −4.9t2 + 15t. The vertex of this parabola
is approximately (1.53, 11.48) so the maximum height reached by the marble is 11.48
meters. It hits the ground again when t ≈ 3.06 seconds.

(e) The revised height function is s(t) = −4.9t2 + 15t+ 25 which has zeros at t ≈ −1.20 and
t ≈ 4.26. We ignore the negative value and claim that the marble will hit the ground
after 4.26 seconds.

(f) Shooting down means the initial velocity is negative so the height functions becomes
s(t) = −4.9t2 − 15t+ 25.

6. 495 cookies

7. Make the vertex of the parabola (0, 10) so that the point on the top of the left-hand tower
where the cable connects is (−200, 100) and the point on the top of the right-hand tower is
(200, 100). Then the parabola is given by p(x) = 9

4000x
2 + 10. Standing 50 feet to the right of

the left-hand tower means you’re standing at x = −150 and p(−150) = 60.625. So the cable
is 60.625 feet above the bridge deck there.

8. The largest rectangle has area 12.25in2.

8You’ll need to use your calculator to zoom in far enough to see that the vertex is not the y-intercept.
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9. (a) x = ±y
√

10

(b) x = ±(y − 2)

(c) x =
m±

√
m2 + 4

2

(d) t =
v0 ±

√
v2

0 + 4gs0

2g

(e) y =
3±
√

16x+ 9

2
(f) y = 2± x
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2.4 Inequalities

In this section, not only do we develop techniques for solving various classes of inequalities analyt-
ically, we also look at them graphically. The next example motivates the core ideas.

Example 2.4.1. Let f(x) = 2x− 1 and g(x) = 5.

1. Solve f(x) = g(x).

2. Solve f(x) < g(x).

3. Solve f(x) > g(x).

4. Graph y = f(x) and y = g(x) on the same set of axes and interpret your solutions to parts 1
through 3 above.

Solution.

1. To solve f(x) = g(x), we replace f(x) with 2x− 1 and g(x) with 5 to get 2x− 1 = 5. Solving
for x, we get x = 3.

2. The inequality f(x) < g(x) is equivalent to 2x− 1 < 5. Solving gives x < 3 or (−∞, 3).

3. To find where f(x) > g(x), we solve 2x− 1 > 5. We get x > 3, or (3,∞).

4. To graph y = f(x), we graph y = 2x − 1, which is a line with a y-intercept of (0,−1) and a
slope of 2. The graph of y = g(x) is y = 5 which is a horizontal line through (0, 5).

x

y

y = f(x)

y = g(x)

1 2 3 4

−1

1

2

3

4

5

6

7

8

To see the connection between the graph and the algebra, we recall the Fundamental Graphing
Principle for Functions in Section 1.7: the point (a, b) is on the graph of f if and only if
f(a) = b. In other words, a generic point on the graph of y = f(x) is (x, f(x)), and a generic
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point on the graph of y = g(x) is (x, g(x)). When we seek solutions to f(x) = g(x), we are
looking for values x whose y values on the graphs of f and g are the same. In part 1, we found
x = 3 is the solution to f(x) = g(x). Sure enough, f(3) = 5 and g(3) = 5 so that the point
(3, 5) is on both graphs. We say the graphs of f and g intersect at (3, 5). In part 2, we set
f(x) < g(x) and solved to find x < 3. For x < 3, the point (x, f(x)) is below (x, g(x)) since
the y values on the graph of f are less than the y values on the graph of g there. Analogously,
in part 3, we solved f(x) > g(x) and found x > 3. For x > 3, note that the graph of f is
above the graph of g, since the y values on the graph of f are greater than the y values on
the graph of g for those values of x.

y = f(x)

y = g(x)

x

y

1 2 3 4

−1

1

2

3

4

5

6

7

8

f(x) < g(x)

y = f(x)

y = g(x)

x

y

1 2 3 4

−1
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2

3

4

5

6

7

8

f(x) > g(x)

The preceding example demonstrates the following, which is a consequence of the Fundamental
Graphing Principle for Functions.

Graphical Interpretation of Equations and Inequalities
Suppose f and g are functions.

• The solutions to f(x) = g(x) are precisely the x values where the graphs of y = f(x) and
y = g(x) intersect.

• The solutions to f(x) < g(x) are precisely the x values where the graph of y = f(x) is
below the graph of y = g(x).

• The solutions to f(x) > g(x) are precisely the x values where the graph of y = f(x) above
the graph of y = g(x).

The next example turns the tables and furnishes the graphs of two functions and asks for solutions
to equations and inequalities.
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Example 2.4.2. The graphs of f and g are below. The graph of y = f(x) resembles the upside
down ∨ shape of an absolute value function while the graph of y = g(x) resembles a parabola. Use
these graphs to answer the following questions.

x

y

y = f(x)

y = g(x)

(1, 2)(−1, 2)

−2 −1 1 2

−1

1

2

3

4

1. Solve f(x) = g(x). 2. Solve f(x) < g(x). 3. Solve f(x) ≥ g(x).

Solution.

1. To solve f(x) = g(x), we look for where the graphs of f and g intersect. These appear to be
at the points (−1, 2) and (1, 2), so our solutions to f(x) = g(x) are x = −1 and x = 1.

2. To solve f(x) < g(x), we look for where the graph of f is below the graph of g. This appears
to happen for the x values less than −1 and greater than 1. Our solution is (−∞,−1)∪(1,∞).

3. To solve f(x) ≥ g(x), we look for solutions to f(x) = g(x) as well as f(x) > g(x). We solved
the former equation and found x = ±1. To solve f(x) > g(x), we look for where the graph
of f is above the graph of g. This appears to happen between x = −1 and x = 1, on the
interval (−1, 1). Hence, our solution to f(x) ≥ g(x) is [−1, 1].

x

y

y = f(x)

y = g(x)

(1, 2)(−1, 2)

−2 −1 1 2

−1

1

2

3

4

f(x) < g(x)

x

y

y = f(x)

y = g(x)

(1, 2)(−1, 2)

−2 −1 1 2

−1
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2

3

4

f(x) ≥ g(x)
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We now turn our attention to solving inequalities involving the absolute value. We have the
following theorem from Intermediate Algebra to help us.

Theorem 2.3. Inequalities Involving the Absolute Value: Let c be a real number.

• For c > 0, |x| < c is equivalent to −c < x < c.

• For c ≤ 0, |x| < c has no solution.

• For c ≥ 0, |x| > c is equivalent to x < −c or x > c.

• For c < 0, |x| > c is true for all real numbers.

As with Theorem 2.1 in Section 2.2, we could argue Theorem 2.3 using cases. However, in light
of what we have developed in this section, we can understand these statements graphically. For
instance, if c > 0, the graph of y = c is a horizontal line which lies above the x-axis through (0, c).
To solve |x| < c, we are looking for the x values where the graph of y = |x| is below the graph
of y = c. We know the graphs intersect when |x| = c, which, from Section 2.2, we know happens
when x = c or x = −c. Graphing, we get

(c, c)(−c, c)

x

y

−c c

We see the graph of y = |x| is below y = c for x between −c and c, and hence we get |x| < c is
equivalent to −c < x < c. The other properties in Theorem 2.3 can be shown similarly.

Example 2.4.3. Solve the following inequalities analytically; check your answers graphically.

1. |x− 1| ≥ 3

2. 4− 3|2x+ 1| > −2

3. 2 < |x− 1| ≤ 5

4. |x+ 1| ≥ x+ 4

2

Solution.

1. To solve |x − 1| ≥ 3, we seek solutions to |x − 1| > 3 as well as solutions to |x − 1| = 3.
From Theorem 2.3, |x− 1| > 3 is equivalent to x− 1 < −3 or x− 1 > 3. From Theorem 2.1,
|x − 1| = 3 is equivalent to x − 1 = −3 or x − 1 = 3. Combining these equations with the
inequalities, we solve x − 1 ≤ −3 or x − 1 ≥ 3. Our answer is x ≤ −2 or x ≥ 4, which, in
interval notation is (−∞,−2] ∪ [4,∞). Graphically, we have
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x

y

−4 −3 −2 −1 1 2 3 4 5

2

3

4

We see the graph of y = |x − 1| (the ∨) is above the horizontal line y = 3 for x < −2 and
x > 4, and, hence, this is where |x − 1| > 3. The two graphs intersect when x = −2 and
x = 4, and so we have graphical confirmation of our analytic solution.

2. To solve 4 − 3|2x + 1| > −2 analytically, we first isolate the absolute value before applying
Theorem 2.3. To that end, we get −3|2x+ 1| > −6 or |2x+ 1| < 2. Rewriting, we now have
−2 < 2x+ 1 < 2 so that −3

2 < x < 1
2 . In interval notation, we write

(
−3

2 ,
1
2

)
. Graphically we

see the graph of y = 4− 3|2x+ 1| is above y = −2 for x values between −3
2 and 1

2 .

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

3

4

3. Rewriting the compound inequality 2 < |x − 1| ≤ 5 as ‘2 < |x − 1| and |x − 1| ≤ 5’ allows
us to solve each piece using Theorem 2.3. The first inequality, 2 < |x − 1| can be re-written
as |x − 1| > 2 and so x − 1 < −2 or x − 1 > 2. We get x < −1 or x > 3. Our solution
to the first inequality is then (−∞,−1) ∪ (3,∞). For |x − 1| ≤ 5, we combine results in
Theorems 2.1 and 2.3 to get −5 ≤ x− 1 ≤ 5 so that −4 ≤ x ≤ 6, or [−4, 6]. Our solution to
2 < |x−1| ≤ 5 is comprised of values of x which satisfy both parts of the inequality, and so we
take what’s called the ‘set theoretic intersection’ of (−∞,−1) ∪ (3,∞) with [−4, 6] to obtain
[−4,−1)∪ (3, 6]. Graphically, we see the graph of y = |x− 1| is ‘between’ the horizontal lines
y = 2 and y = 5 for x values between −4 and −1 as well as those between 3 and 6. Including
the x values where y = |x− 1| and y = 5 intersect, we get
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4. We need to exercise some special caution when solving |x+1| ≥ x+4
2 . When variables are both

inside and outside of the absolute value, it’s usually best to refer to the definition of absolute
value, Definition 2.4, to remove the absolute values and proceed from there. To that end, we
have |x + 1| = −(x + 1) if x < −1 and |x + 1| = x + 1 if x ≥ −1. We break the inequality
into cases, the first case being when x < −1. For these values of x, our inequality becomes
−(x + 1) ≥ x+4

2 . Solving, we get −2x − 2 ≥ x + 4, so that −3x ≥ 6, which means x ≤ −2.
Since all of these solutions fall into the category x < −1, we keep them all. For the second
case, we assume x ≥ −1. Our inequality becomes x+ 1 ≥ x+4

2 , which gives 2x+ 2 ≥ x+ 4 or
x ≥ 2. Since all of these values of x are greater than or equal to −1, we accept all of these
solutions as well. Our final answer is (−∞,−2] ∪ [2,∞).

x

y

−4 −3 −2 −1 1 2 3 4

2

3

4

We now turn our attention to quadratic inequalities. In the last example of Section 2.3, we needed
to determine the solution to x2 − x − 6 < 0. We will now re-visit this problem using some of the
techniques developed in this section not only to reinforce our solution in Section 2.3, but to also
help formulate a general analytic procedure for solving all quadratic inequalities. If we consider
f(x) = x2 − x − 6 and g(x) = 0, then solving x2 − x − 6 < 0 corresponds graphically to finding
the values of x for which the graph of y = f(x) = x2 − x− 6 (the parabola) is below the graph of
y = g(x) = 0 (the x-axis.) We’ve provided the graph again for reference.
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y = x2 − x− 6

We can see that the graph of f does dip below the x-axis between its two x-intercepts. The zeros
of f are x = −2 and x = 3 in this case and they divide the domain (the x-axis) into three intervals:
(−∞,−2), (−2, 3), and (3,∞). For every number in (−∞,−2), the graph of f is above the x-axis;
in other words, f(x) > 0 for all x in (−∞,−2). Similarly, f(x) < 0 for all x in (−2, 3), and f(x) > 0
for all x in (3,∞). We can schematically represent this with the sign diagram below.

−2 3

(+) 0 (−) 0 (+)

Here, the (+) above a portion of the number line indicates f(x) > 0 for those values of x; the (−)
indicates f(x) < 0 there. The numbers labeled on the number line are the zeros of f , so we place
0 above them. We see at once that the solution to f(x) < 0 is (−2, 3).

Our next goal is to establish a procedure by which we can generate the sign diagram without
graphing the function. An important property1 of quadratic functions is that if the function is
positive at one point and negative at another, the function must have at least one zero in between.
Graphically, this means that a parabola can’t be above the x-axis at one point and below the x-axis
at another point without crossing the x-axis. This allows us to determine the sign of all of the
function values on a given interval by testing the function at just one value in the interval. This
gives us the following.

1We will give this property a name in Chapter 3 and revisit this concept then.
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Steps for Solving a Quadratic Inequality

1. Rewrite the inequality, if necessary, as a quadratic function f(x) on one side of the inequality
and 0 on the other.

2. Find the zeros of f and place them on the number line with the number 0 above them.

3. Choose a real number, called a test value, in each of the intervals determined in step 2.

4. Determine the sign of f(x) for each test value in step 3, and write that sign above the
corresponding interval.

5. Choose the intervals which correspond to the correct sign to solve the inequality.

Example 2.4.4. Solve the following inequalities analytically using sign diagrams. Verify your
answer graphically.

1. 2x2 ≤ 3− x

2. x2 > 2x+ 1

3. 9x2 + 4 ≤ 12x

4. 2x− x2 ≥ |x− 1| − 1

Solution.

1. To solve 2x2 ≤ 3−x, we first get 0 on one side of the inequality which yields 2x2 +x− 3 ≤ 0.
We find the zeros of f(x) = 2x2 + x − 3 by solving 2x2 + x − 3 = 0 for x. Factoring gives
(2x + 3)(x − 1) = 0, so x = −3

2 ,or x = 1. We place these values on the number line with 0
above them and choose test values in the intervals

(
−∞,−3

2

)
,
(
−3

2 , 1
)
, and (1,∞). For the

interval
(
−∞,−3

2

)
, we choose2 x = −2; for

(
−3

2 , 1
)
, we pick x = 0; and for (1,∞), x = 2.

Evaluating the function at the three test values gives us f(−2) = 3 > 0 (so we place (+)
above

(
−∞,−3

2

)
; f(0) = −3 < 0 (so (−) goes above the interval

(
−3

2 , 1
)
); and, f(2) = 7

(which means (+) is placed above (1,∞)). Since we are solving 2x2 + x− 3 ≤ 0, we look for
solutions to 2x2 + x− 3 < 0 as well as solutions for 2x2 + x− 3 = 0. For 2x2 + x− 3 < 0, we
need the intervals which we have a (−). Checking the sign diagram, we see this is

(
−3

2 , 1
)
.

We know 2x2 +x−3 = 0 when x = −3
2 and x = 1, so or final answer is

[
−3

2 , 1
]
. To check our

solution graphically, we refer to the original inequality, 2x2 ≤ 3 − x. We let g(x) = 2x2 and
h(x) = 3 − x. We are looking for the x values where the graph of g is below that of h (the
solution to g(x) < h(x)) as well as the two graphs intersect (the solutions to g(x) = h(x).)
The graphs of g and h are given on the right with the sign chart on the left.

2We have to choose something in each interval. If you don’t like our choices, please feel free to choose different
numbers. You’ll get the same sign chart.
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2. Once again, we re-write x2 > 2x+ 1 as x2 − 2x− 1 > 0 and we identify f(x) = x2 − 2x− 1.
When we go to find the zeros of f , we find, to our chagrin, that the quadratic x2 − 2x − 1
doesn’t factor nicely. Hence, we resort to the quadratic formula to solve x2− 2x− 1 = 0, and
arrive at x = 1 ±

√
2. As before, these zeros divide the number line into three pieces. To

help us decide on test values, we approximate 1−
√

2 ≈ −0.4 and 1 +
√

2 ≈ 2.4. We choose
x = −1, x = 0, and x = 3 as our test values and find f(−1) = 2, which is (+); f(0) = −1
which is (−); and f(3) = 2 which is (+) again. Our solution to x2 − 2x − 1 > 0 is where
we have (+), so, in interval notation

(
−∞, 1−

√
2
)
∪
(
1 +
√

2,∞
)
. To check the inequality

x2 > 2x+ 1 graphically, we set g(x) = x2 and h(x) = 2x+ 1. We are looking for the x values
where the graph of g is above the graph of h. As before we present the graphs on the right
and the sign chart on the left.

1−
√

2 1 +
√

2

(+) 0 (−) 0 (+)

−1 0 3
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3. To solve 9x2+4 ≤ 12x, as before, we solve 9x2−12x+4 ≤ 0. Setting f(x) = 9x2−12x+4 = 0,
we find the only one zero of f , x = 2

3 . This one x value divides the number line into two
intervals, from which we choose x = 0 and x = 1 as test values. We find f(0) = 4 > 0 and
f(1) = 1 > 0. Since we are looking for solutions to 9x2 − 12x + 4 ≤ 0, we are looking for
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x values where 9x2 − 12x + 4 < 0 as well as where 9x2 − 12x + 4 = 0. Looking at our sign
diagram, there are no places where 9x2 − 12x + 4 < 0 (there are no (−)), so our solution
is only x = 2

3 (where 9x2 − 12x + 4 = 0). We write this as
{

2
3

}
. Graphically, we solve

9x2 + 4 ≤ 12x by graphing g(x) = 9x2 + 4 and h(x) = 12x. We are looking for the x values
where the graph of g is below the graph of h (for 9x2 + 4 < 12x) and where the two graphs
intersect (9x2 + 4 = 12x). We see the line and the parabola touch at

(
2
3 , 8
)
, but the parabola

is always above the line otherwise.3

2
3

(+) 0 (+)

0 1

x

y

−1 1

1

2

3

4
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6

7

8

9

10
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12

13

4. To solve our last inequality, 2x− x2 ≥ |x− 1| − 1, we re-write the absolute value using cases.
For x < 1, |x − 1| = −(x − 1) = 1 − x, so we get 2x − x2 ≥ 1 − x − 1, or x2 − 3x ≤ 0.
Finding the zeros of f(x) = x2−3x, we get x = 0 and x = 3. However, we are only concerned
with the portion of the number line where x < 1, so the only zero that we concern ourselves
with is x = 0. This divides the interval x < 1 into two intervals: (−∞, 0) and (0, 1). We
choose x = −1 and x = 1

2 as our test values. We find f(−1) = 4 and f
(

1
2

)
= −5

4 . Solving
x2 − 3x ≤ 0 for x < 1 gives us [0, 1). Next, we turn our attention to the case x ≥ 1. Here,
|x − 1| = x − 1, so our original inequality becomes 2x − x2 ≥ x − 1 − 1, or x2 − x − 2 ≤ 0.
Setting g(x) = x2 − x − 2, we find the zeros of g to be x = −1 and x = 2. Of these, only
x = 2 lies in the region x ≥ 1, so we ignore x = −1. Our test intervals are now [1, 2) and
(2,∞). We choose x = 1 and x = 3 as our test values and find g(1) = −2 and g(3) = 4. To
solve g(x) ≤ 0, we have [1, 2).

0

(+) 0 (−)

−1 1
2

1 2

(−) 0 (+)

31

Combining these into one sign diagram, we get our solution is [0, 2]. Graphically, to check
2x− x2 ≥ |x− 1| − 1, we set h(x) = 2x− x2 and i(x) = |x− 1| − 1 and look for the x values

3In this case, we say the line y = 12x is tangent to y = 9x2 + 4 at
(

2
3
, 8
)
. Finding tangent lines to arbitrary

functions is the stuff of legends, I mean, Calculus.
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where the graph of h is above the the graph of i (the solution of h(x) > i(x)) as well as the
x-coordinates of the intersection points of both graphs (where h(x) = i(x)). The combined
sign chart is given on the left and the graphs are on the right.

0 2

(+) 0 (−) 0 (+)

−1 0 3

x

y

−1 1 2 3

−2

−1

1

It is quite possible to encounter inequalities where the analytical methods developed so far will fail
us. In this case, we resort to using the graphing calculator to approximate the solution, as the next
example illustrates.

Example 2.4.5. Suppose the revenue R, in thousands of dollars, from producing and selling x
hundred LCD TVs is given by R(x) = −5x3 + 35x2 + 155x for x ≥ 0, while the cost, in thousands
of dollars, to produce x hundred LCD TVs is given by C(x) = 200x + 25 for x ≥ 0. How many
TVs, to the nearest TV, should be produced to make a profit?

Solution. Recall that profit = revenue − cost. If we let P denote the profit, in thousands of
dollars, which results from producing and selling x hundred TVs then

P (x) = R(x)− C(x) =
(
−5x3 + 35x2 + 155x

)
− (200x+ 25) = −5x3 + 35x2 − 45x− 25,

where x ≥ 0. If we want to make a profit, then we need to solve P (x) > 0; in other words,
−5x3 + 35x2 − 45x − 25 > 0. We have yet to discuss how to go about finding the zeros of P , let
alone making a sign diagram for such an animal,4 as such we resort to the graphing calculator.
After finding a suitable window, we get

We are looking for the x values for which P (x) > 0, that is, where the graph of P is above the
x-axis. We make use of the ‘Zero’ command and find two x-intercepts.

4The procedure, as we shall see in Chapter 3 is identical to what we have developed here.
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We remember that x denotes the number of TVs in hundreds, so if we are to find our solution
using the calculator, we need our answer to two decimal places. The zero5 2.414 . . . corresponds to
241.4 . . . TVs. Since we can’t make a fractional part of a TV, we round this up to 242 TVs.7 The
other zero seems dead on at 5, which corresponds to 500 TVs. Hence to make a profit, we should
produce (and sell) between 242 and 499 TVs, inclusive.

Our last example in the section demonstrates how inequalities can be used to describe regions in
the plane, as we saw earlier in Section 1.2.

Example 2.4.6. Sketch the following relations.

1. R = {(x, y) : y > |x|}.

2. S = {(x, y) : y ≤ 2− x2}.

3. T = {(x, y) : |x| < y ≤ 2− x2}.

Solution.

1. The relation R consists of all points (x, y) whose y-coordinate is greater than |x|. If we graph
y = |x|, then we want all of the points in the plane above the points on the graph. Dotting
the graph of y = |x| as we have done before to indicate the points on the graph itself are not
in the relation, we get the shaded region below on the left.

2. For a point to be in S, its y-coordinate must be less than or equal to the y-coordinate on the
parabola y = 2− x2. This is the set of all points below or on the parabola y = 2− x2.

x

y

−2 −1 1 2

−1

1

2

The graph of R

x

y

−2 −1 1 2

−1

1

2

The graph of S

5Note the y-coordinates of the points here aren’t registered as 0. They are expressed in Scientific Notation. For
instance, 1E − 11 corresponds to 0.00000000001, which is pretty close in the calculator’s eyes6to 0.

6but not a Mathematician’s
7Notice that P (241) < 0 and P (242) > 0 so we need to round up to 242 in order to make a profit.
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3. Finally, the relation T takes the points whose y-coordinates satisfy both the conditions in
R and S. So we shade the region between y = |x| and y = 2 − x2, keeping those points
on the parabola, but not the points on y = |x|. To get an accurate graph, we need to find
where these two graphs intersect, so we set |x| = 2− x2. Proceeding as before, breaking this
equation into cases, we get x = −1, 1. Graphing yields

x

y

−2 −1 1 2

−1

1

2

The graph of T
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2.4.1 Exercises

1. Solve the inequality. Express your answer in interval form.

(a) |3x− 5| ≤ 4

(b) |7x+ 2| > 10

(c) 1 < |2x− 9| ≤ 3

(d) | − 2x+ 1| ≥ x+ 5

(e) |x+ 3| ≥ |6x+ 9|
(f) x2 + 2x− 3 ≥ 0

(g) 16x2 + 8x+ 1 > 0

(h) x2 + 9 < 6x

(i) 9x2 + 16 ≥ 24x

(j) x2 + 4 ≤ 4x

(k) x2 + 1 < 0

(l) 3x2 ≤ 11x+ 4

(m) x > x2

(n) 2x2 − 4x− 1 > 0

(o) 5x+ 4 ≤ 3x2

(p) 2 ≤ |x2 − 9| < 9

(q) x2 ≤ |4x− 3|
(r) x2 + x+ 1 ≥ 0

2. Prove the second, third and fourth parts of Theorem 2.3.

3. If a slingshot is used to shoot a marble straight up into the air from 2 meters above the
ground with an initial velocity of 30 meters per second, for what values of time t will the
marble be over 35 meters above the ground? (Refer to Exercise 5 in Section 2.3 for assistance
if needed.) Round your answers to two decimal places.

4. What temperature values in degrees Celsius are equivalent to the temperature range 50◦F to
95◦F? (Refer to Exercise 3 in Section 2.1 for assistance if needed.)

5. The surface area S of a cube with edge length x is given by S(x) = 6x2 for x > 0. Suppose the
cubes your company manufactures are supposed to have a surface area of exactly 42 square
centimeters, but the machines you own are old and cannot always make a cube with the
precise surface area desired. Write an inequality using absolute value that says the surface
area of a given cube is no more than 3 square centimeters away (high or low) from the target
of 42 square centimeters. Solve the inequality and express your answer in interval form.

6. Sketch the following relations.

(a) R = {(x, y) : y ≤ x− 1}
(b) R =

{
(x, y) : y > x2 + 1

}
(c) R = {(x, y) : −1 < y ≤ 2x+ 1}

(d) R =
{

(x, y) : x2 ≤ y < x+ 2
}

(e) R = {(x, y) : |x| − 4 < y < 2− x}
(f) R =

{
(x, y) : x2 < y ≤ |4x− 3|

}
7. Suppose f is a function, L is a real number and ε is a positive number. Discuss with your

classmates what the inequality |f(x)− L| < ε means algebraically and graphically.8

8Understanding this type of inequality is really important in Calculus.
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2.4.2 Answers

1. (a)
[

1
3 , 3
]

(b)
(
−∞,−12

7

)
∪
(

8
7 ,∞

)
(c) [3, 4) ∪ (5, 6]

(d)
(
−∞,−4

3

]
∪ [6,∞)

(e)
[
−12

7 ,−
6
5

]
(f) (−∞,−3] ∪ [1,∞)

(g)
(
−∞,−1

4

)
∪
(
−1

4 ,∞
)

(h) No solution

(i) (−∞,∞)

(j) {2}

(k) No solution

(l)
[
−1

3 , 4
]

(m) (0, 1)

(n)
(
−∞, 1−

√
6

2

)
∪
(

1 +
√

6
2 ,∞

)
(o)

(
−∞, 5−

√
73

6

]
∪
[

5+
√

73
6 ,∞

)
(p)

(
−3
√

2,−
√

11
]
∪
[
−
√

7, 0
)
∪
(

0,
√

7
]
∪
[√

11, 3
√

2
)

(q)
[
−2−

√
7,−2 +

√
7
]
∪ [1, 3]

(r) (−∞,∞)

3. 1.44 < t < 4.68

4. From our previous work C(F ) = 5
9(F − 32) so 50 ≤ F ≤ 95 becomes 10 ≤ C ≤ 35.

5. The surface area could go as low as 39cm2 or as high as 45cm2 so we have 39 ≤ S(x) ≤ 45.
Using absolute value and the fact that S(x) = 6x2 we get |6x2−42| ≤ 3. Solving this inequality

yields

[√
13

2
,

√
15

2

]
.

6. (a)

x

y

−2 −1 1 2 3

−3

−2

−1

1

2

3

(b)

x

y

−2 −1 1 2

1

2

3

4
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(c)

x

y

−2 −1 1 2

1

2

3

4

5

(d)

x

y

−1 1 2

1

2

3

4

(e)

x

y

−2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

(f)

−4 −3 −2 −1 1 2 3

5

10

15

20



170 Linear and Quadratic Functions

2.5 Regression

In this section, we use some basic tools from statistical analysis to quantify linear and quadratic
trends that we may see in data. Our goal is to give the reader an understanding of the basic processes
involved, but we are quick to refer the reader to a more advanced course1 for a complete exposition
of this material. Suppose we collected three data points, {(1, 2), (3, 1), (4, 3)}. By plotting these
points, we can clearly see they do not lie along the same line. If we pick any two of the points,
we can find a line containing both which completely misses the third, but our aim is to find a line
which is in some sense ‘close’ to all the points, even though it may go through none of them. The
way we measure ‘closeness’ in this case is to find the total squared error between the data points
and the line. Consider our three data points and the line y = 1

2x+ 1
2 . For each of our data points,

we find the vertical distance between each data point and the line. To accomplish this, we need to
find a point on the line directly above or below each data point - in other words, point on the line
with the same x-coordinate as our data point. For example, to find the point on the line directly
below (1, 2), we plug x = 1 into y = 1

2x+ 1
2 and we get the point (1, 1). Similarly, we get (3, 1) to

correspond to (3, 2) and
(
4, 5

2

)
for (4, 3).

1 2 3 4

1

2

3

4

We find the total squared error E by taking the sum of the squares of the differences of the y-
coordinates of each data point and its corresponding point on the line. For the data and line above
E = (2− 1)2 + (1− 2)2 +

(
3− 5

2

)2
= 9

4 . Using advanced mathematical machinery,2 it is possible to
find the line which results in the lowest value of E. This line is called the least squares regression
line, or sometimes the ‘line of best fit’. The formula for the line of best fit requires notation we
won’t present until Chapter 9.1, so we will revisit it then. The graphing calculator can come to our
assistance here, since it has a built in feature to compute the regression line. We enter the data
and perform the Linear Regression feature and we get

1and authors with more expertise in this area,
2Like Calculus and Linear Algebra
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The calculator tells us that the line of best fit is y = ax + b where the slope is a ≈ 0.214 and the
y-coordinate of the y-intercept is b ≈ 1.428. (We will stick to using three decimal places for our
approximations.) Using this line, we compute the total squared error for our data to be E ≈ 1.786.
The value r is the correlation coefficient and is a measure of how close the data is to being on
the same line. The closer |r| is to 1, the better the linear fit. Since r ≈ 0.327, this tells us that the
line of best fit doesn’t fit all that well - in other words, our data points aren’t close to being linear.
The value r2 is called the coefficient of determination and is also a measure of the goodness of
fit.3 Plotting the data with its regression line results in the picture below.

Our first example looks at energy consumption in the US over the past 50 years.4

Year Energy Usage,
in Quads5

1950 34.6

1960 45.1

1970 67.8

1980 78.3

1990 84.6

2000 98.9

Example 2.5.1. Using the energy consumption data given above,

1. Plot the data using a graphing calculator.

3We refer the interested reader to a course in Statistics to explore the significance of r and r2.
4See this Department of Energy activity
5The unit 1 Quad is 1 Quadrillion = 1015 BTUs, which is enough heat to raise Lake Erie roughly 1◦F

http://www.eia.doe.gov/kids/classactivities/EnergyAnalysisEIA.pdf
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2. Find the least squares regression line and comment on the goodness of fit.

3. Interpret the slope of the line of best fit.

4. Use the regression line to predict the annual US energy consumption in the year 2010.

5. Use the regression line to predict when the annual consumption will reach 120 Quads.

Solution.

1. Entering the data into the calculator gives

The data certainly appears to be linear in nature.

2. Performing a linear regression produces

We can tell both from the correlation coefficient as well as the graph that the regression line
is a good fit to the data.

3. The slope of the regression line is a ≈ 1.287. To interpret this, recall that the slope is the
rate of change of the y-coordinates with respect to the x-coordinates. Since the y-coordinates
represent the energy usage in Quads, and the x-coordinates represent years, a slope of positive
1.287 indicates an increase in annual energy usage at the rate of 1.287 Quads per year.

4. To predict the energy needs in 2010, we substitute x = 2010 into the equation of the line of
best fit to get y = 1.287(2010) − 2473.890 ≈ 112.980. The predicted annual energy usage of
the US in 2010 is approximately 112.980 Quads.
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5. To predict when the annual US energy usage will reach 120 Quads, we substitute y = 120
into the equation of the line of best fit to get 120 = 1.287x − 2473.908. Solving for x yields
x ≈ 2015.454. Since the regression line is increasing, we interpret this result as saying the
annual usage in 2015 won’t yet be 120 Quads, but that in 2016, the demand will be more
than 120 Quads.

Our next example gives us an opportunity to find a nonlinear model to fit the data. According to
the National Weather Service, the predicted hourly temperatures for Painesville on March 3, 2009
were given as summarized below.

Time Temperature, ◦F

10AM 17

11AM 19

12PM 21

1PM 23

2PM 24

3PM 24

4PM 23

To enter this data into the calculator, we need to adjust the x values, since just entering the
numbers could cause confusion. (Do you see why?) We have a few options available to us. Perhaps
the easiest is to convert the times into the 24 hour clock time so that 1 PM is 13, 2 PM is 14, etc..
If we enter these data into the graphing calculator and plot the points we get

While the beginning of the data looks linear, the temperature begins to fall in the afternoon hours.
This sort of behavior reminds us of parabolas, and, sure enough, it is possible to find a parabola of
best fit in the same way we found a line of best fit. The process is called quadratic regression
and its goal is to minimize the least square error of the data with their corresponding points on
the parabola. The calculator has a built in feature for this as well, and we get



174 Linear and Quadratic Functions

The coefficient of determination r2 seems reasonably close to 1, and the graph visually seems to be
a decent fit. We use this in our next example.

Example 2.5.2. Using the quadratic model for the temperature data above, predict the warmest
temperature of the day. When will this occur?

Solution. The maximum temperature will occur at the vertex of the parabola. Recalling the
Vertex Formula, Equation 2.4, x = − b

2a ≈ −
9.464

2(−0.321) ≈ 14.741. This corresponds to roughly 2 : 45

PM. To find the temperature, we substitute x = 14.741 into y = −0.321x2 + 9.464x− 45.857 to get
y ≈ 23.899, or 23.899◦F.

The results of the last example should remind you that regression models are just that, models. Our
predicted warmest temperature was found to be 23.899◦F, but our data says it will warm to 24◦F.
It’s all well and good to observe trends and guess at a model, but a more thorough investigation
into why certain data should be linear or quadratic in nature is usually in order - and that, most
often, is the business of scientists.
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2.5.1 Exercises

1. Using the energy production data given below

Year 1950 1960 1970 1980 1990 2000

Production
(in Quads) 35.6 42.8 63.5 67.2 70.7 71.2

(a) Plot the data using a graphing calculator and explain why it does not appear to be
linear.

(b) Discuss with your classmates why ignoring the first two data points may be justified
from a historical perspective.

(c) Find the least squares regression line for the last four data points and comment on the
goodness of fit. Interpret the slope of the line of best fit.

(d) Use the regression line to predict the annual US energy production in the year 2010.

(e) Use the regression line to predict when the annual US energy production will reach 100
Quads.

2. The chart below contains a portion of the fuel consumption information for a 2002 Toyota
Echo I (Jeff) used to own. The first row is the cumulative number of gallons of gasoline that
I had used and the second row is the odometer reading when I refilled the gas tank. So, for
example, the fourth entry is the point (28.25, 1051) which says that I had used a total of
28.25 gallons of gasoline when the odometer read 1051 miles.

Gasoline Used
(Gallons) 0 9.26 19.03 28.25 36.45 44.64 53.57 62.62 71.93 81.69 90.43
Odometer
(Miles) 41 356 731 1051 1347 1631 1966 2310 2670 3030 3371

Find the least squares line for this data. Is it a good fit? What does the slope of the line
represent? Do you and your classmates believe this model would have held for ten years had
I not crashed the car on the Turnpike a few years ago? (I’m keeping a fuel log for my 2006
Scion xA for future College Algebra books so I hope not to crash it, too.)

3. On New Year’s Day, I (Jeff, again) started weighing myself every morning in order to have an
interesting data set for this section of the book. (Discuss with your classmates if that makes
me a nerd or a geek. Also, the professionals in the field of weight management strongly
discourage weighing yourself every day. When you focus on the number and not your overall
health, you tend to lose sight of your objectives. I was making a noble sacrifice for science,
but you should not try this at home.) The whole chart would be too big to put into the book
neatly, so I’ve decided to give only a small portion of the data to you. This then becomes a
Civics lesson in honesty, as you shall soon see. There are two charts given below. One has my
weight for the first eight Thursdays of the year (January 1, 2009 was a Thursday and we’ll
count it as Day 1.) and the other has my weight for the first 10 Saturdays of the year.
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Day #
(Thursday) 1 8 15 22 29 36 43 50
My weight
in pounds 238.2 237.0 235.6 234.4 233.0 233.8 232.8 232.0

Day #
(Saturday) 3 10 17 24 31 38 45 52 59 66
My weight
in pounds 238.4 235.8 235.0 234.2 236.2 236.2 235.2 233.2 236.8 238.2

(a) Find the least squares line for the Thursday data and comment on its goodness of fit.

(b) Find the least squares line for the Saturday data and comment on its goodness of fit.

(c) Use Quadratic Regression to find a parabola which models the Saturday data and com-
ment on its goodness of fit.

(d) Compare and contrast the predictions the three models make for my weight on January
1, 2010 (Day #366). Can any of these models be used to make a prediction of my weight
20 years from now? Explain your answer.

(e) Why is this a Civics lesson in honesty? Well, compare the two linear models you obtained
above. One was a good fit and the other was not, yet both came from careful selections
of real data. In presenting the tables to you, I have not lied about my weight, nor
have you used any bad math to falsify the predictions. The word we’re looking for
here is ‘disingenuous’. Look it up and then discuss the implications this type of data
manipulation could have in a larger, more complex, politically motivated setting. (Even
Obi-Wan presented the truth to Luke only “from a certain point of view.”)

4. (Data that is neither linear nor quadratic.) We’ll close this exercise set with two data sets that,
for reasons presented later in the book, cannot be modeled correctly by lines or parabolas. It
is a good exercise, though, to see what happens when you attempt to use a linear or quadratic
model when it’s not appropriate.

(a) This first data set came from a Summer 2003 publication of the Portage County Animal
Protective League called “Tattle Tails”. They make the following statement and then
have a chart of data that supports it. “It doesn’t take long for two cats to turn into 80
million. If two cats and their surviving offspring reproduced for ten years, you’d end up
with 80,399,780 cats.” We assume N(0) = 2.

Year x 1 2 3 4 5 6 7 8 9 10
Number of
Cats N(x) 12 66 382 2201 12680 73041 420715 2423316 13968290 80399780

Use Quadratic Regression to find a parabola which models this data and comment on its
goodness of fit. (Spoiler Alert: Does anyone know what type of function we need here?)
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(b) This next data set comes from the U.S. Naval Observatory. That site has loads of
awesome stuff on it, but for this exercise I used the sunrise/sunset times in Fairbanks,
Alaska for 2009 to give you a chart of the number of hours of daylight they get on the
21st of each month. We’ll let x = 1 represent January 21, 2009, x = 2 represent February
21, 2009, and so on.

Month
Number 1 2 3 4 5 6 7 8 9 10 11 12
Hours of
Daylight 5.8 9.3 12.4 15.9 19.4 21.8 19.4 15.6 12.4 9.1 5.6 3.3

Use Quadratic Regression to find a parabola which models this data and comment on its
goodness of fit. (Spoiler Alert: Does anyone know what type of function we need here?)

http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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2.5.2 Answers

1. (c) y = 0.266x−459.86 with r = 0.9607 which indicates a good fit. The slope 0.266 indicates
the country’s energy production is increasing at a rate of 0.266 Quad per year.

(d) According to the model, the production in 2010 will be 74.8 Quad.

(e) According to the model, the production will reach 100 Quad in the year 2105.

2. The line is y = 36.8x + 16.39. We have r = .99987 and r2 = .9997 so this is an excellent fit
to the data. The slope 36.8 represents miles per gallon.

3. (a) The line for the Thursday data is y = −.12x + 237.69. We have r = −.9568 and
r2 = .9155 so this is a really good fit.

(b) The line for the Saturday data is y = −0.000693x+235.94. We have r = −0.008986 and
r2 = 0.0000807 which is horrible. This data is not even close to linear.

(c) The parabola for the Saturday data is y = 0.003x2−0.21x+238.30. We have R2 = .47497
which isn’t good. Thus the data isn’t modeled well by a quadratic function, either.

(d) The Thursday linear model had my weight on January 1, 2010 at 193.77 pounds. The
Saturday models give 235.69 and 563.31 pounds, respectively. The Thursday line has
my weight going below 0 pounds in about five and a half years, so that’s no good. The
quadratic has a positive leading coefficient which would mean unbounded weight gain
for the rest of my life. The Saturday line, which mathematically does not fit the data at
all, yields a plausible weight prediction in the end. I think this is why grown-ups talk
about “Lies, Damned Lies and Statistics.”

4. (a) The quadratic model for the cats in Portage county is y = 1917803.54x2−16036408.29x+
24094857.7. Although R2 = .70888 this is not a good model because it’s so far off for
small values of x. Case in point, the model gives us 24,094,858 cats when x = 0 but we
know N(0) = 2.

(b) The quadratic model for the hours of daylight in Fairbanks, Alaska is y = .51x2 +6.23x−
.36. Even with R2 = .92295 we should be wary of making predictions beyond the data.
Case in point, the model gives −4.84 hours of daylight when x = 13. So January 21,
2010 will be “extra dark”? Obviously a parabola pointing down isn’t telling us the whole
story.



Chapter 3

Polynomial Functions

3.1 Graphs of Polynomials

Three of the families of functions studied thus far: constant, linear and quadratic, belong to a much
larger group of functions called polynomials. We begin our formal study of general polynomials
with a definition and some examples.

Definition 3.1. A polynomial function is a function of the form:

f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0,

where a0, a1. . . . an are real numbers and n ≥ 1 is a natural number.a The domain of a polynomial
function is (−∞,∞).

aRecall this means n is a ‘counting number’ n = 1, 2, 3, . . .

There are several things about Definition 3.1 that may be off-putting or downright frightening. The
best thing to do is look at an example. Consider f(x) = 4x5 − 3x2 + 2x− 5. Is this a polynomial
function? We can re-write the formula for f as f(x) = 4x5 + 0x4 + 0x3 + (−3)x2 + 2x + (−5).
Comparing this with Definition 3.1, we identify n = 5, a5 = 4, a4 = 0, a3 = 0, a2 = −3, a1 = 2,
and a0 = −5. In other words, a5 is the coefficient of x5, a4 is the coefficient of x4, and so forth; the
subscript on the a’s merely indicates to which power of x the coefficient belongs. The business of
restricting n to be a natural number lets us focus on well-behaved algebraic animals.1

Example 3.1.1. Determine if the following functions are polynomials. Explain your reasoning.

1. g(x) =
4 + x3

x
2. p(x) =

4x+ x3

x
3. q(x) =

4x+ x3

x2 + 4

1Enjoy this while it lasts. Before we’re through with the book, you’ll have been exposed to the most terrible of
algebraic beasts. We will tame them all, in time.
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4. f(x) = 3
√
x 5. h(x) = |x| 6. z(x) = 0

Solution.

1. We note directly that the domain of g(x) = x3+4
x is x 6= 0. By definition, a polynomial has

all real numbers as its domain. Hence, g can’t be a polynomial.

2. Even though p(x) = x3+4x
x simplifies to p(x) = x2 + 4, which certainly looks like the form

given in Definition 3.1, the domain of p, which, as you may recall, we determine before we
simplify, excludes 0. Alas, p is not a polynomial function for the same reason g isn’t.

3. After what happened with p in the previous part, you may be a little shy about simplifying
q(x) = x3+4x

x2+4
to q(x) = x, which certainly fits Definition 3.1. If we look at the domain of

q before we simplified, we see that it is, indeed, all real numbers. A function which can be
written in the form of Definition 3.1 whose domain is all real numbers is, in fact, a polynomial.

4. We can rewrite f(x) = 3
√
x as f(x) = x

1
3 . Since 1

3 is not a natural number, f is not a
polynomial.

5. The function h(x) = |x| isn’t a polynomial, since it can’t be written as a combination of
powers of x (even though it can be written as a piecewise function involving polynomials.)
As we shall see in this section, graphs of polynomials possess a quality2 that the graph of h
does not.

6. There’s nothing in Definition 3.1 which prevents all the coefficients an, etc., from being 0.
Hence, z(x) = 0, is an honest-to-goodness polynomial.

Definition 3.2. Suppose f is a polynomial function.

• Given f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0 with an 6= 0, we say

– The natural number n is called the degree of the polynomial f .

– The term anx
n is called the leading term of the polynomial f .

– The real number an is called the leading coefficient of the polynomial f .

– The real number a0 is called the constant term of the polynomial f .

• If f(x) = a0, and a0 6= 0, we say f has degree 0.

• If f(x) = 0, we say f has no degree.a

aSome authors say f(x) = 0 has degree −∞ for reasons not even we will go into.

2One which really relies on Calculus to verify.



3.1 Graphs of Polynomials 181

The reader may well wonder why we have chosen to separate off constant functions from the other
polynomials in Definition 3.2. Why not just lump them all together and, instead of forcing n to
be a natural number, n = 1, 2, . . ., let n be a whole number, n = 0, 1, 2, . . .. We could unify all the
cases, since, after all, isn’t a0x

0 = a0? The answer is ‘yes, as long as x 6= 0.’ The function f(x) = 3
and g(x) = 3x0 are different, because their domains are different. The number f(0) = 3 is defined,
whereas g(0) = 3(0)0 is not.3 Indeed, much of the theory we will develop in this chapter doesn’t
include the constant functions, so we might as well treat them as outsiders from the start. One
good thing that comes from Definition 3.2 is that we can now think of linear functions as degree
1 (or ‘first degree’) polynomial functions and quadratic functions as degree 2 (or ‘second degree’)
polynomial functions.

Example 3.1.2. Find the degree, leading term, leading coefficient and constant term of the following
polynomial functions.

1. f(x) = 4x5 − 3x2 + 2x− 5

2. g(x) = 12x+ x3

3. h(x) =
4− x

5

4. p(x) = (2x− 1)3(x− 2)(3x+ 2)

Solution.

1. There are no surprises with f(x) = 4x5− 3x2 + 2x− 5. It is written in the form of Definition
3.2, and we see the degree is 5, the leading term is 4x5, the leading coefficient is 4 and the
constant term is −5.

2. The form given in Definition 3.2 has the highest power of x first. To that end, we re-write
g(x) = 12x+ x3 = x3 + 12x, and see the degree of g is 3, the leading term is x3, the leading
coefficient is 1 and the constant term is 0.

3. We need to rewrite the formula for h so that it resembles the form given in Definition 3.2:
h(x) = 4−x

5 = 4
5 −

x
5 = −1

5x + 4
5 . We see the degree of h is 1, the leading term is −1

5x, the
leading coefficient is −1

5 and the constant term is 4
5 .

4. It may seem that we have some work ahead of us to get p in the form of Definition 3.2.
However, it is possible to glean the information requested about p without multiplying out
the entire expression (2x− 1)3(x− 2)(3x+ 2). The leading term of p will be the term which
has the highest power of x. The way to get this term is to multiply the terms with the highest
power of x from each factor together - in other words, the leading term of p(x) is the product of
the leading terms of the factors of p(x). Hence, the leading term of p is (2x)3(x)(3x) = 24x5.
This means the degree of p is 5 and the leading coefficient is 24. As for the constant term,
we can perform a similar trick. The constant term is obtained by multiplying the constant
terms from each of the factors (−1)3(−2)(2) = 4.

3Technically, 00 is an indeterminant form, which is a special case of being undefined. The authors realize this is
beyond pedantry, but we wouldn’t mention it if we didn’t feel it was neccessary.
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Our next example shows how polynomials of higher degree arise ‘naturally’4 in even the most basic
geometric applications.

Example 3.1.3. A box with no top is to be fashioned from a 10 inch × 12 inch piece of cardboard
by cutting out congruent squares from each corner of the cardboard and then folding the resulting
tabs. Let x denote the length of the side of the square which is removed from each corner.

x

x

x

x

x

x

x

x

10 in

12 in

width

height
depth

1. Find the volume V of the box as a function of x. Include an appropriate applied domain.

2. Use a graphing calculator to graph y = V (x) on the domain you found in part 1 and approx-
imate the dimensions of the box with maximum volume to two decimal places. What is the
maximum volume?

Solution.

1. From Geometry, we know Volume = width× height× depth. The key is to now find each of
these quantities in terms of x. From the figure, we see the height of the box is x itself. The
cardboard piece is initially 10 inches wide. Removing squares with a side length of x inches
from each corner leaves 10 − 2x inches for the width.5 As for the depth, the cardboard is
initially 12 inches long, so after cutting out x inches from each side, we would have 12 − 2x
inches remaining. As a function6 of x, the volume is

V (x) = x(10− 2x)(12− 2x) = 4x3 − 44x2 + 120x

To find a suitable applied domain, we note that to make a box at all we need x > 0. Also the
shorter of the two dimensions of the cardboard is 10 inches, and since we are removing 2x
inches from this dimension, we also require 10− 2x > 0 or x < 5. Hence, our applied domain
is 0 < x < 5.

2. Using a graphing calculator, we see the graph of y = V (x) has a relative maximum. For
0 < x < 5, this is also the absolute maximum. Using the ‘Maximum’ feature of the calculator,
we get x ≈ 1.81, y ≈ 96.77. The height, x ≈ 1.81 inches, the width, 10 − 2x ≈ 6.38 inches,
and the depth 12 − 2x ≈ 8.38 inches. The y-coordinate is the maximum volume, which is
approximately 96.77 cubic inches (also written in3).

4this is a dangerous word...
5There’s no harm in taking an extra step here and making sure this makes sense. If we chopped out a 1 inch

square from each side, then the width would be 8 inches, so chopping out x inches would leave 10− 2x inches.
6When we write V (x), it is in the context of function notation, not the volume V times the quantity x.
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In order to solve Example 3.1.3, we made good use of the graph of the polynomial y = V (x). So we
ought to turn our attention to graphs of polynomials in general. Below are the graphs of y = x2,
y = x4, and y = x6, side-by-side. We have omitted the axes so we can see that as the exponent
increases, the ‘bottom’ becomes ‘flatter’ and the ‘sides’ become ‘steeper.’ If you take the the time
to graph these functions by hand,7 you will see why.

y = x2 y = x4 y = x6

All of these functions are even, (Do you remember how to show this?) and it is exactly because
the exponent is even.8 One of the most important features of these functions which we can be
seen graphically is their end behavior. The end behavior of a function is a way to describe what
is happening to the function values as the x values approach the ‘ends’ of the x-axis:9 that is,
as they become small without bound10 (written x → −∞) and, on the flip side, as they become
large without bound11 (written x → ∞). For example, given f(x) = x2, as x → −∞, we imagine
substituting x = −100, x = −1000, etc., into f to get f(−100) = 10000, f(−1000) = 1000000, and
so on. Thus the function values are becoming larger and larger positive numbers (without bound).
To describe this behavior, we write: as x → −∞, f(x) → ∞. If we study the behavior of f as
x → ∞, we see that in this case, too, f(x) → ∞. The same can be said for any function of the
form f(x) = xn where n is an even natural number. If we generalize just a bit to include vertical
scalings and reflections across the x-axis,12 we have

7Make sure you choose some x-values between −1 and 1.
8Herein lies one of the possible origins of the term ‘even’ when applied to functions.
9Of course, there are no ends to the x-axis.

10We think of x as becoming a very large negative number far to the left of zero.
11We think of x as moving far to the right of zero and becoming a very large positive number.
12See Theorems 1.4 and 1.5 in Section 1.8.
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End Behavior of functions f(x) = axn, n even.

Suppose f(x) = axn where a 6= 0 is a real number and n is an even natural number. The end
behavior of the graph of y = f(x) matches one of the following:

a > 0 a < 0

We now turn our attention to functions of the form f(x) = xn where n ≥ 3 is an odd natural
number.13 Below we have graphed y = x3, y = x5, and y = x7. The ‘flattening’ and ‘steepening’
that we saw with the even powers presents itself here as well, and, it should come as no surprise
that all of these functions are odd.14 The end behavior of these functions is all the same, with
f(x)→ −∞ as x→ −∞ and f(x)→∞ as x→∞.

y = x3
y = x5 y = x7

As with the even degreed functions we studied earlier, we can generalize their end behavior.

End Behavior of functions f(x) = axn, n odd.

Suppose f(x) = axn where a 6= 0 is a real number and n ≥ 3 is an odd natural number. The end
behavior of the graph of y = f(x) matches one of the following:

a > 0 a < 0

Despite having different end behavior, all functions of the form f(x) = axn for natural numbers n
share two properties which help distinguish them from other animals in the algebra zoo: they are
continuous and smooth. While these concepts are formally defined using Calculus,15 informally,
graphs of continuous functions have no ‘breaks’ or ‘holes’ in their graphs, and smooth functions have
no ‘sharp turns.’ It turns out that these traits are preserved when functions are added together, so
general polynomial functions inherit these qualities. Below we find the graph of a function which is

13We ignore the case when n = 1, since the graph of f(x) = x is a line and doesn’t fit the general pattern of
higher-degree odd polynomials.

14And are, perhaps, the inspiration for the moniker ‘odd function’.
15In fact, if you take Calculus, you’ll find that smooth functions are automatically continuous, so that saying

‘polynomials are continuous and smooth’ is redundant.
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neither smooth nor continuous, and to its right we have a graph of a polynomial, for comparison.
The function whose graph appears on the left fails to be continuous where it has a ‘break’ or ‘hole’
in the graph; everywhere else, the function is continuous. The function is continuous at the ‘corner’
and the ‘cusp’, but we consider these ‘sharp turns’, so these are places where the function fails
to be smooth. Apart from these four places, the function is smooth and continuous. Polynomial
functions are smooth and continuous everywhere, as exhibited in graph on the right.

‘corner’

‘break’

‘cusp’

‘hole’

Pathologies not found on graphs of polynomials

The graph of a polynomial

The notion of smoothness is what tells us graphically that, for example, f(x) = |x|, whose graph
is the characteric ‘∨’ shape, cannot be a polynomial. The notion of continuity is what allowed us
to construct the sign diagram for quadratic inequalities as we did in Section 2.4. This last result is
formalized in the following theorem.

Theorem 3.1. The Intermediate Value Theorem (Polynomial Zero Version): If f is a
polynomial where f(a) and f(b) have different signs, then f has at least one zero between x = a
and x = b; that is, for at least one real number c such that a < c < b, we have f(c) = 0.

The Intermediate Value Theorem is extremely profound; it gets to the heart of what it means to
be a real number, and is one of the most oft used and under appreciated theorems in Mathematics.
With that being said, most students see the result as common sense, since it says, geometrically,
that the graph of a polynomial function cannot be above the x-axis at one point and below the
x-axis at another point without crossing the x-axis somewhere in between. The following example
uses the Intermediate Value Theorem to establish a fact that that most students take for granted.
Many students, and sadly some instructors, will find it silly.

Example 3.1.4. Use the Intermediate Value Theorem to establish that
√

2 is a real number.

Solution. Consider the polynomial function f(x) = x2 − 2. Then f(1) = −1 and f(3) = 7. Since
f(1) and f(3) have different signs, the Intermediate Value Theorem guarantees us a real number
c between 1 and 3 with f(c) = 0. If c2 − 2 = 0 then c = ±

√
2. Since c is between 1 and 3, c is

positive, so c =
√

2.

Our primary use of the Intermediate Value Theorem is in the construction of sign diagrams, as in
Section 2.4, since it guarantees us that polynomial functions are always positive (+) or always neg-
ative (−) on intervals which do not contain any of its zeros. The general algorithm for polynomials
is given below.
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Steps for Constructing a Sign Diagram for a Polynomial Function

Suppose f is a polynomial function.

1. Find the zeros of f and place them on the number line with the number 0 above them.

2. Choose a real number, called a test value, in each of the intervals determined in step 1.

3. Determine the sign of f(x) for each test value in step 2, and write that sign above the
corresponding interval.

Example 3.1.5. Construct a sign diagram for f(x) = x3(x− 3)2(x+ 2)
(
x2 + 1

)
. Use it to give a

rough sketch of the graph of y = f(x).

Solution. First, we find the zeros of f by solving x3(x− 3)2(x+ 2)
(
x2 + 1

)
= 0. We get x = 0,

x = 3, and x = −2. (The equation x2 + 1 = 0 produces no real solutions.) These three points
divide the real number line into four intervals: (−∞,−2), (−2, 0), (0, 3) and (3,∞). We select the
test values x = −3, x = −1, x = 1, and x = 4. We find f(−3) is (+), f(−1) is (−) and f(1) is (+)
as is f(4). Wherever f is (+), its graph is above the x-axis; wherever f is (−), its graph is below
the x-axis. The x-intercepts of the graph of f are (−2, 0), (0, 0) and (3, 0). Knowing f is smooth
and continuous allows us to sketch its graph.

−2 0 3

(+)

−3

0 (−)

−1

0 (+)

1

0 (+)

4

x

y

A sketch of y = f(x)

A couple of notes about the Example 3.1.5 are in order. First, note that we purposefully did not
label the y-axis in the sketch of the graph of y = f(x). This is because the sign diagram gives us the
zeros and the relative position of the graph - it doesn’t give us any information as to how high or low
the graph strays from the x-axis. Furthermore, as we have mentioned earlier in the text, without
Calculus, the values of the relative maximum and minimum can only be found approximately using
a calculator. If we took the time to find the leading term of f , we would find it to be x8. Looking
at the end behavior of f , we notice it matches the end behavior of y = x8. This is no accident, as
we find out in the next theorem.

Theorem 3.2. End Behavior for Polynomial Functions: The end behavior of a polynomial
f(x) = anx

n+an−1x
n−1 + . . .+a2x

2 +a1x+a0 with an 6= 0 matches the end behavior of y = anx
n.

To see why Theorem 3.2 is true, let’s first look at a specific example. Consider f(x) = 4x3− x+ 5.
If we wish to examine end behavior, we look to see the behavior of f as x → ±∞. Since we’re
concerned with x’s far down the x-axis, we are far away from x = 0 and so can rewrite f(x) for
these values of x as
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f(x) = 4x3

(
1− 1

4x2
+

5

4x3

)
As x becomes unbounded (in either direction), the terms 1

4x2 and 5
4x3 become closer and closer to

0, as the table below indicates.

x 1
4x2

5
4x3

−1000 0.00000025 −0.00000000125

−100 0.000025 −0.00000125

−10 0.0025 −0.00125

10 0.0025 0.00125

100 0.000025 0.00000125

1000 0.00000025 0.00000000125

In other words, as x → ±∞, f(x) ≈ 4x3 (1− 0 + 0) = 4x3, which is the leading term of f . The
formal proof of Theorem 3.2 works in much the same way. Factoring out the leading term leaves

f(x) = anx
n

(
1 +

an−1

anx
+ . . .+

a2

anxn−2
+

a1

anxn−1
+

a0

anxn

)
As x→ ±∞, any term with an x in the denominator becomes closer and closer to 0, and we have
f(x) ≈ anx

n. Geometrically, Theorem 3.2 says that if we graph y = f(x), say, using a graphing
calculator, and continue to ‘zoom out,’ the graph of it and its leading term become indistinguishable.
Below are the graphs of y = 4x3 − x + 5 (the thicker line) and y = 4x3 (the thinner line) in two
different windows.

A view ‘close’ to the origin. A ‘zoomed out’ view.

Let’s return to the function in Example 3.1.5, f(x) = x3(x−3)2(x+2)
(
x2 + 1

)
, whose sign diagram

and graph are reproduced below for reference. Theorem 3.2 tells us that the end behavior is the
same as that of its leading term, x8. This tells us that the graph of y = f(x) starts and ends above
the x-axis. In other words, f(x) is (+) as x→ ±∞, and as a result, we no longer need to evaluate
f at the test values x = −3 and x = 4. Is there a way to eliminate the need to evaluate f at the
other test values? What we would really need to know is how the function behaves near its zeros -
does it cross through the x-axis at these points, as it does at x = −2 and x = 0, or does it simply
touch and rebound like it does at x = 3. From the sign diagram, the graph of f will cross the
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x-axis whenever the signs on either side of the zero switch (like they do at x = −2 and x = 0); it
will touch when the signs are the same on either side of the zero (as is the case with x = 3). What
we need to determine is the reason behind whether or not the sign change occurs.

−2 0 3

(+)

−3

0 (−)

−1

0 (+)

1

0 (+)

4

x

y

A sketch of y = f(x)

Fortunately, f was given to us in factored form: f(x) = x3(x − 3)2(x + 2). When we attempt to
determine the sign of f(−4), we are attempting to find the sign of the number (−4)3(−7)2(−2),
which works out to be (−)(+)(−) which is (+). If we move to the other side of x = −2, and find
the sign of f(−1), we are determining the sign of (−1)3(−4)2(+1), which is (−)(+)(+) which gives
us the (−). Notice that signs of the first two factors in both expressions are the same in f(−4) and
f(−1). The only factor which switches sign is the third factor, (x + 2), precisely the factor which
gave us the zero x = −2. If we move to the other side of 0 and look closely at f(1), we get the sign
pattern (+1)3(−2)2(+3) or (+)(+)(+) and we note that, once again, going from f(−1) to f(1),
the only factor which changed sign was the first factor, x3, which corresponds to the zero x = 0.
Finally, to find f(4), we substitute to get (+4)3(+2)2(+5) which is (+)(+)(+) or (+). The sign
didn’t change for the middle factor (x − 3)2. Even though this is the factor which corresponds to
the zero x = 3, the fact that the quantity is squared kept the sign of the middle factor the same
on either side of 3. If we look back at the exponents on the factors (x + 2) and x3, we note they
are both odd - so as we substitute values to the left and right of the corresponding zeros, the signs
of the corresponding factors change which results in the sign of the function value changing. This
is the key to the behavior of the function near the zeros. We need a definition and then a theorem.

Definition 3.3. Suppose f is a polynomial function and m is a natural number. If (x− c)m is a
factor of f(x) but (x− c)m+1 is not, then we say x = c is a zero of multiplicity m.

Hence, rewriting f(x) = x3(x− 3)2(x+ 2) as f(x) = (x− 0)3(x− 3)2(x− (−2))1, we see that x = 0
is a zero of multiplicity 3, x = 3 is a zero of multiplicity 2, and x = −2 is a zero of multiplicity 1.

Theorem 3.3. The Role of Multiplicity: Suppose f is a polynomial function and x = c is a
zero of multiplicity m.

• If m is even, the graph of y = f(x) touches and rebounds from the x-axis as (c, 0).

• If m is odd, the graph of y = f(x) crosses through the x-axis as (c, 0).
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Our last example shows how end behavior and multiplicity allow us to sketch a decent graph without
appealing to a sign diagram.

Example 3.1.6. Sketch the graph of f(x) = −3(2x − 1)(x + 1)2 using end behavior and the
multiplicity of its zeros.

Solution. The end behavior of the graph of f will match that of its leading term. To find
the leading term, we multiply by the leading terms of each factor to get (−3)(2x)(x)2 = −6x3.
This tells us the graph will start above the x-axis, in Quadrant II, and finish below the x-axis, in
Quadrant IV. Next, we find the zeros of f . Fortunately for us, f is factored.16 Setting each factor
equal to zero gives is x = 1

2 and x = −1 as zeros. To find the multiplicity of x = 1
2 we note that

it corresponds to the factor (2x − 1). This isn’t strictly in the form required in Definition 3.3. If
we factor out the 2, however, we get (2x − 1) = 2

(
x− 1

2

)
, and we see the multiplicity of x = 1

2 is
1. Since 1 is an odd number, we know from Theorem 3.3 that the graph of f will cross through
the x-axis at

(
1
2 , 0
)
. Since the zero x = −1 corresponds to the factor (x + 1)2 = (x − (−1))2, we

see its multiplicity is 2 which is an even number. As such, the graph of f will touch and rebound
from the x-axis at (−1, 0). Though we’re not asked to, we can find the y-intercept by finding
f(0) = −3(2(0) − 1)(0 + 1)2 = 3. Thus (0, 3) is an additional point on the graph. Putting this
together gives us the graph below.

x

y

16Obtaining the factored form of a polynomial is the main focus of the next few sections.
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3.1.1 Exercises

1. For each polynomial given below, find the degree, the leading term, the leading coefficient,
the constant term and the end behavior.

(a) f(x) =
√

3x17 + 22.5x10 − πx7 + 1
3

(b) p(t) = −t2(3− 5t)(t2 + t+ 4)

(c) Z(b) = 42b− b3

(d) s(t) = −4.9t2 + v0t+ s0

(e) P (x) = (x− 1)(x− 2)(x− 3)(x− 4)

(f) q(r) = 1− 16r4

2. For each polynomial given below, find its real zeros and their corresponding multiplicities.
Use this information along with a sign chart to provide a rough sketch of the graph of the
polynomial.

(a) a(x) = x(x+ 2)2

(b) F (x) = x3(x+ 2)2

(c) P (x) = (x− 1)(x− 2)(x− 3)(x− 4)

(d) Z(b) = b(42− b2)

(e) Q(x) = (x+ 5)2(x− 3)4

(f) g(x) = x(x+ 2)3

3. According to US Postal regulations, a rectangular shipping box must satisfy the inequality
“Length + Girth ≤ 130 inches” for Parcel Post and “Length + Girth ≤ 108 inches” for other
services.17 Let’s assume we have a closed rectangular box with a square face of side length
x as drawn below. The length is the longest side and is clearly labeled. The girth is the
distance around the box in the other two dimensions so in our case it is the sum of the four
sides of the square, 4x.

(a) Assuming that we’ll be mailing a box via Parcel Post where Length + Girth = 130
inches, express the length of the box in terms of x and then express the volume, V , of
the box in terms of x.

(b) Find the dimensions of the box of maximum volume that can be shipped via Parcel Post.

(c) Repeat parts 3a and 3b if the box is shipped using “other services”.

length

x

x

17See here for details.

http://www.usps.com/send/preparemailandpackages/measuringtips.htm
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4. Use transformations to sketch the graphs of the following polynomials.

(a) f(x) = (x+ 2)3 + 1

(b) g(x) = (x+ 2)4 + 1

(c) h(x) = −x5 − 3

(d) j(x) = 2− 3(x− 1)4

5. Use the Intermediate Value Theorem to find intervals of length 1 which contain the real zeros
of f(x) = x3 − 9x+ 5.

6. The original function used to model the cost of producing x PortaBoys Game Systems given in
Example 2.1.5 was C(x) = 80x+150. While developing their newest game, Sasquatch Attack!,
the makers of the PortaBoy revised their cost function using a cubic polynomial. The new
cost of producing x PortaBoys is given by C(x) = .03x3 − 4.5x2 + 225x + 250. Market
research indicates that the demand function p(x) = −1.5x + 250 remains unchanged. Find
the production level x that maximizes the profit made by producing and selling x PortaBoys.

7. We now revisit the data set from Exercise 4b in Section 2.5. In that exercise, you were given
a chart of the number of hours of daylight they get on the 21st of each month in Fairbanks,
Alaska based on the 2009 sunrise and sunset data found on the U.S. Naval Observatory web-
site. We let x = 1 represent January 21, 2009, x = 2 represent February 21, 2009, and so on.
The chart is given again for reference.

Month
Number 1 2 3 4 5 6 7 8 9 10 11 12
Hours of
Daylight 5.8 9.3 12.4 15.9 19.4 21.8 19.4 15.6 12.4 9.1 5.6 3.3

Find cubic (third degree) and quartic (fourth degree) polynomials which model this data and
comment on the goodness of fit for each. What can we say about using either model to make
predictions about the year 2020? (Hint: Think about the end behavior of polynomials.) Use
the models to see how many hours of daylight they got on your birthday and then check the
website to see how accurate the models are. Knowing that Sasquatch are largely nocturnal,
what days of the year according to your models are going to allow for at least 14 hours of
darkness for field research on the elusive creatures?

8. An electric circuit is built with a variable resistor installed. For each of the following resis-
tance values (measured in kilo-ohms, kΩ), the corresponding power to the load (measured in
milliwatts, mW ) is given in the table below. 18

Resistance: (kΩ) 1.012 2.199 3.275 4.676 6.805 9.975

Power: (mW ) 1.063 1.496 1.610 1.613 1.505 1.314

(a) Make a scatter diagram of the data using the Resistance as the independent variable
and Power as the dependent variable.

18The authors wish to thank Don Anthan and Ken White of Lakeland Community College for devising this problem
and generating the accompanying data set.

http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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(b) Use your calculator to find quadratic (2nd degree), cubic (3rd degree) and quartic (4th
degree) regression models for the data and judge the reasonableness of each.

(c) For each of the models found above, find the predicted maximum power that can be
delivered to the load. What is the corresponding resistance value?

(d) Discuss with your classmates the limitations of these models - in particular, discuss the
end behavior of each.

9. Show that the end behavior of a linear function f(x) = mx + b is as it should be according
to the results we’ve established in the section for polynomials of odd degree. (That is, show
that the graph of a linear function is “up on one side and down on the other” just like the
graph of y = anx

n for odd numbers n.)

10. There is one subtlety about the role of multiplicity that we need to discuss further; specifically
we need to see ‘how’ the graph crosses the x-axis at a zero of odd multiplicity. In the section,
we deliberately excluded the function f(x) = x from the discussion of the end behavior of
f(x) = xn for odd numbers n and we said at the time that it was due to the fact that f(x) = x
didn’t fit the pattern we were trying to establish. You just showed in the previous exercise
that the end behavior of a linear function behaves like every other polynomial of odd degree,
so what doesn’t f(x) = x do that g(x) = x3 does? It’s the ‘flattening’ for values of x near zero.
It is this local behavior that will distinguish between a zero of multiplicity 1 and one of higher
odd multiplicity. Look again closely at the graphs of a(x) = x(x+ 2)2 and F (x) = x3(x+ 2)2

from Exercise 2. Discuss with your classmates how the graphs are fundamentally different
at the origin. It might help to use a graphing calculator to zoom in on the origin to see
the different crossing behavior. Also compare the behavior of a(x) = x(x + 2)2 to that of
g(x) = x(x + 2)3 near the point (−2, 0). What do you predict will happen at the zeros of
f(x) = (x− 1)(x− 2)2(x− 3)3(x− 4)4(x− 5)5?

11. Here are a few other questions for you to discuss with your classmates.

(a) How many local extrema could a polynomial of degree n have? How few local extrema
can it have?

(b) Could a polynomial have two local maxima but no local minima?

(c) If a polynomial has two local maxima and two local minima, can it be of odd degree?
Can it be of even degree?

(d) Can a polynomial have local extrema without having any real zeros?

(e) Why must every polynomial of odd degree have at least one real zero?

(f) Can a polynomial have two distinct real zeros and no local extrema?

(g) Can an x-intercept yield a local extrema? Can it yield an absolute extrema?

(h) If the y-intercept yields an absolute minimum, what can we say about the degree of the
polynomial and the sign of the leading coefficient?
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3.1.2 Answers

1. (a) f(x) =
√

3x17 + 22.5x10 − πx7 + 1
3

Degree 17
Leading term

√
3x17

Leading coefficient
√

3
Constant term 1

3
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→∞

(b) p(t) = −t2(3− 5t)(t2 + t+ 4)
Degree 5
Leading term 5t5

Leading coefficient 5
Constant term 0
As t→ −∞, p(t)→ −∞
As t→∞, p(t)→∞

(c) Z(b) = 42b− b3
Degree 3
Leading term −b3
Leading coefficient −1
Constant term 0
As b→ −∞, Z(b)→∞
As b→∞, Z(b)→ −∞

(d) s(t) = −4.9t2 + v0t+ s0

Degree 2
Leading term −4.9t2

Leading coefficient −4.9
Constant term s0

As t→ −∞, s(t)→ −∞
As t→∞, s(t)→ −∞

(e) P (x) = (x− 1)(x− 2)(x− 3)(x− 4)
Degree 4
Leading term x4

Leading coefficient 1
Constant term 24
As x→ −∞, P (x)→∞
As x→∞, P (x)→∞

(f) q(r) = 1− 16r4

Degree 4
Leading term −16r4

Leading coefficient −16
Constant term 1
As r → −∞, q(r)→ −∞
As r →∞, q(r)→ −∞

2. (a) a(x) = x(x+ 2)2

x = 0 multiplicity 1
x = −2 multiplicity 2

x

y

−2 −1

(b) F (x) = x3(x+ 2)2

x = 0 multiplicity 3
x = −2 multiplicity 2

x

y

−2 −1
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(c) P (x) = (x− 1)(x− 2)(x− 3)(x− 4)
x = 1 multiplicity 1
x = 2 multiplicity 1
x = 3 multiplicity 1
x = 4 multiplicity 1

x

y

1 2 3 4

(d) Z(b) = b(42− b2)
b = −

√
42 multiplicity 1

b = 0 multiplicity 1
b =
√

42 multiplicity 1

b

Z

−6−5−4−3−2−1 1 2 3 4 5 6

(e) Q(x) = (x+ 5)2(x− 3)4

x = −5 multiplicity 2
x = 3 multiplicity 4

x

y

−5−4−3−2−1 1 2 3 4 5

(f) g(x) = x(x+ 2)3

x = 0 multiplicity 1
x = −2 multiplicity 3

x

y

−2 −1

3. (a) Our ultimate goal is to maximize the volume, so we’ll start with the maximum Length
+ Girth of 130. This means the length is 130− 4x. The volume of a rectangular box is
always length × width × height so we get V (x) = x2(130− 4x) = −4x3 + 130x2.

(b) Graphing y = V (x) on [0, 33]× [0, 21000] shows a maximum at (21.67, 20342.59) so the
dimensions of the box with maximum volume are 21.67in. × 21.67in. × 43.32in. for a
volume of 20342.59in.3.

(c) If we start with Length + Girth = 108 then the length is 108 − 4x and the volume
is V (x) = −4x3 + 108x2. Graphing y = V (x) on [0, 27] × [0, 11700] shows a max-
imum at (18.00, 11664.00) so the dimensions of the box with maximum volume are
18.00in.× 18.00in.× 36in. for a volume of 11664.00in.3. (Calculus will confirm that the
measurements which maximize the volume are exactly 18in. by 18in. by 36in., however,
as I’m sure you are aware by now, we treat all calculator results as approximations and
list them as such.)
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4. (a) f(x) = (x+ 2)3 + 1

x

y

−4 −3 −2 −1

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

10

11

12

(b) g(x) = (x+ 2)4 + 1

x

y

−4 −3 −2 −1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(c) h(x) = −x5 − 3

x

y

−1 1

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

10

(d) j(x) = 2− 3(x− 1)4

x

y

1 2

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

5. We have f(−4) = −23, f(−3) = 5, f(0) = 5, f(1) = −3, f(2) = −5 and f(3) = 5 so the
Intermediate Value Theorem tells us that f(x) = x3 − 9x + 5 has real zeros in the intervals
[−4,−3], [0, 1] and [2, 3].

6. Making and selling 71 PortaBoys yields a maximized profit of $5910.67.

7. The cubic regression model is p3(x) = 0.0226x3 − 0.9508x2 + 8.615x − 3.446. It has R2 =
0.93765 which isn’t bad. The graph of y = p3(x) in the viewing window [−1, 13] × [0, 24]
along with the scatter plot is shown below on the left. Notice that p3 hits the x-axis at about
x = 12.45 making this a bad model for future predictions. To use the model to approximate
the number of hours of sunlight on your birthday, you’ll have to figure out what decimal value
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of x is close enough to your birthday and then plug it into the model. My (Jeff’s) birthday
is July 31 which is 10 days after July 21 (x = 7). Assuming 30 days in a month, I think
x = 7.33 should work for my birthday and p3(7.33) ≈ 17.5. The website says there will be
about 18.25 hours of daylight that day. To have 14 hours of darkness we need 10 hours of
daylight. We see that p3(1.96) ≈ 10 and p3(10.05) ≈ 10 so it seems reasonable to say that
we’ll have at least 14 hours of darkness from December 21, 2008 (x = 0) to February 21, 2009
(x = 2) and then again from October 21,2009 (x = 10) to December 21, 2009 (x = 12).

The quartic regression model is p4(x) = 0.0144x4−0.3507x3 +2.259x2−1.571x+5.513. It has
R2 = 0.98594 which is good. The graph of y = p4(x) in the viewing window [−1, 15]× [0, 35]
along with the scatter plot is shown below on the right. Notice that p4(15) is above 24 making
this a bad model as well for future predictions. However, p4(7.33) ≈ 18.71 making it much
better at predicting the hours of daylight on July 31 (my birthday). This model says we’ll
have at least 14 hours of darkness from December 21, 2008 (x = 0) to about March 1, 2009
(x = 2.30) and then again from October 10, 2009 (x = 9.667) to December 21, 2009 (x = 12).

y = p3(x) y = p4(x)

8. (a) The scatter plot is shown below with each of the three regression models.

(b) The quadratic model is P2(x) = −0.02x2 + 0.241x+ 0.956 with R2 = 0.77708.
The cubic model is P3(x) = 0.005x3 − 0.103x2 + 0.602x+ 0.573 with R2 = 0.98153.
The quartic model is P4(x) = −0.000969x4 + 0.0253x3 − 0.240x2 + 0.944x+ 0.330 with
R2 = 0.99929.

(c) The maximums predicted by the three models are P2(5.737) ≈ 1.648, P3(4.232) ≈ 1.657
and P4(3.784) ≈ 1.630, respectively.

y = P2(x) y = P3(x) y = P4(x)
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3.2 The Factor Theorem and The Remainder Theorem

Suppose we wish to find the zeros of f(x) = x3 + 4x2 − 5x − 14. Setting f(x) = 0 results in the
polynomial equation x3 + 4x2 − 5x − 14 = 0. Despite all of the factoring techniques we learned1

in Intermediate Algebra, this equation foils2 us at every turn. If we graph f using the graphing
calculator, we get

The graph suggests that x = 2 is a zero, and we can verify f(2) = 0. The other two zeros seem to
be less friendly, and, even though we could use the ‘Zero’ command to find decimal approximations
for these, we seek a method to find the remaining zeros exactly. Based on our experience, if x = 2
is a zero, it seems that there should be a factor of (x − 2) lurking around in the factorization of
f(x). In other words, it seems reasonable to expect that x3 + 4x2 − 5x− 14 = (x− 2) q(x), where
q(x) is some other polynomial. How could we find such a q(x), if it even exists? The answer comes
from our old friend, polynomial division. Dividing x3 + 4x2 − 5x− 14 by x− 2 gives

x2 + 6x + 7

x−2 x3 + 4x2 − 5x − 14

−
(
x3−2x2

)
6x2 − 5x

−
(
6x2−12x)

7x − 14

− (7x −14)

0

As you may recall, this means x3 + 4x2 − 5x− 14 = (x− 2)
(
x2 + 6x+ 7

)
, and so to find the zeros

of f , we now can solve (x − 2)
(
x2 + 6x+ 7

)
= 0. We get x − 2 = 0 (which gives us our known

zero, x = 2) as well as x2 + 6x+ 7 = 0. The latter doesn’t factor nicely, so we apply the Quadratic
Formula to get x = −3±

√
2. The point of this section is to generalize the technique applied here.

First up is a friendly reminder of what we can expect when we divide polynomials.

Theorem 3.4. Polynomial Division: Suppose d(x) and p(x) are nonzero polynomials where
the degree of p is greater than or equal to the degree of d. There exist two unique polynomials,
q(x) and r(x), such that p(x) = d(x) q(x) + r(x), where either r(x) = 0 or the degree of r is
strictly less than the degree of d.

1and probably forgot
2pun intended
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As you may recall, all of the polynomials in Theorem 3.4 have special names. The polynomial p
is called the dividend; d is the divisor; q is the quotient; r is the remainder. If r(x) = 0 then
d is called a factor of p. The proof of Theorem 3.4 is usually relegated to a course in Abstract
Algebra,3 but we will use the result to establish two important facts which are the basis of the rest
of the chapter.

Theorem 3.5. The Remainder Theorem: Suppose p is a polynomial of degree at least 1 and
c is a real number. When p(x) is divided by x− c the remainder is p(c).

The proof of Theorem 3.5 is a direct consequence of Theorem 3.4. When a polynomial is divided
by x− c, the remainder is either 0 or has degree less than the degree of x− c. Since x− c is degree
1, this means the degree of the remainder must be 0, which means the remainder is a constant.
Hence, in either case, p(x) = (x − c) q(x) + r, where r, the remainder, is a real number, possibly
0. It follows that p(c) = (c − c) q(c) + r = 0 · q(c) + r = r, and so we get r = p(c), as required.
There is one last ‘low hanging fruit’4 to collect - it is an immediate consequence of The Remainder
Theorem.

Theorem 3.6. The Factor Theorem: Suppose p is a nonzero polynomial. The real number c
is a zero of p if and only if (x− c) is a factor of p(x).

The proof of The Factor Theorem is a consequence of what we already know. If (x− c) is a factor
of p(x), this means p(x) = (x−c) q(x) for some polynomial q. Hence, p(c) = (c−c) q(c) = 0, and so
c is a zero of p. Conversely, if c is a zero of p, then p(c) = 0. In this case, The Remainder Theorem
tells us the remainder when p(x) is divided by (x− c), namely p(c), is 0, which means (x− c) is a
factor of p. What we have established is the fundamental connection between zeros of polynomials
and factors of polynomials.

Of the things The Factor Theorem tells us, the most pragmatic is that we had better find a more
efficient way to divide polynomials by quantities of the form x− c. Fortunately, people like Ruffini
and Horner have already blazed this trail. Let’s take a closer look at the long division we performed
at the beginning of the section and try to streamline it. First off, let’s change all of the subtractions
into additions by distributing through the −1s.

x2 + 6x + 7

x−2 x3 + 4x2 − 5x −14

−x3+ 2x2

6x2 − 5x

−6x2+ 12x

7x −14

−7x+14

0

Next, observe that the terms −x3, −6x2, and −7x are the exact opposite of the terms above them.
The algorithm we use ensures this is always the case, so we can omit them without losing any

3Yes, Virginia, there are algebra courses more abstract than this one.
4Jeff hates this expression and Carl included it just to annoy him.

http://en.wikipedia.org/wiki/Synthetic_division
http://en.wikipedia.org/wiki/Horner_scheme
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information. Also note that the terms we ‘bring down’ (namely the −5x and −14) aren’t really
necessary to recopy, and so we omit them, too.

x2 + 6x + 7

x−2 x3+4x2− 5x −14

2x2

6x2

12x

7x

14

0

Now, let’s move things up a bit and, for reasons which will become clear in a moment, copy the x3

into the last row.

x2 + 6x + 7

x−2 x3+4x2− 5x −14

2x2 12x 14

x3 6x2 7x 0

Note that by arranging things in this manner, each term in the last row is obtained by adding the
two terms above it. Notice also that the quotient polynomial can be obtained by dividing each of
the first three terms in the last row by x and adding the results. If you take the time to work back
through the original division problem, you will find that this is exactly the way we determined the
quotient polynomial. This means that we no longer need to write the quotient polynomial down,
nor the x in the divisor, to determine our answer.

−2 x3+4x2− 5x −14

2x2 12x 14

x3 6x2 7x 0

We’ve streamlined things quite a bit so far, but we can still do more. Let’s take a moment to
remind ourselves where the 2x2, 12x, and 14 came from in the second row. Each of these terms
was obtained by multiplying the terms in the quotient, x2, 6x and 7, respectively, by the −2 in
x − 2, then by −1 when we changed the subtraction to addition. Multiplying by −2 then by −1
is the same as multiplying by 2, and so we replace the −2 in the divisor by 2. Furthermore, the
coefficients of the quotient polynomial match the coefficients of the first three terms in the last row,
so we now take the plunge and write only the coefficients of the terms to get

2 1 4 −5 −14
2 12 14

1 6 7 0
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We have constructed is the synthetic division tableau for this polynomial division problem.
Let’s re-work our division problem using this tableau to see how it greatly streamlines the division
process. To divide x3 + 4x2 − 5x − 14 by x − 2, we write 2 in the place of the divisor and the
coefficients of x3 + 4x2 − 5x− 14 in for the dividend. Then ‘bring down’ the first coefficient of the
dividend.

2 1 4 −5 −14 2 1 4 −5 −14
↓
1

Next, take the 2 from the divisor and multiply by the 1 that was ‘brought down’ to get 2. Write
this underneath the 4, then add to get 6.

2 1 4 −5 −14
↓ 2

1

2 1 4 −5 −14
↓ 2

1 6

Now take the 2 from the divisor times the 6 to get 12, and add it to the −5 to get 7.

2 1 4 −5 −14
↓ 2 12

1 6

2 1 4 −5 −14
↓ 2 12

1 6 7

Finally, take the 2 in the divisor times the 7 to get 14, and add it to the −14 to get 0.

2 1 4 −5 −14
↓ 2 12 14

1 6 7

2 1 4 −5 −14
↓ 2 12 14

1 6 7 0

The first three numbers in the last row of our tableau are the coefficients of the quotient polynomial.
Remember, we started with a third degree polynomial and divided by a first degree polynomial, so
the quotient is a second degree polynomial. Hence the quotient is x2 + 6x+ 7. The number in the
box is the remainder. Synthetic division is our tool of choice for dividing polynomials by divisors
of the form x − c. It is important to note that it works only for these kinds of divisors.5 Also
take note that when a polynomial (of degree at least 1) is divided by x − c, the result will be a
polynomial of exactly one less degree. Finally, it is worth the time to trace each step in synthetic
division back to its corresponding step in long division. While the authors have done their best to
indicate where the algorithm comes from, there is no substitute for working through it yourself.

Example 3.2.1. Use synthetic division to perform the following polynomial divisions. Find the
quotient and the remainder polynomials, then write the dividend, quotient and remainder in the
form given in Theorem 3.4.

5You’ll need to use good old-fashioned polynomial long division for divisors of degree larger than 1.
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1.
(
5x3 − 2x2 + 1

)
÷ (x− 3)

2.
(
x3 + 8

)
÷ (x+ 2)

3.
4− 8x− 12x2

2x− 3

Solution.

1. When setting up the synthetic division tableau, we need to enter 0 for the coefficient of x in
the dividend. Doing so gives

3 5 −2 0 1
↓ 15 39 117

5 13 39 118

Since the dividend was a third degree polynomial, the quotient is a quadratic polynomial
with coefficients 5, 13 and 39. Our quotient is q(x) = 5x2 + 13x + 39 and the remainder is
r(x) = 118. According to Theorem 3.4, we have 5x3−2x2+1 = (x−3)

(
5x2 + 13x+ 39

)
+118.

2. For this division, we rewrite x+ 2 as x− (−2) and proceed as before

−2 1 0 0 8
↓ −2 4 −8

1 −2 4 0

We get the quotient q(x) = x2 − 2x+ 4 and the remainder r(x) = 0. Relating the dividend,
quotient and remainder gives x3 + 8 = (x+ 2)

(
x2 − 2x+ 4

)
.

3. To divide 4 − 8x − 12x2 by 2x − 3, two things must be done. First, we write the dividend
in descending powers of x as −12x2 − 8x + 4. Second, since synthetic division works only
for factors of the form x − c, we factor 2x − 3 as 2

(
x− 3

2

)
. Our strategy is to first divide

−12x2−8x+ 4 by 2, to get −6x2−4x+ 2. Next, we divide by
(
x− 3

2

)
. The tableau becomes

3
2 −6 −4 2

↓ −9 −39
2

−6 −13 −35
2

From this, we get −6x2 − 4x + 2 =
(
x− 3

2

)
(−6x − 13) − 35

2 . Multiplying both sides by 2 and
distributing gives −12x2 − 8x + 4 = (2x− 3) (−6x − 13) − 35. At this stage, we have written
−12x2−8x+ 4 in the form (2x−3)q(x) + r(x), but how can we be sure the quotient polynomial is
−6x−13 and the remainder is −35? The answer is the word ‘unique’ in Theorem 3.4. The theorem
states that there is only one way to decompose −12x2 − 8x + 4 into a multiple of (2x − 3) plus a
constant term. Since we have found such a way, we can be sure it is the only way.

The next example pulls together all of the concepts discussed in this section.
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Example 3.2.2. Let p(x) = 2x3 − 5x+ 3.

1. Find p(−2) using The Remainder Theorem. Check your answer by substitution.

2. Use the fact that x = 1 is a zero of p to factor p(x) and find all of the real zeros of p.

Solution.

1. The Remainder Theorem states p(−2) is the remainder when p(x) is divided by x − (−2).
We set up our synthetic division tableau below. We are careful to record the coefficient of x2

as 0, and proceed as above.

−2 2 0 −5 3
↓ −4 8 −6

2 −4 3 −3

According to the Remainder Theorem, p(−2) = −3. We can check this by direct substitution
into the formula for p(x): p(−2) = 2(−2)3 − 5(−2) + 3 = −16 + 10 + 3 = −3.

2. The Factor Theorem tells us that since x = 1 is a zero of p, x−1 is a factor of p(x). To factor
p(x), we divide

1 2 0 −5 3
↓ 2 2 −3

2 2 −3 0

We get a remainder of 0 which verifies that, indeed, p(1) = 0. Our quotient polynomial is a
second degree polynomial with coefficients 2, 2, and −3. So q(x) = 2x2 + 2x − 3. Theorem
3.4 tells us p(x) = (x − 1)

(
2x2 + 2x− 3

)
. To find the remaining real zeros of p, we need to

solve 2x2 + 2x− 3 = 0 for x. Since this doesn’t factor nicely, we use the quadratic formula to

find that the remaining zeros are x = −1±
√

7
2 .

In Section 3.1, we discussed the notion of the multiplicity of a zero. Roughly speaking, a zero with
multiplicity 2 can be divided twice into a polynomial; multiplicity 3, three times and so on. This
is illustrated in the next example.

Example 3.2.3. Let p(x) = 4x4 − 4x3 − 11x2 + 12x− 3. Given that x = 1
2 is a zero of multiplicity

2, find all of the real zeros of p.
Solution. We set up for synthetic division. Since we are told the multiplicity of 1

2 is two, we
continue our tableau and divide 1

2 into the quotient polynomial

1
2 4 −4 −11 12 −3
↓ 2 −1 −6 3

1
2 4 −2 −12 6 0
↓ 2 0 −6

4 0 −12 0
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From the first division, we get 4x4 − 4x3 − 11x2 + 12x − 3 =
(
x− 1

2

) (
4x3 − 2x2 − 12x+ 6

)
. The

second division tells us 4x3 − 2x2 − 12x + 6 =
(
x− 1

2

) (
4x2 − 12

)
. Combining these results, we

have 4x4 − 4x3 − 11x2 + 12x − 3 =
(
x− 1

2

)2 (
4x2 − 12

)
. To find the remaining zeros of p, we set

4x2 − 12 = 0 and get x = ±
√

3.

A couple of things about the last example are worth mentioning. First, the extension of the
synthetic division tableau for repeated divisions will be a common site in the sections to come.
Typically, we will start with a higher order polynomial and peel off one zero at a time until we are
left with a quadratic, whose roots can always be found using the Quadratic Formula. Secondly, we
found x = ±

√
3 are zeros of p. The Factor Theorem guarantees

(
x−
√

3
)

and
(
x−

(
−
√

3
))

are
both factors of p. We can certainly put the Factor Theorem to the test and continue the synthetic
division tableau from above to see what happens.

1
2 4 −4 −11 12 −3
↓ 2 −1 −6 3

1
2 4 −2 −12 6 0
↓ 2 0 −6√

3 4 0 −12 0

↓ 4
√

3 12

−
√

3 4 4
√

3 0

↓ −4
√

3

4 0

This gives us 4x4 − 4x3 − 11x2 + 12x − 3 =
(
x− 1

2

)2 (
x−
√

3
) (
x−

(
−
√

3
))

(4), or, when written
with the constant in front

p(x) = 4

(
x− 1

2

)2 (
x−
√

3
)(

x−
(
−
√

3
))

We have shown that p is a product of its leading term times linear factors of the form (x− c) where
c are zeros of p. It may surprise and delight the reader that, in theory, all polynomials can be
reduced to this kind of factorization. We leave that discussion to Section 3.4, because the zeros
may not be real numbers. Our final theorem in the section gives us an upper bound on the number
of real zeros.

Theorem 3.7. Suppose f is a polynomial of degree n, n ≥ 1. Then f has at most n real zeros,
counting multiplicities.

Theorem 3.7 is a consequence of the Factor Theorem and polynomial multiplication. Every zero c
of f gives us a factor of the form (x− c) for f(x). Since f has degree n, there can be at most n of
these factors. The next section provides us some tools which not only help us determine where the
real zeros are to be found, but which real numbers they may be.

We close this section with a summary of several concepts previously presented. You should take
the time to look back through the text to see where each concept was first introduced and where
each connection to the other concepts was made.
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Connections Between Zeros, Factors and Graphs of Polynomial Functions

Suppose p is a polynomial function of degree n ≥ 1. The following statements are equivalent:

• The real number c is a zero of p

• p(c) = 0

• x = c is a solution to the polynomial equation p(x) = 0

• (x− c) is a factor of p(x)

• The point (c, 0) is an x-intercept of the graph of y = p(x)
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3.2.1 Exercises

1. (An Intermediate Algebra review exercise) Use polynomial long division to perform the indi-
cated division. Write the polynomial in the form p(x) = d(x)q(x) + r(x).

(a) (5x4 − 3x3 + 2x2 − 1)÷ (x2 + 4)

(b) (−x5 + 7x3 − x)÷ (x3 − x2 + 1)

(c) (9x3 + 5)÷ (2x− 3)

(d) (4x2 − x− 23)÷ (x2 − 1)

2. Use synthetic division and the Remainder Theorem to test whether or not the given number
is a zero of the polynomial p(x) = 15x5 − 121x4 + 17x3 − 73x2 + 2x+ 48.

(a) c = −1

(b) c = 8

(c) c = 1
2

(d) c = 2
3

(e) c = 0

(f) c = −3
5

3. For each polynomial given below, you are given one of its zeros. Use the techniques in this
section to find the rest of the real zeros and factor the polynomial.

(a) x3 − 6x2 + 11x− 6, c = 1

(b) x3 − 24x2 + 192x− 512, c = 8

(c) 4x4 − 28x3 + 61x2 − 42x+ 9, c = 1
2

(d) 3x3 + 4x2 − x− 2, c = 2
3

(e) x4 − x2, c = 0

(f) x2 − 2x− 2, c = 1−
√

3

(g) 125x5 − 275x4 − 2265x3 − 3213x2 − 1728x− 324, c = −3
5

4. Create a polynomial p with the following attributes.

• As x→ −∞, p(x)→∞.

• The point (−2, 0) yields a local maximum.

• The degree of p is 5.

• The point (3, 0) is one of the x-intercepts of the graph of p.

5. Find a quadratic polynomial with integer coefficients which has x =
3

5
±
√

29

5
as its real zeros.
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3.2.2 Answers

1. (a) 5x4 − 3x3 + 2x2 − 1 = (x2 + 4)(5x2 − 3x− 18) + (12x+ 71)

(b) −x5 + 7x3 − x = (x3 − x2 + 1)(−x2 − x+ 6) + (7x2 − 6)

(c) 9x3 + 5 = (2x− 3)(9
2x

2 + 27
4 x+ 81

8 ) + 283
8

(d) 4x2 − x− 23 = (x2 − 1)(4) + (−x− 19)

2. (a) p(−1)− 180

(b) p(8) = 0

(c) p(1
2) = 825

32

(d) p(2
3) = 0

(e) p(0) = 48

(f) p(−3
5) = 0

3. (a) x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

(b) x3 − 24x2 + 192x− 512 = (x− 8)3

(c) 4x4 − 28x3 + 61x2 − 42x+ 9 = 4(x− 1
2)2(x− 3)2

(d) 3x3 + 4x2 − x− 2 = 3(x− 2
3)(x+ 1)2

(e) x4 − x2 = x2(x− 1)(x+ 1)

(f) x2 − 2x− 2 = (x− (1−
√

3))(x− (1 +
√

3))

(g) 125x5 − 275x4 − 2265x3 − 3213x2 − 1728x− 324 = 125(x+ 3
5)3(x− 6)(x+ 2)

4. Something like p(x) = −(x+ 2)2(x− 3)(x+ 3)(x− 4) will work.

5. q(x) = 5x2 − 6x− 4
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3.3 Real Zeros of Polynomials

In Section 3.2, we found that we can use synthetic division to determine if a given real number is
a zero of a polynomial function. This section presents results which will help us determine good
candidates to test using synthetic division. There are two approaches to the topic of finding the
real zeros of a polynomial. The first approach (which is gaining popularity) is to use a little bit of
mathematics followed by a good use of technology like graphing calculators. The second approach
(for purists) makes good use of mathematical machinery (theorems) only. For completeness, we
include the two approaches but in separate subsections.1 Both approaches benefit from the following
two theorems, the first of which is due to the famous mathematician Augustin Cauchy. It gives us
an interval on which all of the real zeros of a polynomial can be found.

Theorem 3.8. Cauchy’s Bound: Suppose f(x) = anx
n+an−1x

n−1+. . .+a1x+a0 is a polynomial

of degree n with n ≥ 1. Let M be the largest of the numbers: |a0|
|an| ,

|a1|
|an| , . . . , |an−1|

|an| . Then all the

real zeros of f lie in in the interval [−(M + 1),M + 1].

The proof of this fact is not easily explained within the confines of this text. This paper contains
the result and gives references to its proof. Like many of the results in this section, Cauchy’s Bound
is best understood with an example.

Example 3.3.1. Let f(x) = 2x4 + 4x3 − x2 − 6x− 3. Determine an interval which contains all of
the real zeros of f .

Solution. Cauchy’s Bound says to take the absolute value of each of the non-leading coefficients
of f , namely, 4, 1, 6 and 3, and divide them by the absolute value of the leading coefficient, 2.
Doing so produces the list of numbers 2, 1

2 , 3, and 3
2 . Next, we take the largest of these values, 3,

as our value M in the theorem and add one to it to get 4. The real zeros of f are guaranteed to lie
in the interval [−4, 4].

Whereas the previous result tells us where we can find the real zeros of a polynomial, the next
theorem gives us a list of possible real zeros.

Theorem 3.9. Rational Zeros Theorem: Suppose f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0

is a polynomial of degree n with n ≥ 1, and a0, a1, . . . an are integers. If r is a rational zero of
f , then r is of the form ±p

q , where p is a factor of the constant term a0, and q is a factor of the
leading coefficient an.

The rational zeros theorem gives us a list of numbers to try in our synthetic division and that
is a lot nicer than simply guessing. If none of the numbers in the list are zeros, then either the
polynomial has no real zeros at all, or all of the real zeros are irrational numbers. To see why the
Rational Zeros Theorem works, suppose c is a zero of f and c = p

q in lowest terms. This means p
and q have no common factors. Since f(c) = 0, we have

an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ . . .+ a1

(
p

q

)
+ a0 = 0.

1Carl is the purist and is responsible for all of the theorems in this section. Jeff, on the other hand, has spent too
much time in school politics and has been polluted with notions of ‘compromise.’ You can blame the slow decline of
civilization on him and those like him who mingle mathematics with technology.

http://en.wikipedia.org/wiki/Cauchy
http://titan.princeton.edu/papers/claire/hertz-etal-99.ps
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Multiplying both sides of this equation by qn, we clear the denominators to get

anp
n + an−1p

n−1q + . . .+ a1pq
n−1 + a0q

n = 0

Rearranging this equation, we get

anp
n = −an−1p

n−1q − . . .− a1pq
n−1 − a0q

n

Now, the left hand side is an integer multiple of p, and the right hand side is an integer multiple of
q. (Can you see why?) This means anp

n is both a multiple of p and a multiple of q. Since p and q
have no common factors, an must be a multiple of q. If we rearrange the equation

anp
n + an−1p

n−1q + . . .+ a1pq
n−1 + a0q

n = 0

as
a0q

n = −anpn − an−1p
n−1q − . . .− a1pq

n−1

we can play the same game and conclude a0 is a multiple of p, and we have the result.

Example 3.3.2. Let f(x) = 2x4 + 4x3 − x2 − 6x − 3. Use the Rational Zeros Theorem to list all
possible rational zeros of f .

Solution. To generate a complete list of rational zeros, we need to take each of the factors of
constant term, a0 = −3, and divide them by each of the factors of the leading coefficient a4 = 2.
The factors of −3 are ± 1 and ± 3. Since the Rational Zeros Theorem tacks on a ± anyway, for
the moment, we consider only the positive factors 1 and 3. The factors of 2 are 1 and 2, so the
Rational Zeros Theorem gives the list

{
± 1

1 ,±
1
2 ,±

3
1 ,±

3
2

}
or
{
± 1

2 ,± 1,± 3
2 ,± 3

}
.

Our discussion now diverges between those who wish to use technology and those who do not.

3.3.1 For Those Wishing to use a Graphing Calculator

At this stage, we know not only the interval in which all of the zeros of f(x) = 2x4+4x3−x2−6x−3
are located, but we also know some potential candidates. We can now use our calculator to help
us determine all of the real zeros of f , as illustrated in the next example.

Example 3.3.3. Let f(x) = 2x4 + 4x3 − x2 − 6x− 3.

1. Graph y = f(x) on the calculator using the interval obtained in Example 3.3.1 as a guide.

2. Use the graph to help narrow down the list of candidates for rational zeros you obtained in
Example 3.3.2.

3. Use synthetic division to find the real zeros of f , and state their multiplicities.

Solution.

1. In Example 3.3.1, we determined all of the real zeros of f lie in the interval [−4, 4]. We set
our window accordingly and get
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2. In Example 3.3.2, we learned that any rational zero of f must be in the list
{
± 1

2 ,± 1,± 3
2 ,± 3

}
.

From the graph, it looks as if we can rule out any of the positive rational zeros, since the
graph seems to cross the x-axis at a value just a little greater than 1. On the negative side,
−1 looks good, so we try that for our synthetic division.

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

2 2 −3 −3 0

We have a winner! Remembering that f was a fourth degree polynomial, we now know our
quotient is a third degree polynomial. If we can do one more successful division, we will have
knocked the quotient down to a quadratic, and, if all else fails, we can use the quadratic
formula to find the last two zeros. Since there seems to be no other rational zeros to try, we
continue with −1. Also, the shape of the crossing at x = −1 leads us to wonder if the zero
x = −1 has multiplicity 3.

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

−1 2 2 −3 −3 0
↓ −2 0 3

2 0 −3 0

Success! Our quotient polynomial is now 2x2 − 3. Setting this to zero gives 2x2 − 3 = 0, or

x2 = 3
2 , which gives us x = ±

√
6

2 . Concerning multiplicities, based on our division, we have
that −1 has a multiplicity of at least 2. The Factor Theorem tells us our remaining zeros,

±
√

6
2 , each have multiplicity at least 1. However, Theorem 3.7 tells us f can have at most 4

real zeros, counting multiplicity, and so we conclude that −1 is of multiplicity exactly 2 and

±
√

6
2 each has multiplicity 1. (Thus, we were wrong to think that −1 had multiplicity 3.)

It is interesting to note that we could greatly improve on the graph of y = f(x) in the previous
example given to us by the calculator. For instance, from our determination of the zeros of f and

their multiplicities, we know the graph crosses at x = −
√

6
2 ≈ −1.22 then turns back upwards to

touch the x−axis at x = −1. This tells us that, despite what the calculator showed us the first time,
there is a relative maximum occurring at x = −1 and not a ‘flattened crossing’ as we originally
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believed. After resizing the window, we see not only the relative maximum but also a relative
minimum just to the left of x = −1 which shows us, once again, that Mathematics enhances the
technology, instead of vice-versa.

Our next example shows how even a mild-mannered polynomial can cause problems.

Example 3.3.4. Let f(x) = x4 + x2 − 12.

1. Use Cauchy’s Bound to determine an interval in which all of the real zeros of f lie.

2. Use the Rational Zeros Theorem to determine a list of possible rational zeros of f .

3. Graph y = f(x) using your graphing calculator.

4. Find all of the real zeros of f and their multiplicities.

Solution.

1. Applying Cauchy’s Bound, we find M = 12, so all of the real zeros lie in the interval [−13, 13].

2. Applying the Rational Zeros Theorem with constant term a0 = −12 and leading coefficient
a4 = 1, we get the list {± 1, ± 2, ± 3, ± 4, ± 6, ± 12}.

3. Graphing y = f(x) on the interval [−13, 13] produces the graph below on the left. Zooming
in a bit gives the graph below on the right. Based on the graph, none of our rational zeros
will work. (Do you see why not?)
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4. From the graph, we know f has two real zeros, one positive, and one negative. Our only hope
at this point is to try and find the zeros of f by setting f(x) = 0 and solving. Doing so results
in the equation x4 + x2 − 12 = 0. If we stare at this equation long enough, we may recognize
it as a ‘quadratic in disguise’.2 In other words, we have three terms: x4, x2, and 12, and the
exponent on the first term, x4, is exactly twice that of the second term, x2. We may rewrite
this as

(
x2
)2

+
(
x2
)
−12 = 0. To better see the forest for the trees, let us momentarily replace

x2 with the variable u. In terms of u, our equation becomes u2 + u− 12 = 0. We can readily
factor the left hand side of this equation as (u+ 4)(u− 3) = 0, which means we have factored
the left hand side of x4 +x2− 12 = 0 as

(
x2 − 3

) (
x2 + 4

)
= 0. We get x2 = 3, which gives us

x = ±
√

3, or x2 = −4, which admits no real solutions. Since
√

3 ≈ 1.73, the two zeros match
what we expected from the graph. In terms of multiplicity, the Factor Theorem guarantees(
x−
√

3
)

and
(
x+
√

3
)

are factors of f(x). We note that our work for finding the zeros of f
shows f(x) can be factored as f(x) =

(
x2 − 3

) (
x2 + 4

)
. Since x2 + 4 has no real zeros, the

quantities
(
x−
√

3
)

and
(
x+
√

3
)

must both be factors of x2−3. According to Theorem 3.7,

x2 − 3 can have at most 2 zeros, counting multiplicity, hence each of ±
√

3 is a zero of f of
multiplicity 1.

The technique used to factor f(x) in Example 3.3.4 is called u-substitution. We shall see more of
this technique in Section 5.3. In general, substitution can help us identify a ‘quadratic in disguise’
provided that there are exactly three terms and the exponent of the first term is exactly twice that
of the second. It is entirely possible that a polynomial has no real roots at all, or worse, it has
real roots but none of the techniques discussed in this section can help us find them exactly. In
the latter case, we are forced to approximate, which in this subsection means we use the ‘Zero’
command on the graphing calculator. We now present other theorems and discuss how to find zeros
of polynomials when we do not have access to a graphing calculator.

3.3.2 For Those Wishing NOT to use a Graphing Calculator

Suppose we wish to find the zeros of f(x) = 2x4 + 4x3 − x2 − 6x− 3 without using the calculator.
In this subsection, we present some more mathematical tools to help us. Our first result is due to
René Descartes and gives us an estimate of how many positive and how many negative real zeros
are to be found. The theorem requires us to discuss what is meant by the variations in sign of
a polynomial function. For example, consider f(x) = 2x4 + 4x3 − x2 − 6x− 3. If we focus on only
the signs of the coefficients, we start with a (+), followed by another (+), then switch to (−), and
stay (−) for the remaining two coefficients. Since the signs of the coefficients switched once, we say
f(x) has one variation in sign. When we speak of the variations in sign of a polynomial function,
f , we assume the formula for f(x) is written with descending powers of x, as in Definition 3.1, and
concern ourselves only with the nonzero coefficients.

2More appropriately, this equation is ‘quadratic in form.’ Carl likes to call it a ‘quadratic in disguise’ because it
reminds him of The Transformers.

http://en.wikipedia.org/wiki/Descartes
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Theorem 3.10. Descartes’ Rule of Signs: Suppose f(x) is the formula for a polynomial
function written with descending powers of x.

• If P denotes the number of variations of sign in the formula for f(x), then the number of
positive real zeros (counting multiplicity) is one of the numbers {P , P − 2, P − 4, . . . }.

• If N denotes the number of variations of sign in the formula for f(−x), then the number of
negative real zeros (counting multiplicity) is one of the numbers {N , N − 2, N − 4, . . . }.

A couple of remarks about Descartes’ Rule of Signs are in order. First, Descartes’ Rule of Signs
gives us an estimate to the number of real zeros, not the actual value of the zeros. Second,
Descartes’ Rule of Signs counts multiplicities. This means that, for example, if one of the zeros has
multiplicity 2, Descsartes’ Rule of Signs would count this as two zeros. Lastly, note that the number
of positive or negative real zeros always starts with the number of sign changes and decreases by
an even number. For example, if f(x) has 7 changes in sign, then, counting multplicities, f has
either 7, 5, 3, or 1 positive real zero. This implies that the graph of y = f(x) crosses the positive
x-axis at least once. If f(−x) results in 4 sign changes, then, counting multiplicities, f has 4, 2, or
0 negative real zeros; hence, the graph of y = f(x) may not cross the negative x-axis at all. The
proof of Descartes’ Rule of Signs is a bit technical, and can be found here.

Example 3.3.5. Let f(x) = 2x4 + 4x3 − x2 − 6x − 3. Use Descartes’ Rule of Signs to determine
the possible number and location of the real zeros of f .

Solution: As noted above, the variations of sign of f(x) is 1. This means, counting multiplicities,
f has exactly 1 positive real zero. To find the possible number of negative real zeros, we consider
f(−x) = 2(−x)4 + 4(−x)3 − (−x)2 − 6(−x)− 3 which simplifies to 2x4 − 4x3 − x2 + 6x− 3. This
has 3 variations in sign, hence f has either 3 negative real zeros or 1 negative real zero, counting
multiplicities.

Cauchy’s Bound gives us a general bound on the zeros of a polynomial function. Our next result
helps us determine bounds on the real zeros of a polynomial as we synthetically divide which are
often sharper3 bounds than Cauchy’s Bound.

Theorem 3.11. Upper and Lower Bounds: Suppose f is a polynomial of degree n with n ≥ 1.

• If c > 0 is synthetically divided into f and all of the numbers in the final line of the division
tableau have the same signs, then c is an upper bound for the real zeros of f . That is, there
are no real zeros greater than c.

• If c < 0 is synthetically divided into f and the numbers in the final line of the division
tableau alternate signs, then c is a lower bound for the real zeros of f . That is, there are
no real zeros less than c.

NOTE: If the number 0 occurs in the final line of the division tableau in either of the above
cases, it can be treated as (+) or (−) as needed.

3That is, better, or more accurate.

http://www.cut-the-knot.org/fta/ROS2.shtml
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The Upper and Lower Bounds Theorem works because of Theorem 3.4. For the upper bound part of
the theorem, suppose c > 0 is divided into f and the resulting line in the division tableau contains,
for example, all nonnegative numbers. This means f(x) = (x − c)q(x) + r, where the coefficients
of the quotient polynomial and the remainder are nonnegative. (Note the leading coefficient of q
is the same as f and so q(x) is not the zero polynomial.) If b > c, then f(b) = (b − c)q(b) + r,
where (b − c) and q(b) are both positive and r ≥ 0. Hence f(b) > 0 which shows b cannot be a
zero of f . Thus no real number b > c can be a zero of f , as required. A similar argument proves
f(b) < 0 if all the numbers in the final line of the synthetic division tableau are non-positive. To
prove the lower bound part of the theorem, we note that a lower bound for the negative real zeros
of f(x) is an upper bound for the positive real zeros of f(−x). Applying the upper bound portion
to f(−x) gives the result. (Do you see where the alternating signs come in?) With the additional
mathematical machinery of Descartes’ Rule of Signs and the Upper and Lower Bounds Theorem,
we can find the real zeros of f(x) = 2x4 +4x3−x2−6x−3 without the use of a graphing calculator.

Example 3.3.6. Let f(x) = 2x4 + 4x3 − x2 − 6x− 3.

1. Find all real zeros of f and their multiplicities.

2. Sketch the graph of y = f(x).

Solution.

1. We know from Cauchy’s Bound that all of the real zeros lie in the interval [−4, 4] and that
our possible rational zeros are ± 1

2 , ± 1, , ± 3
2 , and ± 3. Descartes’ Rule of Signs guarantees

us at least one negative real zero and exactly one positive real zero, counting multiplicity. We
try our positive rational zeros, starting with the smallest, 1

2 . Since the remainder isn’t zero,
we know 1

2 isn’t a zero. Sadly, the final line in the division tableau has both positive and
negative numbers, so 1

2 is not an upper bound. The only information we get from this division
is courtesy of the Remainder Theorem which tells us f

(
1
2

)
= −45

8 so the point
(

1
2 ,−

45
8

)
is

on the graph of f . We continue to our next possible zero, 1. As before, the only information
we can glean from this is that (1,−4) is on the graph of f . When we try our next possible
zero, 3

2 , we get that it is not a zero, and we also see that it is an upper bound on the zeros of
f , since all of the numbers in the final line of the division tableau are positive. This means
there is no point trying our last possible rational zero, 3. Descartes’ Rule of Signs guaranteed
us a positive real zero, and at this point we have shown this zero is irrational. Furthermore,
the Intermediate Value Theorem, Theorem 3.1, tells us the zero lies between 1 and 3

2 , since
f(1) < 0 and f

(
3
2

)
> 0.

1
2 2 4 −1 −6 −3
↓ 1 5

2
3
4 −21

8

2 5 3
2 −21

4 −45
8

1 2 4 −1 −6 −3
↓ 2 6 5 −1

2 6 5 −1 −4

3
2 2 4 −1 −6 −3
↓ 3 21

2
57
4

99
8

2 7 19
2

33
4

75
8

We now turn our attention to negative real zeros. We try the largest possible zero, −1
2 .

Synthetic division shows us it is not a zero, nor is it a lower bound (since the numbers in



214 Polynomial Functions

the final line of the division tableau do not alternate), so we proceed to −1. This division
shows −1 is a zero. Descartes’ Rule of Signs told us that we may have up to three negative
real zeros, counting multiplicity, so we try −1 again, and it works once more. At this point,
we have taken f , a fourth degree polynomial, and performed two successful divisions. Our
quotient polynomial is quadratic, so we look at it to find the remaining zeros.

−1
2 2 4 −1 −6 −3
↓ −1 −3

2
5
4

19
8

2 3 −5
2 −19

4 −5
8

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

−1 2 2 −3 −3 0
↓ −2 0 3

2 0 −3 0

Setting the quotient polynomial equal to zero yields 2x2−3 = 0, so that x2 = 3
2 , or x = ±

√
6

2 .

Descartes’ Rule of Signs tells us that the positive real zero we found,
√

6
2 has multiplicity 1.

Descartes also tells us the total multiplicity of negative real zeros is 3, which forces −1 to be

a zero of multiplicity 2 and −
√

6
2 to have multiplicity 1.

2. We know the end behavior of y = f(x) resembles its leading term, y = 2x4. This means

the graph enters the scene in Quadrant II and exits in Quadrant I. Since ±
√

6
2 are zeros of

odd multiplicity, we know the graph crosses through the x-axis at the points
(
−
√

6
2 , 0

)
and(√

6
2 , 0

)
. Since −1 is a zero of multiplicity 2, we know the graph of y = f(x) touches and

rebounds off the x-axis at (−1, 0). Putting this together, we get

x

y

You can see why the ‘no calculator’ approach is not very popular these days. It requires more
computation and more theorems than the alternative.4 In general, no matter how many theorems

4This is apparently a bad thing.
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you throw at a polynomial, it may well be impossible5 to find their zeros exactly. The polynomial
f(x) = x5 − x − 1 is one such beast.6 According to Descartes’ Rule of Signs, f has exactly one
positive real zero, and it could have two negative real zeros, or none at all. The Rational Zeros
Test gives us ±1 as rational zeros to try but neither of these work since f(1) = f(−1) = −1. If
we try the substitution technique we used in Example 3.3.4, we find f(x) has three terms, but the
exponent on the x5 isn’t exactly twice the exponent on x. How could we go about approximating
this zero without resorting to the ‘Zero’ command of a graphing calculator? We use the Bisection
Method. The first step in the Bisection Method is to find an interval on which f changes sign.
We know f(1) = −1 and we find f(2) = 29. By the Intermediate Value Theorem, we know the
zero of f lies in the interval [1, 2]. Next, we ‘bisect’ this interval and find the midpoint, 1.5. We
find f(1.5) ≈ 5.09. This means our zero is between 1 and 1.5, since f changes sign on this interval.
Now, we ‘bisect’ the interval [1, 1.5] and find f(1.25) ≈ 0.80, so now we have the zero between 1 and
1.25. Bisecting [1, 1.25], we find f(1.125) ≈ −0.32, which means the zero of f is between 1.125 and
1.25. We continue in this fashion until we have ‘sandwiched’ the zero between two numbers which
differ by no more than a desired accuracy. You can think of the Bisection Method as reversing
the sign diagram process: instead of finding the zeros and checking the sign of f using test values,
we are using test values to determine where the signs switch to find the zeros. It is a slow and
tedious, yet fool-proof, method for determining an approximation of a real zero. Our last example
reminds us that finding the zeros of polynomials is a critical step in solving polynomial equations
and inequalities.

Example 3.3.7.

1. Find all of the real solutions to the equation 2x5 + 6x3 + 3 = 3x4 + 8x2.

2. Solve the inequality 2x5 + 6x3 + 3 ≤ 3x4 + 8x2.

3. Interpret your answer to part 2 graphically, and verify using a graphing calculator.

Solution.

1. Finding the real solutions to 2x5 + 6x3 + 3 = 3x4 + 8x2 is the same as finding the real
solutions to 2x5 − 3x4 + 6x3 − 8x2 + 3 = 0. In other words, we are looking for the real zeros
of p(x) = 2x5−3x4 + 6x3−8x2 + 3. Using the techniques developed in this section, we divide
as follows.

5We don’t use this word lightly; it can be proven that the zeros of some polynomials cannot be expressed using
the usual algebraic symbols.

6See this page.

http://en.wikipedia.org/wiki/Galois_theory
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1 2 −3 6 −8 0 3
↓ 2 −1 5 −3 −3

1 2 −1 5 −3 −3 0
↓ 2 1 6 3

−1
2 2 1 6 3 0
↓ −1 0 −3

2 0 6 0

The quotient polynomial is 2x2 + 6 which has no real zeros so we get x = −1
2 and x = 1.

2. To solve this nonlinear inequality, we follow the same guidelines set forth in Section 2.4: we get
0 on one side of the inequality and construct a sign diagram. Our original inequality can be
rewritten as 2x5−3x4+6x3−8x2+3 ≤ 0. We found the zeros of p(x) = 2x5−3x4+6x3−8x2+3
in part 1 to be x = −1

2 and x = 1. We construct our sign diagram as before.

−1
2

1

(−) 0 (+) 0 (+)

−1 0 2

The solution to p(x) < 0 is
(
−∞,−1

2

)
, and we know p(x) = 0 at x = −1

2 and x = 1. Hence,
the solution to p(x) ≤ 0 is

(
−∞,−1

2

]
∪ {1}.

3. To interpret this solution graphically, we set f(x) = 2x5 + 6x3 + 3 and g(x) = 3x4 + 8x2. We
recall that the solution to f(x) ≤ g(x) is the set of x values for which the graph of f is below
the graph of g (where f(x) < g(x)) along with the x values where the two graphs intersect
(f(x) = g(x)). Graphing f and g on the calculator produces the picture on the lower left.
(The end behavior should tell you which is which.) We see the graph of f is below the graph
of g on

(
−∞,−1

2

)
. However, it is difficult to see what is happening near x = 1. Zooming in

(and making the graph of g thicker), we see that the graphs of f and g do intersect at x = 1,
but the graph of g remains below the graph of f on either side of x = 1.
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3.3.3 Exercises

1. Find the real zeros of the polynomial using the techniques specified by your instructor. State
the multiplicity of each real zero.

(a) p(x) = x3 − 2x2 − 5x+ 6

(b) p(x) = −2x3 + 19x2 − 49x+ 20

(c) p(x) = x4 − 9x2 − 4x+ 12

(d) p(x) = x3 + 4x2 − 11x+ 6

(e) p(x) = 3x3 + 3x2 − 11x− 10

(f) p(x) = x4 + 2x3 − 12x2 − 40x− 32

(g) p(x) = 6x4 − 5x3 − 9x2

(h) p(x) = 36x4 − 12x3 − 11x2 + 2x+ 1

(i) p(x) = −17x3 + 5x2 + 34x− 10

(j) p(x) = 25x5 − 105x4 + 174x3 − 142x2 + 57x− 9

(k) p(x) = x5 − 60x3 − 80x2 + 960x+ 2304

(l) p(x) = x3 − 7x2 + x− 7

(m) p(x) = 90x4 − 399x3 + 622x2 − 399x+ 90

(n) p(x) = 9x3 − 5x2 − x

2. Find the real zeros of f(x) = x3 − 1
12x

2 − 7
72x + 1

72 by first finding a polynomial q(x) with
integer coefficients such that q(x) = N · f(x) for some integer N . (Recall that the Rational
Zeros Theorem required the polynomial in question to have integer coefficients.) Show that
f and q have the same real zeros.

3. Solve the polynomial inequality and give your answer in interval form.

(a) −2x3 + 19x2 − 49x+ 20 > 0

(b) x4 − 9x2 ≤ 4x− 12

(c) (x− 1)2 ≥ 4

(d) 7 −5x3 + 35x2 − 45x− 25 > 0

(e) 4x3 ≥ 3x+ 1

(f) x3+2x2

2 < x+ 2

(g) x4 ≤ 16 + 4x− x3

(h) 3x2 + 2x < x4

4. Let f(x) = 5x7 − 33x6 + 3x5 − 71x4 − 597x3 + 2097x2 − 1971x+ 567. With the help of your
classmates, find the x- and y- intercepts of the graph of f . Find the intervals on which the
function is increasing, the intervals on which it is decreasing and the local extrema. Sketch
the graph of f , using more than one picture if necessary to show all of the important features
of the graph.

5. With the help of your classmates, create a list of five polynomials with different degrees whose
real zeros cannot be found using any of the techniques in this section.

7This inequality was solved using a graphing calculator in Example 2.4.5. Compare your answer now to what was
given at the time.
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3.3.4 Answers

1. (a) p(x) = x3 − 2x2 − 5x+ 6
x = −2 (mult. 1), x = 1 (mult. 1), x = 3 (mult. 1)

(b) p(x) = −2x3 + 19x2 − 49x+ 20
x = 1

2 (mult. 1), x = 4 (mult. 1), x = 5 (mult. 1)

(c) p(x) = x4 − 9x2 − 4x+ 12
x = −2 (mult. 2), x = 1 (mult. 1), x = 3 (mult. 1)

(d) p(x) = x3 + 4x2 − 11x+ 6
x = −6 (mult. 1), x = 1 (mult. 2)

(e) p(x) = 3x3 + 3x2 − 11x− 10

x = −2 (mult. 1), x = 3±
√

69
6 (each has mult. 1)

(f) p(x) = x4 + 2x3 − 12x2 − 40x− 32
x = −2 (mult. 3), x = 4 (mult. 1)

(g) p(x) = 6x4 − 5x3 − 9x2

x = 0 (mult. 2), x = 5±
√

241
12 (each has mult. 1)

(h) p(x) = 36x4 − 12x3 − 11x2 + 2x+ 1
x = 1

2 (mult. 2), x = −1
3 (mult. 2)

(i) p(x) = −17x3 + 5x2 + 34x− 10
x = 5

17 (mult. 1), x = ±
√

2 (each mult. 1)

(j) p(x) = 25x5 − 105x4 + 174x3 − 142x2 + 57x− 9
x = 3

5 (mult. 2), x = 1 (mult. 3)

(k) p(x) = x5 − 60x3 − 80x2 + 960x+ 2304
x = −4 (mult. 3), x = 6 (mult. 2)

(l) p(x) = x3 − 7x2 + x− 7
x = 7 (mult. 1)

(m) p(x) = 90x4 − 399x3 + 622x2 − 399x+ 90
x = 2

3 (mult. 1), x = 3
2 (mult. 1), x = 5

3 (mult. 1), x = 3
5 (mult. 1)

(n) p(x) = 9x3 − 5x2 − x
x = 0 (mult. 1), x = 5±

√
61

18 (each has mult. 1)

2. We choose q(x) = 72x3 − 6x2 − 7x + 1 = 72 · f(x). Clearly f(x) = 0 if and only if q(x) = 0
so they have the same real zeros. In this case, x = −1

3 , x = 1
6 and x = 1

4 are the real zeros
of both f and q.

3. (a) (−∞, 1
2) ∪ (4, 5)

(b) {−2} ∪ [1, 3]

(c) (−∞,−1] ∪ [3,∞)

(d) (−∞, 1−
√

2) ∪ (1 +
√

2, 5)

(e)

{
−1

2

}
∪ [1,∞)

(f) (−∞,−2) ∪
(
−
√

2,
√

2
)

(g) [−2, 2]

(h) (−∞,−1) ∪ (−1, 0) ∪ (2,∞)
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3.4 Complex Zeros and the Fundamental Theorem of Algebra

In Section 3.3, we were focused on finding the real zeros of a polynomial function. In this section, we
expand our horizons and look for the non-real zeros as well. Consider the polynomial p(x) = x2 +1.
The zeros of p are the solutions to x2 + 1 = 0, or x2 = −1. This equation has no real solutions, but
you may recall from Intermediate Algebra that we can formally extract the square roots of both
sides to get x = ±

√
−1. The quantity

√
−1 is usually re-labeled i, the so-called imaginary unit.1

The number i, while not a real number, plays along well with real numbers, and acts very much
like any other radical expression. For instance, 3(2i) = 6i, 7i− 3i = 4i, (2− 7i) + (3 + 4i) = 5− 3i,
and so forth. The key properties which distinguish i from the real numbers are listed below.

Definition 3.4. The imaginary unit i satisfies the two following properties

1. i2 = −1

2. If c is a real number with c ≥ 0 then
√
−c = i

√
c

Property 1 in Definition 3.4 establishes that i does act as a square root2 of −1, and property 2
establishes what we mean by the ‘principal square root’ of a negative real number. In property
2, it is important to remember the restriction on c. For example, it is perfectly acceptable to say√
−4 = i

√
4 = i(2) = 2i. However,

√
−(−4) 6= i

√
−4, otherwise, we’d get

2 =
√

4 =
√
−(−4) = i

√
−4 = i(2i) = 2i2 = 2(−1) = −2,

which is unacceptable.3 We are now in the position to define the complex numbers.

Definition 3.5. A complex number is a number of the form a + bi, where a and b are real
numbers and i is the imaginary unit.

Complex numbers include things you’d normally expect, like 3 + 2i and 2
5 − i

√
3. However, don’t

forget that a or b could be zero, which means numbers like 3i and 6 are also complex numbers. In
other words, don’t forget that the complex numbers include the real numbers, so 0 and π −

√
21

are both considered complex numbers. The arithmetic of complex numbers is as you would expect.
The only thing you need to remember are the two properties in Definition 3.4. The next example
should help recall how these animals behave.

Example 3.4.1. Perform the indicated operations and simplify. Write your final answer in the
form4 a+ bi.

1Some technical mathematics textbooks label it ‘j’.
2Note the use of the indefinite article ‘a’. Whatever beast is chosen to be i, −i is the other square root of −1.
3We want to enlarge the number system so we can solve things like x2 = −1, but not at the cost of the established

rules already set in place. For that reason, the general properties of radicals simply do not apply for even roots of
negative quantities.

4We’ll accept an answer of say 3− 2i, although, technically, we should write this as 3 + (−2)i. Even we pedants
have our limits.
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1. (1− 2i)− (3 + 4i)

2. (1− 2i)(3 + 4i)

3.
1− 2i

3− 4i

4.
√
−3
√
−12

5.
√

(−3)(−12)

6. (x− [1 + 2i])(x− [1− 2i])

Solution.

1. As mentioned earlier, we treat expressions involving i as we would any other radical. We
combine like terms to get (1− 2i)− (3 + 4i) = 1− 2i− 3− 4i = −2− 6i.

2. Using the distributive property, we get (1−2i)(3+4i) = (1)(3)+(1)(4i)− (2i)(3)− (2i)(4i) =
3 + 4i− 6i− 8i2. Recalling i2 = −1, we get 3 + 4i− 6i− 8i2 = 3− 2i− (−8) = 11− 2i.

3. How in the world are we supposed to simplify 1−2i
3−4i? Well, we deal with the denominator

3− 4i as we would any other denominator containing a radical, and multiply both numerator
and denominator by 3 + 4i (the conjugate of 3− 4i).5 Doing so produces

1− 2i

3− 4i
· 3 + 4i

3 + 4i
=

(1− 2i)(3 + 4i)

(3− 4i)(3 + 4i)
=

11− 2i

25
=

11

25
− 2

25
i

4. We use property 2 of Definition 3.4 first, then apply the rules of radicals applicable to real
radicals to get

√
−3
√
−12 =

(
i
√

3
) (
i
√

12
)

= i2
√

3 · 12 = −
√

36 = −6.

5. We adhere to the order of operations here and perform the multiplication before the radical
to get

√
(−3)(−12) =

√
36 = 6.

6. We can brute force multiply using the distributive property and see that

(x− [1 + 2i])(x− [1− 2i]) = x2 − x[1− 2i]− x[1 + 2i] + [1− 2i][1 + 2i]
= x2 − x+ 2ix− x− 2ix+ 1− 2i+ 2i− 4i2

= x2 − 2x+ 5

A couple of remarks about the last example are in order. First, the conjugate of a complex number
a+ bi is the number a− bi. The notation commonly used for conjugation is a ‘bar’: a+ bi = a− bi.
For example, 3 + 2i = 3−2i, 3− 2i = 3+2i, 6 = 6, 4i = −4i, and 3 +

√
5 = 3+

√
5. The properties

of the conjugate are summarized in the following theorem.

5We will talk more about this in a moment.
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Theorem 3.12. Suppose z and w are complex numbers.

• z = z

• z + w = z + w

• z w = zw

• (z)n = zn, for any natural number n = 1, 2, 3, . . .

• z is a real number if and only if z = z.

Essentially, Theorem 3.12 says that complex conjugation works well with addition, multiplication,
and powers. The proof of these properties can best be achieved by writing out z = a + bi and
w = c + di for real numbers a, b, c, and d. Next, we compute the left and right hand side
of each equation and check to see that they are the same. The proof of the first property is
a very quick exercise.6 To prove the second property, we compare z + w and z + w. We have
z + w = a+ bi+ c+ di = a− bi+ c− di. To find z + w, we first compute

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

so
z + w = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = a− bi+ c− di

As such, we have established z+w = z + w. The proof for multiplication works similarly. The proof
that the conjugate works well with powers can be viewed as a repeated application of the product
rule, and is best proved using a technique called Mathematical Induction.7 The last property is a
characterization of real numbers. If z is real, then z = a+ 0i, so z = a− 0i = a = z. On the other
hand, if z = z, then a+ bi = a− bi which means b = −b so b = 0. Hence, z = a+ 0i = a and is real.

We now return to the business of zeros. Suppose we wish to find the zeros of f(x) = x2 − 2x+ 5.
To solve the equation x2 − 2x+ 5 = 0, we note the quadratic doesn’t factor nicely, so we resort to
the Quadratic Formula, Equation 2.5 and obtain

x =
−(−2)±

√
(−2)2 − 4(1)(5)

2(1)
=

2±
√
−16

2
=

2± 4i

2
= 1± 2i.

Two things are important to note. First, the zeros, 1 + 2i and 1 − 2i are complex conjugates.
If ever we obtain non-real zeros to a quadratic function with real coefficients, the zeros will be a
complex conjugate pair. (Do you see why?) Next, we note that in Example 3.4.1, part 6, we found
(x− [1 + 2i])(x− [1− 2i]) = x2− 2x+ 5. This demonstrates that the factor theorem holds even for
non-real zeros, i.e, x = 1 + 2i is a zero of f , and, sure enough, (x− [1 + 2i]) is a factor of f(x). It
turns out that polynomial division works the same way for all complex numbers, real and non-real
alike, and so the Factor and Remainder Theorems hold as well. But how do we know if a general
polynomial has any complex zeros at all? We have many examples of polynomials with no real

6Trust us on this.
7See Section 9.3.
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zeros. Can there be polynomials with no zeros whatsoever? The answer to that last question is
“No.” and the theorem which provides that answer is The Fundamental Theorem of Algebra.

Theorem 3.13. The Fundamental Theorem of Algebra: Suppose f is a polynomial function
with complex number coefficients of degree n ≥ 1, then f has at least one complex zero.

The Fundamental Theorem of Algebra is an example of an ‘existence’ theorem in mathematics. Like
the Intermediate Value Theorem, Theorem 3.1, the Fundamental Theorem of Algebra guarantees
the existence of at least one zero, but gives us no algorithm to use in finding it. In fact, as we
mentioned in Section 3.3, there are polynomials whose real zeros, though they exist, cannot be
expressed using the ‘usual’ combinations of arithmetic symbols, and must be approximated. The
authors are fully aware that the full impact and profound nature of the Fundamental Theorem
of Algebra is lost on most students this level, and that’s fine. It took mathematicians literally
hundreds of years to prove the theorem in its full generality, and some of that history is recorded
here. Note that the Fundamental Theorem of Algebra applies to polynomial functions with not
only real coefficients, but, those with complex number coefficients as well.

Suppose f is a polynomial of degree n with n ≥ 1. The Fundamental Theorem of Algebra guarantees
us at least one complex zero, z1, and, as such, the Factor Theorem guarantees that f(x) factors
as f(x) = (x− z1) q1(x) for a polynomial function q1, of degree exactly n − 1. If n − 1 ≥ 1, then
the Fundamental Theorem of Algebra guarantees a complex zero of q1 as well, say z2, and so the
Factor Theorem gives us q1(x) = (x− z2) q2(x), and hence f(x) = (x− z1) (x− z2) q2(x). We can
continue this process exactly n times, at which point our quotient polynomial qn has degree 0 so
it’s a constant. This argument gives us the following factorization theorem.

Theorem 3.14. Complex Factorization Theorem: Suppose f is a polynomial function with
complex number coefficients. If the degree of f is n and n ≥ 1, then f has exactly n complex
zeros, counting multiplicity. If z1, z2, . . . , zk are the distinct zeros of f , with multiplicities m1,
m2, . . . , mk, respectively, then f(x) = a (x− z1)

m1 (x− z2)
m2 · · · (x− zk)mk .

Note that the value a in Theorem 3.14 is the leading coefficient of f(x) (Can you see why?) and as
such, we see that a polynomial is completely determined by its zeros, their multiplicities, and its
leading coefficient. We put this theorem to good use in the next example.

Example 3.4.2. Let f(x) = 12x5 − 20x4 + 19x3 − 6x2 − 2x+ 1.

1. Find all complex zeros of f and state their multiplicities.

2. Factor f(x) using Theorem 3.14

Solution.

1. Since f is a fifth degree polynomial, we know we need to perform at least three successful
divisions to get the quotient down to a quadratic function. At that point, we can find the
remaining zeros using the Quadratic Formula, if necessary. Using the techniques developed
in Section 3.3, we get

http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
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1
2 12 −20 19 −6 −2 1

↓ 6 −7 6 0 −1
1
2 12 −14 12 0 −2 0

↓ 6 −4 4 2

−1
3 12 −8 8 4 0

↓ −4 4 −4

12 −12 12 0

Our quotient is 12x2 − 12x + 12, whose zeros we find to be 1±i
√

3
2 . From Theorem 3.14, we

know f has exactly 5 zeros, counting multiplicities, and as such we have the zero 1
2 with

multiplicity 2, and the zeros −1
3 , 1+i

√
3

2 and 1−i
√

3
2 , each of multiplicity 1.

2. Applying Theorem 3.14, we are guaranteed that f factors as

f(x) = 12

(
x− 1

2

)2(
x+

1

3

)(
x−

[
1 + i

√
3

2

])(
x−

[
1− i

√
3

2

])

A true test of Theorem 3.14 (and a student’s mettle!) would be to take the factored form of f(x)
in the previous example and multiply it out8 to see that it really does reduce to the formula f(x) =
12x5 − 20x4 + 19x3 − 6x2 − 2x+ 1. When factoring a polynomial using Theorem 3.14, we say that
it is factored completely over the complex numbers, meaning that it is impossible to factor
the polynomial any further using complex numbers. If we wanted to completely factor f(x) over
the real numbers then we would have stopped short of finding the nonreal zeros of f and factored
f using our work from the synthetic division to write f(x) =

(
x− 1

2

)2 (
x+ 1

3

) (
12x2 − 12x+ 12

)
,

or f(x) = 12
(
x− 1

2

)2 (
x+ 1

3

) (
x2 − x+ 1

)
. Since the zeros of x2 − x + 1 are nonreal, we call

x2 − x+ 1 an irreducible quadratic meaning it is impossible to break it down any further using
real numbers. The last two results of the section show us that, at least in theory, if we have a
polynomial function with real coefficients, we can always factor it down enough so that any nonreal
zeros come from irreducible quadratics.

Theorem 3.15. Conjugate Pairs Theorem: If f is a polynomial function with real number
coefficients and z is a zero of f , then so is z.

To prove the theorem, suppose f is a polynomial with real number coefficients. Specifically, let
f(x) = anx

n + an−1x
n−1 + . . . + a2x

2 + a1x + a0. If z is a zero of f , then f(z) = 0, which means
anz

n+an−1z
n−1 + . . .+a2z

2 +a1z+a0 = 0. Next, we consider f (z) and apply Theorem 3.12 below.

8You really should do this once in your life to convince yourself that all of the theory actually does work!
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f (z) = an (z)n + an−1 (z)n−1 + . . .+ a2 (z)2 + a1z + a0

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since (z)n = zn

= anzn + an−1zn−1 + . . .+ a2z2 + a1 z + a0 since the coefficients are real

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since z w = zw

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since z + w = z + w

= f(z)

= 0

= 0

This shows that z is a zero of f . So, if f is a polynomial function with real number coefficients,
Theorem 3.15 tells us if a + bi is a nonreal zero of f , then so is a − bi. In other words, nonreal
zeros of f come in conjugate pairs. The Factor Theorem kicks in to give us both (x− [a+ bi]) and
(x − [a − bi]) as factors of f(x) which means (x − [a + bi])(x − [a − bi]) = x2 + 2ax +

(
a2 + b2

)
is

an irreducible quadratic factor of f . As a result, we have our last result of the section.

Theorem 3.16. Real Factorization Theorem: Suppose f is a polynomial function with real
number coefficients. Then f(x) can be factored into a product of linear factors corresponding to
the real zeros of f and irreducible quadratic factors which give the nonreal zeros of f .

We now present an example which pulls together all of the major ideas of this section.

Example 3.4.3. Let f(x) = x4 + 64.

1. Use synthetic division to show x = 2 + 2i is a zero of f .

2. Find the remaining complex zeros of f .

3. Completely factor f(x) over the complex numbers.

4. Completely factor f(x) over the real numbers.

Solution.

1. Remembering to insert the 0’s in the synthetic division tableau we have

2 + 2i 1 0 0 0 64
↓ 2 + 2i 8i −16 + 16i −64

1 2 + 2i 8i −16 + 16i 0

2. Since f is a fourth degree polynomial, we need to make two successful divisions to get a
quadratic quotient. Since 2 + 2i is a zero, we know from Theorem 3.15 that 2 − 2i is also a
zero. We continue our synthetic division tableau.
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2 + 2i 1 0 0 0 64
↓ 2 + 2i 8i −16 + 16i −64

2− 2i 1 2 + 2i 8i −16 + 16i 0
↓ 2− 2i 8− 8i 16− 16i

1 4 8 0

Our quotient polynomial is x2 +4x+8. Using the quadratic formula, we obtain the remaining
zeros −2 + 2i and −2− 2i.

3. Using Theorem 3.14, we get f(x) = (x− [2− 2i])(x− [2 + 2i])(x− [−2 + 2i])(x− [−2− 2i]).

4. We multiply the linear factors of f(x) which correspond to complex conjugate pairs. We find
(x − [2 − 2i])(x − [2 + 2i]) = x2 − 4x + 8, and (x − [−2 + 2i])(x − [−2 − 2i]) = x2 + 4x + 8.
Our final answer f(x) =

(
x2 − 4x+ 8

) (
x2 + 4x+ 8

)
.

Our last example turns the tables and asks us to manufacture a polynomial with certain properties
of its graph and zeros.

Example 3.4.4. Find a polynomial p of lowest degree that has integer coefficients and satisfies all
of the following criteria:

• the graph of y = p(x) touches the x-axis at
(

1
3 , 0
)

• x = 3i is a zero of p.

• as x→ −∞, p(x)→ −∞

• as x→∞, p(x)→ −∞

Solution. To solve this problem, we will need a good understanding of the relationship between
the x-intercepts of the graph of a function and the zeros of a function, the Factor Theorem, the
role of multiplicity, complex conjugates, the Complex Factorization Theorem, and end behavior of
polynomial functions. (In short, you’ll need most of the major concepts of this chapter.) Since the
graph of p touches the x-axis at

(
1
3 , 0
)
, we know x = 1

3 is a zero of even multiplicity. Since we
are after a polynomial of lowest degree, we need x = 1

3 to have multiplicity exactly 2. The Factor

Theorem now tells us
(
x− 1

3

)2
is a factor of p(x). Since x = 3i is a zero and our final answer is to

have integer (real) coefficients, x = −3i is also a zero. The Factor Theorem kicks in again to give us
(x−3i) and (x+3i) as factors of p(x). We are given no further information about zeros or intercepts

so we conclude, by the Complex Factorization Theorem that p(x) = a
(
x− 1

3

)2
(x− 3i)(x+ 3i) for

some real number a. Expanding this, we get p(x) = ax4− 2a
3 x

3 + 82a
9 x2−6ax+a. In order to obtain

integer coefficients, we know a must be an integer multiple of 9. Our last concern is end behavior.
Since the leading term of p(x) is ax4, we need a < 0 to get p(x)→ −∞ as x→ ±∞. Hence, if we
choose x = −9, we get p(x) = −9x4 + 6x3 − 82x2 + 54x − 9. We can verify our handiwork using
the techniques developed in this chapter.
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This example concludes our study of polynomial functions.9 The last few sections have contained
what is considered by many to be ‘heavy’ mathematics. Like a heavy meal, heavy mathematics
takes time to digest. Don’t be overly concerned if it doesn’t seem to sink in all at once, and pace
yourself on the exercises or you’re liable to get mental cramps. But before we get to the exercises,
we’d like to offer a bit of an epilogue.

Our main goal in presenting the material on the complex zeros of a polynomial was to give the
chapter a sense of completeness. Given that it can be shown that some polynomials have real zeros
which cannot be expressed using the usual algebraic operations, and still others have no real zeros
at all, it was nice to discover that every polynomial of degree n ≥ 1 has n complex zeros. So like
we said, it gives us a sense of closure. But the observant reader will note that we did not give any
examples of applications which involve complex numbers. Students often wonder when complex
numbers will be used in ‘real-world’ applications. After all, didn’t we call i the imaginary unit?
How can imaginary things be used in reality? It turns out that complex numbers are very useful in
many applied fields such as fluid dynamics, electromagnetism and quantum mechanics, but most
of the applications require Mathematics well beyond College Algebra to fully understand them.
That does not mean you’ll never be be able to understand them; in fact, it is the authors’ sincere
hope that all of you will reach a point in your studies when the glory, awe and splendor of complex
numbers are revealed to you. For now, however, the really good stuff is beyond the scope of this
text. We invite you and your classmates to find a few examples of complex number applications
and see what you can make of them. A simple Internet search with the phrase ‘complex numbers in
real life’ should get you started. Basic electronics classes are another place to look, but remember,
they might use the letter j where we have used i.

For the remainder of the text, with the exception of Section 11.7 and a few exploratory exercises
scattered about, we will restrict our attention to real numbers. We do this primarily because
the first Calculus sequence you will take, ostensibly the one that this text is preparing you for,
studies only functions of real variables. Also, lots of really cool scientific things don’t require any
deep understanding of complex numbers to study them, but they do need more Mathematics like
exponential, logarithmic and trigonometric functions. We believe it makes more sense pedagogically
for you to learn about those functions now then take a course in Complex Function Theory in your
junior or senior year once you’ve completed the Calculus sequence. It is in that course that the
true power of the complex numbers is released. But for now, in order to fully prepare you for life
immediately after College Algebra, we will say that functions like f(x) = 1

x2+1
have a domain of all

real numbers, even though we know x2 +1 = 0 has two complex solutions, namely x = ±i. Because
x2 + 1 > 0 for all real numbers x, the fraction 1

x2+1
is never undefined in the real variable setting.

9With the exception of the exercises on the next page, of course.
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3.4.1 Exercises

1. We know i2 = −1 which means i3 = i2 · i = (−1) · i = −i and i4 = i2 · i2 = (−1)(−1) = 1.
Use this information to simplify the following.

(a) i5 (b) i304 (c) (2i)3 (d) (−i)23

2. Let z = 3 + 4i and w = 2− i. Compute the following and express your answer in a+ bi form.

(a) z + w

(b) w − z

(c) z · w

(d)
z

w

(e)
w

z

(f) w3

3. Simplify the following.

(a)
√
−49

(b)
√
−9
√
−16

(c)
√

(−9)(−16)

(d)
√

49
√
−4

4. Find the complex solutions of the following quadratic equations.

(a) x2 − 4x+ 13 = 0 (b) 3x2 + 2x+ 10 = 0

5. For each polynomial given below find all of its zeros, completely factor it over the real numbers
and completely factor it over the complex numbers.

(a) x2 − 2x+ 5

(b) x3 − 2x2 + 9x− 18

(c) x3 + 6x2 + 6x+ 5

(d) 3x3 − 13x2 + 43x− 13

(e) x4 + 9x2 + 20

(f) 4x4 − 4x3 + 13x2 − 12x+ 3

(g) x3 + 3x2 + 4x+ 12

(h) 2x4 − 7x3 + 14x2 − 15x+ 6

(i) 4x3 − 6x2 − 8x+ 15

(j) x4 + x3 + 7x2 + 9x− 18

(k) 6x4 + 17x3 − 55x2 + 16x+ 12

(l) x5 − x4 + 7x3 − 7x2 + 12x− 12

(m) x3 + 7x2 + 9x− 2

(n) −3x4 − 8x3 − 12x2 − 12x− 5

(o) 8x4 + 50x3 + 43x2 + 2x− 4

(p) 9x3 + 2x+ 1

(q) x4 − 2x3 + 27x2 − 2x+ 26 (Hint: x = i is one of the zeros.)

(r) 2x4 + 5x3 + 13x2 + 7x+ 5 (Hint: x = −1 + 2i is a zero.)

6. Let z and w be arbitrary complex numbers. Show that z w = zw and z = z.

7. With the help of your classmates, build a polynomial p with integer coefficients such that
x = −2 − i is a zero of p, p has a local maximum at the point (4, 0) and p(x) → −∞ as
x→∞
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3.4.2 Answers

1. (a) i5 = i4 · i = 1 · i = i

(b) i304 = (i4)76 = 176 = 1

(c) (2i)3 = 8i3 = −8i

(d) (−i)23 = −i23 = −i20 · i3 = (−1)(−i) = i

2. (a) z + w = 5 + 3i

(b) w − z = −1− 5i

(c) z · w = 10 + 5i

(d)
z

w
=

2

5
+

11

5
i

(e)
w

z
=

2

25
− 11

25
i

(f) w3 = 2− 11i

3. (a)
√
−49 = 7i

(b)
√
−9
√
−16 = (3i) · (4i) = 12i2 = −12

(c)
√

(−9)(−16) =
√

144 = 12

(d)
√

49
√
−4 = 7 · 2i = 14i

4. (a) x = 2± 3i
(b) x = −1

3
±
√

29

3
i

5. (a) x2 − 2x+ 5 = (x− (1 + 2i))(x− (1− 2i))
Zeros: x = 1± 2i

(b) x3 − 2x2 + 9x− 18 = (x− 2)
(
x2 + 9

)
= (x− 2)(x− 3i)(x+ 3i)

Zeros: x = 2,±3i

(c) x3+6x2+6x+5 = (x+5)(x2+x+1) = (x+5)

(
x−

(
−1

2
+

√
3

2
i

))(
x−

(
−1

2
−
√

3

2
i

))
Zeros: x = −5, x = −1

2
±
√

3

2
i

(d) 3x3 − 13x2 + 43x− 13 = (3x− 1)(x2 − 4x+ 13) = (3x− 1)(x− (2 + 3i))(x− (2− 3i))

Zeros: x =
1

3
, x = 2± 3i

(e) x4 + 9x2 + 20 =
(
x2 + 4

) (
x2 + 5

)
= (x− 2i)(x+ 2i)

(
x− i

√
5
) (
x+ i

√
5
)

Zeros: x = ±2i,±i
√

5

(f) 4x4 − 4x3 + 13x2 − 12x+ 3 =
(
x− 1

2

)2 (
4x2 + 12

)
= 4

(
x− 1

2

)2
(x+ i

√
3)(x− i

√
3)

Zeros: x =
1

2
, x = ±

√
3i

(g) x3 + 3x2 + 4x+ 12 = (x+ 3)
(
x2 + 4

)
= (x+ 3)(x+ 2i)(x− 2i)

Zeros: x = −3, ±2i

(h) 2x4 − 7x3 + 14x2 − 15x+ 6 = (x− 1)2
(
2x2 − 3x+ 6

)
= 2(x− 1)2

(
x−

(
3

4
+

√
39

4
i

))(
x−

(
3

4
−
√

39

4
i

))
Zeros: x = 1, x =

3

4
±
√

39

4
i
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(i) 4x3 − 6x2 − 8x+ 15 =

(
x+

3

2

)(
4x2 − 12x+ 10

)
=

4

(
x+

3

2

)(
x−

(
3

2
+

1

2
i

))(
x−

(
3

2
− 1

2
i

))
Zeros: x = −3

2
, x =

3

2
± 1

2
i

(j) x4 + x3 + 7x2 + 9x− 18 = (x+ 2)(x− 1)
(
x2 + 9

)
= (x+ 2)(x− 1)(x+ 3i)(x− 3i)

Zeros: x = −2, 1, ±3i

(k) 6x4+17x3−55x2+16x+12 = 6

(
x+

1

3

)(
x− 3

2

)(
x−

(
−2 + 2

√
2
)) (

x−
(
−2− 2

√
2
))

Zeros: x = −1

3
, x =

3

2
, x = −2± 2

√
2

(l) x5 − x4 + 7x3 − 7x2 + 12x− 12 = (x− 1)
(
x2 + 3

) (
x2 + 4

)
= (x− 1)(x− i

√
3)(x+ i

√
3)(x− 2i)(x+ 2i)

Zeros: x = 1, ±
√

3i, ±2i

(m) x3 + 7x2 + 9x− 2 = (x+ 2)

(
x−

(
−5

2
+

√
29

2

))(
x−

(
−5

2
−
√

29

2

))
Zeros: x = −2, x = −5

2
±
√

29

2
(n) −3x4 − 8x3 − 12x2 − 12x− 5 = (x+ 1)2

(
−3x2 − 2x− 5

)
= −3(x+ 1)2

(
x−

(
−1

3
+

√
14

3
i

))(
x−

(
−1

3
−
√

14

3
i

))
Zeros: x = −1, x = −1

3
±
√

14

3
i

(o) 8x4 + 50x3 + 43x2 + 2x− 4 = 8

(
x+

1

2

)(
x− 1

4

)
(x− (−3 +

√
5))(x− (−3−

√
5))

Zeros: x = −1

2
,

1

4
, x = −3±

√
5

(p) 9x3 + 2x+ 1 =

(
x+

1

3

)(
9x2 − 3x+ 3

)
= 9

(
x+

1

3

)(
x−

(
1

6
+

√
11

6
i

))(
x−

(
1

6
−
√

11

6
i

))
Zeros: x = −1

3
, x =

1

6
±
√

11

6
i

(q) x4−2x3 +27x2−2x+26 = (x2−2x+26)(x2 +1) = (x−(1+5i))(x−(1−5i))(x+i)(x−i)
Zeros: x = 1± 5i, x = ±i

(r) 2x4 + 5x3 + 13x2 + 7x+ 5 =
(
x2 + 2x+ 5

) (
2x2 + x+ 1

)
=

2(x− (−1 + 2i))(x− (−1− 2i))

(
x−

(
−1

4
+ i

√
7

4

))(
x−

(
−1

4
− i
√

7

4

))
Zeros: x = −1± 2i,−1

4
± i
√

7

4
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Chapter 4

Rational Functions

4.1 Introduction to Rational Functions

If we add, subtract or multiply polynomial functions according to the function arithmetic rules
defined in Section 1.6, we will produce another polynomial function. If, on the other hand, we
divide two polynomial functions, the result may not be a polynomial. In this chapter we study
rational functions - functions which are ratios of polynomials.

Definition 4.1. A rational function is a function which is the ratio of polynomial functions.
Said differently, r is a rational function if it is of the form

r(x) =
p(x)

q(x)
,

where p and q are polynomial functionsa

aAccording to this definition, all polynomial functions are also rational functions. (Take q(x) = 1).

As we recall from Section 1.5, we have domain issues anytime the denominator of a fraction is
zero. In the example below, we review this concept as well as some of the arithmetic of rational
expressions.

Example 4.1.1. Find the domain of the following rational functions. Write them in the form p(x)
q(x)

for polynomial functions p and q and simplify.

1. f(x) =
2x− 1

x+ 1

2. g(x) = 2− 3

x+ 1

3. h(x) =
2x2 − 1

x2 − 1
− 3x− 2

x2 − 1

4. r(x) =
2x2 − 1

x2 − 1
÷ 3x− 2

x2 − 1

Solution.

1. To find the domain of f , we proceed as we did in Section 1.5: we find the zeros of the
denominator and exclude them from the domain. Setting x+1 = 0 results in x = −1. Hence,
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our domain is (−∞,−1)∪ (−1,∞). The expression f(x) is already in the form requested and
when we check for common factors among the numerator and denominator we find none, so
we are done.

2. Proceeding as before, we determine the domain of g by solving x+ 1 = 0. As before, we find
the domain of g is (−∞,−1) ∪ (−1,∞). To write g(x) in the form requested, we need to get
a common denominator

g(x) = 2− 3

x+ 1

=
2

1
− 3

x+ 1

=
(2)(x+ 1)

(1)(x+ 1)
− 3

x+ 1

=
(2x+ 2)− 3

x+ 1

=
2x− 1

x+ 1

This formula is also completely simplified.

3. The denominators in the formula for h(x) are both x2 − 1 whose zeros are x = ±1. As a
result, the domain of h is (−∞,−1) ∪ (−1, 1) ∪ (1,∞). We now proceed to simplify h(x).
Since we have the same denominator in both terms, we subtract the numerators. We then
factor the resulting numerator and denominator, and cancel out the common factor.

h(x) =
2x2 − 1

x2 − 1
− 3x− 2

x2 − 1

=

(
2x2 − 1

)
− (3x− 2)

x2 − 1

=
2x2 − 1− 3x+ 2

x2 − 1

=
2x2 − 3x+ 1

x2 − 1

=
(2x− 1)(x− 1)

(x+ 1)(x− 1)

=
(2x− 1)���

�(x− 1)

(x+ 1)���
�(x− 1)

=
2x− 1

x+ 1
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4. To find the domain of r, it may help to temporarily rewrite r(x) as

r(x) =

2x2 − 1

x2 − 1
3x− 2

x2 − 1

We need to set all of the denominators equal to zero which means we need to solve not only
x2 − 1 = 0, but also 3x−2

x2−1
= 0. We find x = ±1 for the former and x = 2

3 for the latter. Our

domain is (−∞,−1)∪
(
−1, 2

3

)
∪
(

2
3 , 1
)
∪ (1,∞). We simplify r(x) by rewriting the division as

multiplication by the reciprocal and then simplifying

r(x) =
2x2 − 1

x2 − 1
÷ 3x− 2

x2 − 1

=
2x2 − 1

x2 − 1
· x

2 − 1

3x− 2

=

(
2x2 − 1

) (
x2 − 1

)
(x2 − 1) (3x− 2)

=

(
2x2 − 1

)
���

��(
x2 − 1

)
���

��(
x2 − 1

)
(3x− 2)

=
2x2 − 1

3x− 2

A few remarks about Example 4.1.1 are in order. Note that the expressions for f(x), g(x) and
h(x) work out to be the same. However, only two of these functions are actually equal. Recall that
functions are ultimately sets of ordered pairs,1 and so for two functions to be equal, they need,
among other things, to have the same domain. Since f(x) = g(x) and f and g have the same
domain, they are equal functions. Even though the formula h(x) is the same as f(x), the domain
of h is different than the domain of f , and thus they are different functions.

We now turn our attention to the graphs of rational functions. Consider the function f(x) = 2x−1
x+1

from Example 4.1.1. Using a graphing calculator, we obtain

1You should review Sections 1.2 and 1.4 if this statement caught you off guard.
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Two behaviors of the graph are worthy of further discussion. First, note that the graph appears
to ‘break’ at x = −1. We know from our last example that x = −1 is not in the domain of f
which means f(−1) is undefined. When we make a table of values to study the behavior of f near
x = −1 we see that we can get ‘near’ x = −1 from two directions. We can choose values a little
less than −1, for example x = −1.1, x = −1.01, x = −1.001, and so on. These values are said to
‘approach −1 from the left.’ Similarly, the values x = −0.9, x = −0.99, x = −0.999, etc., are said
to ‘approach −1 from the right.’ If we make two tables, we find that the numerical results confirm
what we see graphically.

x f(x) (x, f(x))

−1.1 32 (−1.1, 32)

−1.01 302 (−1.01, 302)

−1.001 3002 (−1.001, 3002)

−1.0001 30002 (−1.001, 30002)

x f(x) (x, f(x))

−0.9 −28 (−0.9,−28)

−0.99 −298 (−0.99,−298)

−0.999 −2998 (−0.999,−2998)

−0.9999 −29998 (−0.9999,−29998)

As the x values approach −1 from the left, the function values become larger and larger positive
numbers.2 We express this symbolically by stating as x → −1−, f(x) → ∞. Similarly, using
analogous notation, we conclude from the table that as x → −1+, f(x) → −∞. For this type of
unbounded behavior, we say the graph of y = f(x) has a vertical asymptote of x = −1. Roughly
speaking, this means that near x = −1, the graph looks very much like the vertical line x = −1.

Another feature worthy of note about the graph of y = f(x) is it seems to ‘level off’ on the left and
right hand sides of the screen. This is a statement about the end behavior of the function. As we
discussed in Section 3.1, the end behavior of a function is its behavior as x as x attains larger3 and
larger negative values without bound, x → −∞, and as x becomes large without bound, x → ∞.
Making tables of values, we find

x f(x) (x, f(x))

−10 ≈ 2.3333 ≈ (−10, 2.3333)

−100 ≈ 2.0303 ≈ (−100, 2.0303)

−1000 ≈ 2.0030 ≈ (−1000, 2.0030)

−10000 ≈ 2.0003 ≈ (−10000, 2.0003)

x f(x) (x, f(x))

10 ≈ 1.7273 ≈ (10, 1.7273)

100 ≈ 1.9703 ≈ (100, 1.9703)

1000 ≈ 1.9970 ≈ (1000, 1.9970)

10000 ≈ 1.9997 ≈ (10000, 1.9997)

From the tables, we see as x → −∞, f(x) → 2+ and as x → ∞, f(x) → 2−. Here the ‘+’ means
‘from above’ and the ‘−’ means ‘from below’. In this case, we say the graph of y = f(x) has a
horizontal asymptote of y = 2. This means that the end behavior of f resembles the horizontal
line y = 2, which explains the ‘leveling off’ behavior we see in the calculator’s graph. We formalize
the concepts of vertical and horizontal asymptotes in the following definitions.

Definition 4.2. The line x = c is called a vertical asymptote of the graph of a function
y = f(x) if as x→ c− or as x→ c+, either f(x)→∞ or f(x)→ −∞.

2We would need Calculus to confirm this analytically.
3Here, the word ‘larger’ means larger in absolute value.
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Definition 4.3. The line y = c is called a horizontal asymptote of the graph of a function
y = f(x) if as x→ −∞ or as x→∞, either f(x)→ c− or f(x)→ c+.

In our discussion following Example 4.1.1, we determined that, despite the fact that the formula for
h(x) reduced to the same formula as f(x), the functions f and h are different, since x = 1 is in the

domain of f , but x = 1 is not in the domain of h. If we graph h(x) = 2x2−1
x2−1

− 3x−2
x2−1

using a graphing
calculator, we are surprised to find that the graph looks identical to the graph of y = f(x). There
is a vertical asymptote at x = −1, but near x = 1, everything seem fine. Tables of values provide
numerical evidence which supports the graphical observation.

x h(x) (x, h(x))

0.9 ≈ 0.4210 ≈ (0.9, 0.4210)

0.99 ≈ 0.4925 ≈ (0.99, 0.4925)

0.999 ≈ 0.4992 ≈ (0.999, 0.4992)

0.9999 ≈ 0.4999 ≈ (0.9999, 0.4999)

x h(x) (x, h(x))

1.1 ≈ 0.5714 ≈ (1.1, 0.5714)

1.01 ≈ 0.5075 ≈ (1.01, 0.5075)

1.001 ≈ 0.5007 ≈ (1.001, 0.5007)

1.0001 ≈ 0.5001 ≈ (1.0001, 0.5001)

We see that as x → 1−, h(x) → 0.5− and as x → 1+, h(x) → 0.5+. In other words, the points on
the graph of y = h(x) are approaching (1, 0.5), but since x = 1 is not in the domain of h, it would
be inaccurate to fill in a point at (1, 0.5). As we’ve done in past sections when something like this
occurs,4 we put an open circle (also called a ‘hole’ in this case5) at (1, 0.5). Below is a detailed
graph of y = h(x), with the vertical and horizontal asymptotes as dashed lines.

x

y

−4 −3 −2 1 2 3 4

−1

−2

−3

−4

−5

−6

1

3

4

5

6

7

8

4For instance, graphing piecewise defined functions in Section 1.7.
5Stay tuned. In Calculus, we will see how these ‘holes’ can be ‘plugged’ when embarking on a more advanced

study of continuity.
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Neither x = −1 nor x = 1 are in the domain of h, yet we see the behavior of the graph of y = h(x)
is drastically different near these points. The reason for this lies in the second to last step when we
simplified the formula for h(x) in Example 4.1.1. We had h(x) = (2x−1)(x−1)

(x+1)(x−1) . The reason x = −1 is

not in the domain of h is because the factor (x+ 1) appears in the denominator of h(x); similarly,
x = 1 is not in the domain of h because of the factor (x−1) in the denominator of h(x). The major
difference between these two factors is that (x− 1) cancels with a factor in the numerator whereas
(x + 1) does not. Loosely speaking, the trouble caused by (x − 1) in the denominator is canceled
away while the factor (x + 1) remains to cause mischief. This is why the graph of y = h(x) has
a vertical asymptote at x = −1 but only a hole at x = 1. These observations are generalized and
summarized in the theorem below, whose proof is found in Calculus.

Theorem 4.1. Location of Vertical Asymptotes and Holes:a Suppose r is a rational function
which can be written as r(x) = p(x)

q(x) where p and q have no common zeros.b Let c be a real number
which is not in the domain of r.

• If q(c) 6= 0, then the graph of y = r(x) has a hole at
(
c, p(c)q(c)

)
.

• If q(c) = 0, then the the line x = c is a vertical asymptote of the graph of y = r(x).

aOr, ‘How to tell your asymptote from a hole in the graph.’
bIn other words, r(x) is in lowest terms.

In English, Theorem 4.1 says if x = c is not in the domain of r but, when we simplify r(x), it
no longer makes the denominator 0, then we have a hole at x = c. Otherwise, we have a vertical
asymptote.

Example 4.1.2. Find the vertical asymptotes of, and/or holes in, the graphs of the following
rational functions. Verify your answers using a graphing calculator.

1. f(x) =
2x

x2 − 3

2. g(x) =
x2 − x− 6

x2 − 9

3. h(x) =
x2 − x− 6

x2 + 9

4. r(x) =
x2 − x− 6

x2 + 4x+ 4

Solution.

1. To use Theorem 4.1, we first find all of the real numbers which aren’t in the domain of f . To
do so, we solve x2 − 3 = 0 and get x = ±

√
3. Since the expression f(x) is in lowest terms,

there is no cancellation possible, and we conclude that the lines x = −
√

3 and x =
√

3 are
vertical asymptotes to the graph of y = f(x). The calculator verifies this claim.

2. Solving x2 − 9 = 0 gives x = ±3. In lowest terms g(x) = x2−x−6
x2−9

= (x−3)(x+2)
(x−3)(x+3) = x+2

x+3 . Since
x = −3 continues to make trouble in the denominator, we know the line x = −3 is a vertical
asymptote of the graph of y = g(x). Since x = 3 no longer produces a 0 in the denominator,
we have a hole at x = 3. To find the y-coordinate of the hole, we substitute x = 3 into x+2

x+3
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and find the hole is at
(
3, 5

6

)
. When we graph y = g(x) using a calculator, we clearly see the

vertical asymptote at x = −3, but everything seems calm near x = 3.

The graph of y = f(x) The graph of y = g(x)

3. The domain of h is all real numbers, since x2 + 9 = 0 has no real solutions. Accordingly, the
graph of y = h(x) is devoid of both vertical asymptotes and holes.

4. Setting x2 + 4x + 4 = 0 gives us x = −2 as the only real number of concern. Simplifying,
we see r(x) = x2−x−6

x2+4x+4
= (x−3)(x+2)

(x+2)2 = x−3
x+2 . Since x = −2 continues to produce a 0 in the

denominator of the reduced function, we know x = −2 is a vertical asymptote to the graph,
which the calculator confirms.

The graph of y = h(x) The graph of y = r(x)

Our next example gives us a physical interpretation of a vertical asymptote. This type of model
arises from a family of equations cheerily named ‘doomsday’ equations.6 The unfortunate name
will make sense shortly.

Example 4.1.3. A mathematical model for the population P , in thousands, of a certain species of
bacteria, t days after it is introduced to an environment is given by P (t) = 100

(5−t)2 , 0 ≤ t < 5.

1. Find and interpret P (0).

2. When will the population reach 100,000?

6This is a class of Calculus equations in which a population grows very rapidly.
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3. Determine the behavior of P as t → 5−. Interpret this result graphically and within the
context of the problem.

Solution.

1. Substituting t = 0 gives P (0) = 100
(5−0)2 = 4, which means 4000 bacteria are initially introduced

into the environment.

2. To find when the population reaches 100,000, we first need to remember that P (t) is measured
in thousands. In other words, 100,000 bacteria corresponds to P (t) = 100. Substituting
for P (t) gives the equation 100

(5−t)2 = 100. Clearing denominators and dividing by 100 gives

(5 − t)2 = 1, which, after extracting square roots, produces t = 4 or t = 6. Of these two
solutions, only t = 4 in in our domain, so this is the solution we keep. Hence, it takes 4 days
for the population of bacteria to reach 100,000.

3. To determine the behavior of P as t→ 5−, we can make a table

t P (t)

4.9 10000

4.99 1000000

4.999 100000000

4.9999 10000000000

In other words, as t → 5−, P (t) → ∞. Graphically, the line t = 5 is a vertical asymptote of
the graph of y = P (t). Physically, this means the population of bacteria is increasing without
bound as we near 5 days, which cannot physically happen. For this reason, t = 5 is called
the ‘doomsday’ for this population. There is no way any environment can support infinitely
many bacteria, so shortly before t = 5 the environment would collapse.

Now that we have thoroughly investigated vertical asymptotes, we now turn our attention to
horizontal asymptotes. The next theorem tells us when to expect horizontal asymptotes.

Theorem 4.2. Location of Horizontal Asymptotes: Suppose r is a rational function and
r(x) = p(x)

q(x) , where p and q are polynomial functions with leading coefficients a and b, respectively.

• If the degree of p(x) is the same as the degree of q(x), then y = a
b is thea horizontal asymptote

of the graph of y = r(x).

• If the degree of p(x) is less than the degree of q(x), then y = 0 is the horizontal asymptote
of the graph of y = r(x).

• If the degree of p(x) is greater than the degree of q(x), then the graph of y = r(x) has no
horizontal asymptotes.

aThe use of the definite article will be justified momentarily.
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Like Theorem 4.1, Theorem 4.2 is proved using Calculus. Nevertheless, we can understand the idea
behind it using our example f(x) = 2x−1

x+1 . If we interpret f(x) as a division problem, (2x−1)÷(x+1),
we find the quotient is 2 with a remainder of −3. Using what we know about polynomial division,
specifically Theorem 3.4, we get 2x − 1 = 2(x + 1) − 3. Dividing both sides by (x + 1) gives
2x−1
x+1 = 2− 3

x+1 . (You may remember this as the formula for g(x) in Example 4.1.1.) As x becomes

unbounded in either direction, the quantity 3
x+1 gets closer and closer to zero so that the values of

f(x) become closer and closer to 2. In symbols, as x → ±∞, f(x) → 2, and we have the result.7

Notice that the graph gets close to the same y value as x → −∞ or x → ∞. This means that
the graph can have only one horizontal asymptote if it is going to have one at all. Thus we were
justified in using ‘the’ in the previous theorem. (By the way, using long division to determine the
asymptote will serve us well in the next section so you might want to review that topic.)

Alternatively, we can use what we know about end behavior of polynomials to help us understand
this theorem. From Theorem 3.2, we know the end behavior of a polynomial is determined by its
leading term. Applying this to the numerator and denominator of f(x), we get that as x → ±∞,
f(x) = 2x−1

x+1 ≈
2x
x = 2. This last approach is useful in Calculus, and, indeed, is made rigorous there.

(Keep this in mind for the remainder of this paragraph.) Applying this reasoning to the general

case, suppose r(x) = p(x)
q(x) where a is the leading coefficient of p(x) and b is the leading coefficient

of q(x). As x → ±∞, r(x) ≈ axn

bxm , where n and m are the degrees of p(x) and q(x), respectively.
If the degree of p(x) and the degree of q(x) are the same, then n = m so that r(x) ≈ a

b , which
means y = a

b is the horizontal asymptote in this case. If the degree of p(x) is less than the degree
of q(x), then n < m, so m− n is a positive number, and hence, r(x) ≈ a

bxm−n → 0 as x→ ±∞. If
the degree of p(x) is greater than the degree of q(x), then n > m, and hence n −m is a positive

number and r(x) ≈ axn−m

b , which becomes unbounded as x→ ±∞. As we said before, if a rational
function has a horizontal asymptote, then it will have only one. (This is not true for other types
of functions we shall see in later chapters.)

Example 4.1.4. Determine the horizontal asymptotes, if any, of the graphs of the following func-
tions. Verify your answers using a graphing calculator.

1. f(x) =
5x

x2 + 1 2. g(x) =
x2 − 4

x+ 1
3. h(x) =

6x3 − 3x+ 1

5− 2x3

Solution.

1. The numerator of f(x) is 5x, which is degree 1. The denominator of f(x) is x2 + 1, which
is degree 2. Applying Theorem 4.2, y = 0 is the horizontal asymptote. Sure enough, as
x→ ±∞, the graph of y = f(x) gets closer and closer to the x-axis.

2. The numerator of g(x), x2−4, is degree 2, but the degree of the denominator, x+1, is degree
1. By Theorem 4.2, there is no horizontal asymptote. From the graph, we see the graph of

7Note that as x → −∞, f(x) → 2+, whereas as x → ∞, f(x) → 2−. We write f(x) → 2 if we are unconcerned
from which direction the function values f(x) approach the number 2.
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y = g(x) doesn’t appear to level off to a constant value, so there is no horizontal asymptote.8

3. The degrees of the numerator and denominator of h(x) are both three, so Theorem 4.2 tells
us y = 6

−2 = −3 is the horizontal asymptote. The calculator confirms this.

The graph of y = f(x) The graph of y = g(x) The graph of y = h(x)

Our last example of the section gives us a real-world application of a horizontal asymptote. Though
the population below is more accurately modeled with the functions in Chapter 6, we approximate
it9 using a rational function.

Example 4.1.5. The number of students, N , at local college who have had the flu t months after
the semester begins can be modeled by the formula N(t) = 500− 450

1+3t for t ≥ 0.

1. Find and interpret N(0).

2. How long will it take until 300 students will have had the flu?

3. Determine the behavior of N as t → ∞. Interpret this result graphically and within the
context of the problem.

Solution.

1. N(0) = 500 − 450
1+3(0) = 50. This means that at the beginning of the semester, 50 students

have had the flu.

2. We set N(t) = 300 to get 500− 450
1+3t = 300 and solve. Isolating the fraction gives 450

1+3t = 200.

Clearing denominators gives 450 = 200(1 + 3t). Finally, we get t = 5
12 . This means it will

take 5
12 months, or about 13 days, for 300 students to have had the flu.

3. To determine the behavior of N as t→∞, we can use a table.

8The graph does, however, seem to resemble a non-constant line as x → ±∞. We will discuss this phenomenon
in the next section.

9Using techniques you’ll see in Calculus.
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t N(t)

10 ≈ 485.48

100 ≈ 498.50

1000 ≈ 499.85

10000 ≈ 499.98

The table suggests that as t → ∞, N(t) → 500. (More specifically, 500−.) This means as
time goes by, only a total of 500 students will have ever had the flu.
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4.1.1 Exercises

1. For each rational function f given below:

• Find the domain of f .

• Identify any vertical asymptotes of the graph of y = f(x) and describe the behavior of
the graph near them using proper notation.

• Identify any holes in the graph.

• Find the horizontal asymptote, if it exists, and describe the end behavior of f using
proper notation.

(a) f(x) =
x

3x− 6

(b) f(x) =
3 + 7x

5− 2x

(c) f(x) =
x

x2 + x− 12

(d) f(x) =
x

x2 + 1

(e) f(x) =
x+ 7

(x+ 3)2

(f) f(x) =
x3 + 1

x2 − 1

(g) f(x) =
4x

x2 + 4

(h) f(x) =
4x

x2 − 4

(i) f(x) =
x2 − x− 12

x2 + x− 6

(j) f(x) =
3x2 − 5x− 2

x2 − 9

(k) f(x) =
x3 + 2x2 + x

x2 − x− 2

2. In Exercise 11 in Section 1.5, the population of Sasquatch in Portage County was modeled
by the function P (t) = 150t

t+15 , where t = 0 represents the year 1803. Find the horizontal
asymptote of the graph of y = P (t) and explain what it means.

3. In Exercise 8 in Section 3.1, we fit a few polynomial models to the following electric circuit
data. (The circuit was built with a variable resistor. For each of the following resistance values
(measured in kilo-ohms, kΩ), the corresponding power to the load (measured in milliwatts,
mW ) is given in the table below.)10

Resistance: (kΩ) 1.012 2.199 3.275 4.676 6.805 9.975

Power: (mW ) 1.063 1.496 1.610 1.613 1.505 1.314

Using some fundamental laws of circuit analysis mixed with a healthy dose of algebra, we can
derive the actual formula relating power to resistance. For this circuit, it is P (x) = 25x

(x+3.9)2 ,

where x is the resistance value, x ≥ 0.

(a) Graph the data along with the function y = P (x) on your calculator.

(b) Approximate the maximum power that can be delivered to the load. What is the corre-
sponding resistance value?

(c) Find and interpret the end behavior of P (x) as x→∞.

10The authors wish to thank Don Anthan and Ken White of Lakeland Community College for devising this problem
and generating the accompanying data set.
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4. In his now famous 1919 dissertation The Learning Curve Equation, Louis Leon Thurstone
presents a rational function which models the number of words a person can type in four
minutes as a function of the number of pages of practice one has completed. (This paper,
which is now in the public domain and can be found here, is from a bygone era when students
at business schools took typing classes on manual typewriters.) Using his original notation

and original language, we have Y = L(X+P )
(X+P )+R where L is the predicted practice limit in terms

of speed units, X is pages written, Y is writing speed in terms of words in four minutes, P is
equivalent previous practice in terms of pages and R is the rate of learning. In Figure 5 of the
paper, he graphs a scatter plot and the curve Y = 216(X+19)

X+148 . Discuss this equation with your
classmates. How would you update the notation? Explain what the horizontal asymptote of
the graph means. You should take some time to look at the original paper. Skip over the
computations you don’t understand yet and try to get a sense of the time and place in which
the study was conducted.

http://books.google.com/books?id=pb5BAAAAIAAJ&dq=Louis+Leon+Thurstone&printsec=frontcover&source=an&hl=en&ei=Ev_bSaeKGInEMbmM9OQN&sa=X&oi=book_result&ct=result&resnum=6#PPP1,M1
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4.1.2 Answers

1. (a) f(x) =
x

3x− 6
Domain: (−∞, 2) ∪ (2,∞)
Vertical asymptote: x = 2
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 1

3

As x→ −∞, f(x)→ 1
3

−

As x→∞, f(x)→ 1
3

+

(b) f(x) =
3 + 7x

5− 2x
Domain: (−∞, 5

2) ∪ (5
2 ,∞)

Vertical asymptote: x = 5
2

As x→ 5
2

−
, f(x)→∞

As x→ 5
2

+
, f(x)→ −∞

No holes in the graph
Horizontal asymptote: y = −7

2

As x→ −∞, f(x)→ −7
2

+

As x→∞, f(x)→ −7
2

−

(c) f(x) =
x

x2 + x− 12
=

x

(x+ 4)(x− 3)
Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
Vertical asymptotes: x = −4, x = 3
As x→ −4−, f(x)→ −∞
As x→ −4+, f(x)→∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

(d) f(x) =
x

x2 + 1
Domain: (−∞,∞)
No vertical asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

(e) f(x) =
x+ 7

(x+ 3)2

Domain: (−∞,−3) ∪ (−3,∞)
Vertical asymptote: x = −3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
11As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

(f) f(x) =
x3 + 1

x2 − 1
=
x2 − x+ 1

x− 1
Domain: (−∞,−1) ∪ (−1, 1) ∪ (1,∞)
Vertical asymptote: x = 1
As x→ 1−, f(x)→ −∞
As x→ 1+, f(x)→∞
Hole at (−1,−3

2)
No horizontal asymptote
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→∞

(g) f(x) =
4x

x2 + 4
Domain: (−∞,∞)
No vertical asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

11This is hard to see on the calculator, but trust me, the graph is below the x-axis to the left of x = −7.
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(h) f(x) =
4x

x2 − 4
=

4x

(x+ 2)(x− 2)
Domain: (−∞,−2) ∪ (−2, 2) ∪ (2,∞)
Vertical asymptotes: x = −2, x = 2
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

(i) f(x) =
x2 − x− 12

x2 + x− 6
=
x− 4

x− 2
Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
Vertical asymptote: x = 2
As x→ 2−, f(x)→∞
As x→ 2+, f(x)→ −∞
Hole at

(
−3, 7

5

)
Horizontal asymptote: y = 1
As x→ −∞, f(x)→ 1+

As x→∞, f(x)→ 1−

(j) f(x) =
3x2 − 5x− 2

x2 − 9
=

(3x+ 1)(x− 2)

(x+ 3)(x− 3)
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
Vertical asymptotes: x = −3, x = 3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 3
As x→ −∞, f(x)→ 3+

As x→∞, f(x)→ 3−

(k) f(x) =
x3 + 2x2 + x

x2 − x− 2
=
x(x+ 1)

x− 2
Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
Vertical asymptote: x = 2
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→ −∞
Hole at (−1, 0)
No horizontal asymptote
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→∞

2. The horizontal asymptote of the graph of P (t) = 150t
t+15 is y = 150 and it means that the model

predicts the population of Sasquatch in Portage County will never exceed 150.

3. (a)

(b) The maximum power is approximately 1.603 mW which corresponds to 3.9 kΩ.

(c) As x → ∞, P (x) → 0+ which means as the resistance increases without bound, the
power diminishes to zero.
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4.2 Graphs of Rational Functions

In this section, we take a closer look at graphing rational functions. In Section 4.1, we learned that
the graphs of rational functions may include vertical asymptotes, holes in the graph, and horizontal
asymptotes. Theorems 4.1 and 4.2 tell us exactly when and where these behaviors will occur, and
if we combine these results with what we already know about graphing functions, we will quickly
be able to generate reasonable graphs of rational functions.

One of the standard tools we will use is the sign diagram which was first introduced in Section 2.4,
and then revisited in Section 3.1. In those sections, we operated under the belief that a function
couldn’t change its sign without its graph crossing through the x-axis. The major theorem we
used to justify this belief was the Intermediate Value Theorem, Theorem 3.1. It turns out the
Intermediate Value Theorem applies to all continuous functions,1 not just polynomials. Although
rational functions are continuous on their domains,2 Theorem 4.1 tells us vertical asymptotes and
holes occur at the values excluded from their domains. In other words, rational functions aren’t
continuous at these excluded values which leaves open the possibility that the function could change
sign without crossing through the x-axis. Consider the graph of y = h(x) from Example 4.1.1,
recorded below for convenience. We have added its x-intercept at

(
1
2 , 0
)

for the discussion that
follows. Suppose we wish to construct a sign diagram for h(x). Recall that the intervals where
h(x) > 0, or (+), correspond to the x-values where the graph of y = h(x) is above the x-axis; the
intervals on which h(x) < 0, or (−) correspond to where the graph is below the x-axis.

x

y

1
2

−4 −3 −2 1 2 3 4

−1

−2

−3

−4

−5

−6

1

3

4

5

6

7

8

−1 1
2

1

(+) ‽ (−) 0 (+) ‽ (+)

As we examine the graph of y = h(x), reading from left to right, we note that from (−∞,−1),

1Recall that, for our purposes, this means the graphs are devoid of any breaks, jumps or holes
2Another result from Calculus.
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the graph is above the x-axis, so h(x) is (+) there. At x = −1, we have a vertical asymptote, at
which point the graph ‘jumps’ across the x-axis. On the interval

(
−1, 1

2

)
, the graph is below the

x-axis, so h(x) is (−) there. The graph crosses through the x-axis at
(

1
2 , 0
)

and remains above the
x-axis until x = 1, where we have a ‘hole’ in the graph. Since h(1) is undefined, there is no sign
here. So we have h(x) as (+) on the interval

(
1
2 , 1
)
. Continuing, we see that on (1,∞), the graph

of y = h(x) is above the x-axis, and so we mark (+) there. To construct a sign diagram from this
information, we not only need to denote the zero of h, but also the places not in the domain of
h. As is our custom, we write ‘0’ above 1

2 on the sign diagram to remind us that it is a zero of h.
We need a different notation for −1 and 1, and we have chosen to use ‘‽’ - a nonstandard symbol
called the interrobang. We use this symbol to convey a sense of surprise, caution, and wonderment
- an appropriate attitude to take when approaching these points. The moral of the story is that
when constructing sign diagrams for rational functions, we include the zeros as well as the values
excluded from the domain.

Steps for Constructing a Sign Diagram for a Rational Function

Suppose r is a rational function.

1. Place any values excluded from the domain of r on the number line with an ‘‽’ above them.

2. Find the zeros of r and place them on the number line with the number 0 above them.

3. Choose a test value in each of the intervals determined in steps 1 and 2.

4. Determine the sign of r(x) for each test value in step 3, and write that sign above the
corresponding interval.

We now present our procedure for graphing rational functions and apply it to a few exhaustive
examples. Please note that we decrease the amount of detail given in the explanations as we move
through the examples. The reader should be able to fill in any details in those steps which we have
abbreviated.

Steps for Graphing Rational Functions

Suppose r is a rational function.

1. Find the domain of r.

2. Reduce r(x) to lowest terms, if applicable.

3. Find the x- and y-intercepts of the graph of y = r(x), if they exist.

4. Determine the location of any vertical asymptotes or holes in the graph, if they exist.
Analyze the behavior of r on either side of the vertical asymptotes, if applicable.

5. Analyze the end behavior of r. Use long division, as needed.

6. Use a sign diagram and plot additional points, as needed, to sketch the graph of y = r(x).

http://en.wikipedia.org/wiki/Interrobang
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Example 4.2.1. Sketch a detailed graph of f(x) =
3x

x2 − 4
.

Solution. We follow the six step procedure outlined above.

1. As usual, we set the denominator equal to zero to get x2 − 4 = 0. We find x = ±2, so our
domain is (−∞,−2) ∪ (−2, 2) ∪ (2,∞).

2. To reduce f(x) to lowest terms, we factor the numerator and denominator which yields
f(x) = 3x

(x−2)(x+2) . There are no common factors which means f(x) is already in lowest
terms.

3. To find the x-intercepts of the graph of y = f(x), we set y = f(x) = 0. Solving 3x
(x−2)(x+2) = 0

results in x = 0. Since x = 0 is in our domain, (0, 0) is the x-intercept. To find the y-intercept,
we set x = 0 and find y = f(0) = 0, so that (0, 0) is our y-intercept as well.3

4. The two numbers excluded from the domain of f are x = −2 and x = 2. Since f(x) didn’t
reduce at all, both of these values of x still cause trouble in the denominator, and so, by
Theorem 4.1, x = −2 and x = 2 are vertical asymptotes of the graph. We can actually go
a step farther at this point and determine exactly how the graph approaches the asymptote
near each of these values. Though not absolutely necessary,4 it is good practice for those
heading off to Calculus. For the discussion that follows, it is best to use the factored form of
f(x) = 3x

(x−2)(x+2) .

• The behavior of y = f(x) as x→ −2: Suppose x→ −2−. If we were to build a table of
values, we’d use x-values a little less than −2, say −2.1, −2.01 and −2.001. While there
is no harm in actually building a table like we did in Section 4.1, we want to develop a
‘number sense’ here. Let’s think about each factor in the formula of f(x) as we imagine
substituting a number like x = −2.000001 into f(x). The quantity 3x would be very
close to −6, the quantity (x−2) would be very close to −4, and the factor (x+ 2) would
be very close to 0. More specifically, (x + 2) would be a little less than 0, in this case,
−0.000001. We will call such a number a ‘very small (−)’, ‘very small’ meaning close to
zero in absolute value. So, mentally, as x→ −2−, we estimate

f(x) =
3x

(x− 2)(x+ 2)
≈ −6

(−4) (very small (−))
=

3

2 (very small (−))

Now, the closer x gets to −2, the smaller (x + 2) will become, and so even though we
are multiplying our ‘very small (−)’ by 2, the denominator will continue to get smaller
and smaller, and remain negative. The result is a fraction whose numerator is positive,
but whose denominator is very small and negative. Mentally,

f(x) ≈ 3

2 (very small (−))
≈ 3

very small (−)
≈ very big (−)

3As we mentioned at least once earlier, since functions can have at most one y-intercept, once we find (0, 0) is on
the graph, we know it is the y-intercept.

4The sign diagram in step 6 will also determine the behavior near the vertical asymptotes.
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The term ‘very big (−)’ means a number with a large absolute value which is negative.5

What all of this means is that as x → −2−, f(x) → −∞. Now suppose we wanted to
determine the behavior of f(x) as x → −2+. If we imagine substituting something a
little larger than −2 in for x, say −1.999999, we mentally estimate

f(x) ≈ −6

(−4) (very small (+))
=

3

2 (very small (+))
≈ 3

very small (+)
≈ very big (+)

We conclude that as x→ −2+, f(x)→∞.

• The behavior of y = f(x) as x → 2: Consider x → 2−. We imagine substituting
x = 1.999999. Approximating f(x) as we did above, we get

f(x) ≈ 6

(very small (−)) (4)
=

3

2 (very small (−))
≈ 3

very small (−)
≈ very big (−)

We conclude that as x→ 2−, f(x)→ −∞. Similarly, as x→ 2+, we imagine substituting
x = 2.000001, we get f(x) ≈ 3

very small (+) ≈ very big (+). So as x→ 2+, f(x)→∞.

Graphically, we have that near x = −2 and x = 2 the graph of y = f(x) looks like6

x

y

−3 −1 1 3

5. Next, we determine the end behavior of the graph of y = f(x). Since the degree of the
numerator is 1, and the degree of the denominator is 2, Theorem 4.2 tells us that y = 0
is the horizontal asymptote. As with the vertical asymptotes, we can glean more detailed
information using ‘number sense’. For the discussion below, we use the formula f(x) = 3x

x2−4
.

• The behavior of y = f(x) as x → −∞: If we were to make a table of values to discuss
the behavior of f as x→ −∞, we would substitute very ‘large’ negative numbers in for
x, say, for example, x = −1 billion. The numerator 3x would then be −3 billion, whereas

5The actual retail value of f(−2.000001) is approximately −1,500,000.
6We have deliberately left off the labels on the y-axis because we know only the behavior near x = ±2, not the

actual function values.



250 Rational Functions

the denominator x2 − 4 would be (−1 billion)2 − 4, which is pretty much the same as
1(billion)2. Hence,

f (−1 billion) ≈ −3 billion

1(billion)2
≈ − 3

billion
≈ very small (−)

Notice that if we substituted in x = −1 trillion, essentially the same kind of cancellation
would happen, and we would be left with an even ‘smaller’ negative number. This not
only confirms the fact that as x→ −∞, f(x)→ 0, it tells us that f(x)→ 0−. In other
words, the graph of y = f(x) is a little bit below the x-axis as we move to the far left.

• The behavior of y = f(x) as x→∞: On the flip side, we can imagine substituting very
large positive numbers in for x and looking at the behavior of f(x). For example, let
x = 1 billion. Proceeding as before, we get

f (1 billion) ≈ 3 billion

1(billion)2
≈ 3

billion
≈ very small (+)

The larger the number we put in, the smaller the positive number we would get out. In
other words, as x → ∞, f(x) → 0+, so the graph of y = f(x) is a little bit above the
x-axis as we look toward the far right.

Graphically, we have7

x

y

−1

1

6. Lastly, we construct a sign diagram for f(x). The x-values excluded from the domain of f
are x = ±2, and the only zero of f is x = 0. Displaying these appropriately on the number
line gives us four test intervals, and we choose the test values8 we x = −3, x = −1, x = 1,
and x = 3. We find f(−3) is (−), f(−1) is (+), f(1) is (−), and f(3) is (+). Combining this
with our previous work, we get the graph of y = f(x) below.

7As with the vertical asymptotes in the previous step, we know only the behavior of the graph as x→ ±∞. For
that reason, we provide no x-axis labels.

8In this particular case, we can eschew test values, since our analysis of the behavior of f near the vertical
asymptotes and our end behavior analysis have given us the signs on each of the test intervals. In general, however,
this won’t always be the case, so for demonstration purposes, we continue with our usual construction.
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−2 0 2

(−)

−3

‽ (+)

−1

0 (−)

1

‽ (+)

3
x

y

−5 −4 −3 −1 1 3 4 5

−3

−2

−1

1

2

3

A couple of notes are in order. First, the graph of y = f(x) certainly seems to possess symmetry
with respect to the origin. In fact, we can check f(−x) = −f(x) to see that f is an odd function.
In some textbooks, checking for symmetry is part of the standard procedure for graphing rational
functions; but since it happens comparatively rarely9 we’ll just point it out when we see it. Also
note that while y = 0 is the horizontal asymptote, the graph of f nevertheless crosses the x-axis
at (0, 0). The myth that graphs of rational functions can’t cross their horizontal asymptotes is
completely false, as we shall see again in our next example.

Example 4.2.2. Sketch a detailed graph of g(x) =
2x2 − 3x− 5

x2 − x− 6
.

Solution.

1. Setting x2 − x− 6 = 0 gives x = −2 and x = 3. Our domain is (−∞,−2) ∪ (−2, 3) ∪ (3,∞).

2. Factoring g(x) gives g(x) = (2x−5)(x+1)
(x−3)(x+2) . There is no cancellation, so g(x) is in lowest terms.

3. To find the x-intercept we set y = g(x) = 0. Using the factored form of g(x) above, we find
the zeros to be the solutions of (2x − 5)(x + 1) = 0. We obtain x = 5

2 and x = −1. Since
both of these numbers are in the domain of g, we have two x-intercepts,

(
5
2 , 0
)

and (−1, 0).
To find the y-intercept, we set x = 0 and find y = g(0) = 5

6 , so our y-intercept is
(
0, 5

6

)
.

4. Since g(x) was given to us in lowest terms, we have, once again by Theorem 4.1 vertical

asymptotes x = −2 and x = 3. Keeping in mind g(x) = (2x−5)(x+1)
(x−3)(x+2) , we proceed to our

analysis near each of these values.

• The behavior of y = g(x) as x → −2: As x → −2−, we imagine substituting a number
a little bit less than −2. We have

g(x) ≈ (−9)(−1)

(−5)(very small (−))
≈ 9

very small (+)
≈ very big (+)

9And Jeff doesn’t think much of it to begin with...
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so as x→ −2−, g(x)→∞. On the flip side, as x→ −2+, we get

g(x) ≈ 9

very small (−)
≈ very big (−)

so g(x)→ −∞.

• The behavior of y = g(x) as x → 3: As x → 3−, we imagine plugging in a number just
shy of 3. We have

g(x) ≈ (1)(4)

( very small (−))(5)
≈ 4

very small (−)
≈ very big (−)

Hence, as x→ 3−, g(x)→ −∞. As x→ 3+, we get

g(x) ≈ 4

very small (+)
≈ very big (+)

so g(x)→∞.

Graphically, we have (again, without labels on the y-axis)

x

y

−3 −1 1 2 4

5. Since the degrees of the numerator and denominator of g(x) are the same, we know from
Theorem 4.2 that we can find the horizontal asymptote of the graph of g by taking the
ratio of the leading terms coefficients, y = 2

1 = 2. However, if we take the time to do a
more detailed analysis, we will be able to reveal some ‘hidden’ behavior which would be lost
otherwise.10 As in the discussion following Theorem 4.2, we use the result of the long division(
2x2 − 3x− 5

)
÷
(
x2 − x− 6

)
to rewrite g(x) = 2x2−3x−5

x2−x−6
as g(x) = 2− x−7

x2−x−6
. We focus our

attention on the term x−7
x2−x−6

.

10That is, if you use a calculator to graph. Once again, Calculus is the ultimate graphing power tool.
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• The behavior of y = g(x) as x → −∞: If imagine substituting x = −1 billion into
x−7

x2−x−6
, we estimate x−7

x2−x−6
≈ −1 billion

1billion2 ≈ very small (−).11 Hence,

g(x) = 2− x− 7

x2 − x− 6
≈ 2− very small (−) = 2 + very small (+)

In other words, as x→ −∞, the graph of y = g(x) is a little bit above the line y = 2.

• The behavior of y = g(x) as x → ∞. To consider x−7
x2−x−6

as x → ∞, we imagine
substituting x = 1 billion and, going through the usual mental routine, find

x− 7

x2 − x− 6
≈ very small (+)

Hence, g(x) ≈ 2− very small (+), in other words, the graph of y = g(x) is just below
the line y = 2 as x→∞.

On y = g(x), we have (again, without labels on the x-axis)

x

y

−1

1

6. Finally we construct our sign diagram. We place an ‘‽’ above x = −2 and x = 3, and a ‘0’
above x = 5

2 and x = −1. Choosing test values in the test intervals gives us f(x) is (+) on
the intervals (−∞,−2),

(
−1, 5

2

)
, and (3,∞), and (−) on the intervals (−2,−1) and

(
5
2 , 3
)
.

As we piece together all of the information, we note that the graph must cross the horizontal
asymptote at some point after x = 3 in order for it to approach y = 2 from underneath. This
is the subtlety that we would have missed had we skipped the long division and subsequent
end behavior analysis. We can, in fact, find exactly when the graph crosses y = 2. As a result
of the long division, we have g(x) = 2 − x−7

x2−x−6
. For g(x) = 2, we would need x−7

x2−x−6
= 0.

This gives x− 7 = 0, or x = 7. Note that x− 7 is the remainder when 2x2− 3x− 5 is divided
by x2−x− 6, and so it makes sense that for g(x) to equal the quotient 2, the remainder from
the division must be 0. Sure enough, we find g(7) = 2. Moreover, it stands to reason that g
must attain a relative minimum at some point past x = 7. Calculus verifies that at x = 13,
we have such a minimum at exactly (13, 1.96). The reader is challenged to find calculator
windows which show the graph crossing its horizontal asymptote on one window, and the
relative minimum in the other.

11In the denominator, we would have (1billion)2 − 1billion − 6. It’s easy to see why the 6 is insignificant, but to
ignore the 1 billion seems criminal. However, compared to (1 billion)2, it’s on the insignificant side; it’s 1018 versus
109. We are once again using the fact that for polynomials, end behavior is determined by the leading term, so in
the denominator, the x2 term wins out over the x term.
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Our next example gives us not only a hole in the graph, but also some slightly different end behavior.

Example 4.2.3. Sketch a detailed graph of h(x) =
2x3 + 5x2 + 4x+ 1

x2 + 3x+ 2
.

Solution.

1. For domain, you know the drill. Solving x2 + 3x + 2 = 0 gives x = −2 and x = −1. Our
answer is (−∞,−2) ∪ (−2,−1) ∪ (−1,∞).

2. To reduce h(x), we need to factor the numerator and denominator. To factor the numerator,
we use the techniques12 set forth in Section 3.3 and we get

h(x) =
2x3 + 5x2 + 4x+ 1

x2 + 3x+ 2
=

(2x+ 1)(x+ 1)2

(x+ 2)(x+ 1)
=

(2x+ 1)(x+ 1)���
1

2

(x+ 2)���
�(x+ 1)

=
(2x+ 1)(x+ 1)

x+ 2

We will use this reduced formula for h(x) as long as we’re not substituting x = −1. To make

this exclusion specific, we write h(x) = (2x+1)(x+1)
x+2 , x 6= −1.

3. To find the x-intercepts, as usual, we set h(x) = 0 and solve. Solving (2x+1)(x+1)
x+2 = 0 yields

x = −1
2 and x = −1. The latter isn’t in the domain of h, so we exclude it. Our only x-

intercept is
(
−1

2 , 0
)
. To find the y-intercept, we set x = 0. Since 0 6= −1, we can use the

reduced formula for h(x) and we get h(0) = 1
2 for a y-intercept of

(
0, 1

2

)
.

4. From Theorem 4.1, we know that since x = −2 still poses a threat in the denominator of
the reduced function, we have a vertical asymptote there. As for x = −1, we note the factor
(x+ 1) was canceled from the denominator when we reduced h(x), and so it no longer causes
trouble there. This means we get a hole when x = −1. To find the y-coordinate of the hole,
we substitute x = −1 into (2x+1)(x+1)

x+2 , per Theorem 4.1 and get 0. Hence, we have a hole on

12Bet you never thought you’d never see that stuff again before the Final Exam!
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the x-axis at (−1, 0). It should make you uncomfortable plugging x = −1 into the reduced
formula for h(x), especially since we’ve made such a big deal concerning the stipulation about
not letting x = −1 for that formula. What we are really doing is taking a Calculus short-cut
to the more detailed kind of analysis near x = −1 which we will show below. Speaking of
which, for the discussion that follows, we will use the formula h(x) = (2x+1)(x+1)

x+2 , x 6= −1.

• The behavior of y = h(x) as x → −2: As x → −2−, we imagine substituting a number

a little bit less than −2. We have h(x) ≈ (−3)(−1)
(very small (−)) ≈

3
(very small (−)) ≈ very big (−)

and so as x → −2−, h(x) → −∞. On the other side of −2, as x → −2+, we find that
h(x) ≈ 3

very small (+) ≈ very big (+), so h(x)→∞.

• The behavior of y = h(x) as x → −1. As x → −1−, we imagine plugging in a number

a bit less than x = −1. We have h(x) ≈ (−1)(very small (−))
1 = very small (+) Hence, as

x → −1−, h(x) → 0+. This means, as x → −1−, the graph is a bit above the point

(−1, 0). As x → −1+, we get h(x) ≈ (−1)(very small (+))
1 = very small (−). This gives us

that as x→ −1+, h(x)→ 0−, so the graph is a little bit lower than (−1, 0) here.

Graphically, we have

x

y

−3

5. For end behavior, we note that the degree of the numerator of h(x), 2x3 + 5x2 + 4x+ 1 is 3,
and the degree of the denominator, x2 +3x+2, is 2. Theorem 4.2 is of no help here, since the
degree of the numerator is greater than the degree of the denominator. That won’t stop us,
however, in our analysis. Since for end behavior we are considering values of x as x→ ±∞,
we are far enough away from x = −1 to use the reduced formula, h(x) = (2x+1)(x+1)

x+2 , x 6= −1.

To perform long division, we multiply out the numerator and get h(x) = 2x2+3x+1
x+2 , x 6= −1,

and, as a result, we rewrite h(x) = 2x − 1 + 3
x+2 , x 6= −1. As in the previous example, we

focus our attention on the term generated from the remainder, 3
x+2 .

• The behavior of y = h(x) as x→ −∞: Substituting x = −1 billion into 3
x+2 , we get the

estimate 3
−1 billion ≈ very small (−). Hence, h(x) = 2x−1+ 3

x+2 ≈ 2x−1+very small (−).
This means the graph of y = h(x) is a little bit below the line y = 2x− 1 as x→ −∞.
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• The behavior of y = h(x) as x→∞: If x→∞, then 3
x+2 ≈ very small (+). This means

h(x) ≈ 2x− 1 + very small (+), or that the graph of y = h(x) is a little bit above the
line y = 2x− 1 as x→∞.

This is end behavior unlike any we’ve ever seen. Instead of approaching a horizontal line,
the graph is approaching a slanted line. For this reason, y = 2x − 1 is called a slant
asymptote13 of the graph of y = h(x). A slant asymptote will always arise when the degree
of the numerator is exactly one more than the degree of the denominator, and there’s no way
to determine exactly what it is without going through the long division. Graphically we have

x

y

−4

−3

−2

−1

1

2

3

4

6. To make our sign diagram, we place an ‘‽’ above x = −2 and x = −1 and a ‘0’ above x = −1
2 .

On our four test intervals, we find h(x) is (+) on (−2,−1) and
(
−1

2 ,∞
)

and h(x) is (−) on
(−∞,−2) and

(
−1,−1

2

)
. Putting all of our work together yields the graph below.

−2 −1 −1
2

(−) ‽ (+) ‽ (−) 0 (+) x

y

−4 −3 −1 1 2 3 4

−14

−13

−12
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−8

−7

−6

−5
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−3

−2

−1

1
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3

4

5

6

7

8

9

13Also called an ‘oblique’ asymptote in some texts.
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We could ask whether the graph of y = h(x) crosses its slant asymptote. From the formula
h(x) = 2x− 1 + 3

x+2 , x 6= −1, we see that if h(x) = 2x− 1, we would have 3
x+2 = 0. Since this will

never happen, we conclude the graph never crosses its slant asymptote.14

We end this section with an example that shows it’s not all pathological weirdness when it comes
to rational functions and technology still has a role to play in studying their graphs at this level.

Example 4.2.4. Sketch the graph of r(x) =
x4 + 1

x2 + 1
.

Solution.

1. The denominator x2 + 1 is never zero so the domain is (−∞,∞).

2. With no real zeros in the denominator, x2 + 1 is an irreducible quadratic. Our only hope of
reducing r(x) is if x2 + 1 is a factor of x4 + 1. Performing long division gives us

x4 + 1

x2 + 1
= x2 − 1 +

2

x2 + 1

The remainder is not zero so r(x) is already reduced.

3. To find the x-intercept, we’d set r(x) = 0. Since there are no real solutions to x4+1
x2+1

= 0, we
have no x-intercepts. Since r(0) = 1, so we get (0, 1) for the y-intercept.

4. This step doesn’t apply to r, since its domain is all real numbers.

5. For end behavior, once again, since the degree of the numerator is greater than that of the
denominator, Theorem 4.2 doesn’t apply. We know from our attempt to reduce r(x) that we
can rewrite r(x) = x2 − 1 + 2

x2+1
, and so we focus our attention on the term corresponding

to the remainder, 2
x2+1

It should be clear that as x → ±∞, 2
x2+1

≈ very small (+), which

means r(x) ≈ x2 − 1 + very small (+). So the graph y = r(x) is a little bit above the graph
of the parabola y = x2 − 1 as x→ ±∞. Graphically,

1

2

3

4

5

x

y

14But rest assured, some graphs do!
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6. There isn’t much work to do for a sign diagram for r(x), since its domain is all real numbers
and it has no zeros. Our sole test interval is (−∞,∞), and since we know r(0) = 1, we
conclude r(x) is (+) for all real numbers. At this point, we don’t have much to go on for
a graph. Below is a comparison of what we have determined analytically versus what the
calculator shows us. We have no way to detect the relative extrema analytically15 apart from
brute force plotting of points, which is done more efficiently by the calculator.

x

y

−3 −1 1 2 3

1

2

3

4

5

6

15Without appealing to Calculus, of course.



4.2 Graphs of Rational Functions 259

4.2.1 Exercises

1. Find the slant asymptote of the graph of the rational function.

(a) f(x) =
x3 − 3x+ 1

x2 + 1

(b) f(x) =
2x2 + 5x− 3

3x+ 2

(c) f(x) =
−5x4 − 3x3 + x2 − 10

x3 − 3x2 + 3x− 1

(d) f(x) =
−x3 + 4x

x2 − 9

2. Use the six-step procedure to graph each rational function given. Be sure to draw any
asymptotes as dashed lines.

(a) f(x) =
4

x+ 2

(b) f(x) =
5x

6− 2x

(c) f(x) =
1

x2

(d) f(x) =
1

x2 + x− 12

(e) f(x) =
2x− 1

−2x2 − 5x+ 3

(f) f(x) =
x

x2 + x− 12

(g) f(x) =
4x

x2 + 4

(h) f(x) =
4x

x2 − 4

(i) f(x) =
x2 − x− 12

x2 + x− 6

(j) f(x) =
3x2 − 5x− 2

x2 − 9

(k) f(x) =
x3 + 2x2 + x

x2 − x− 2

(l) f(x) =
−x3 + 4x

x2 − 9

(m) 16 f(x) =
x2 − 2x+ 1

x3 + x2 − 2x

3. Example 4.2.4 showed us that the six-step procedure cannot tell us everything of importance
about the graph of a rational function. Without Calculus, we need to use our graphing
calculators to reveal the hidden mysteries of rational function behavior. Working with your
classmates, use a graphing calculator to examine the graphs of the following rational functions.
Compare and contrast their features. Which features can the six-step process reveal and which
features cannot be detected by it?

(a) f(x) =
1

x2 + 1

(b) f(x) =
x

x2 + 1

(c) f(x) =
x2

x2 + 1

(d) f(x) =
x3

x2 + 1

16Once you’ve done the six-step procedure, use your calculator to graph this function on the viewing window
[0, 12]× [0, 0.25]. What do you see?
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4. Graph the following rational functions by applying transformations to the graph of y =
1

x
.

(a) f(x) =
1

x− 2

(b) g(x) = 1− 3

x

(c) h(x) =
−2x+ 1

x
(Hint: Divide)

(d) j(x) =
3x− 7

x− 2
(Hint: Long division)

Discuss with your classmates how you would graph f(x) =
ax+ b

cx+ d
. What restrictions must

be placed on a, b, c and d so that the graph is indeed a transformation of y =
1

x
?

5. In Example 3.1.1 in Section 3.1 we showed that p(x) = 4x+x3

x is not a polynomial even though
its formula reduced to 4 + x2 for x 6= 0. However, it is a rational function similar to those
studied in the section. With the help of your classmates, graph p(x).

6. Let g(x) =
x4 − 8x3 + 24x2 − 72x+ 135

x3 − 9x2 + 15x− 7
. With the help of your classmates, find the x- and

y- intercepts of the graph of g. Find the intervals on which the function is increasing, the
intervals on which it is decreasing and the local extrema. Find all of the asymptotes of the
graph of g and any holes in the graph, if they exist. Be sure to show all of your work including
any polynomial or synthetic division. Sketch the graph of g, using more than one picture if
necessary to show all of the important features of the graph.
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4.2.2 Answers

1. (a) y = x

(b) y = 2
3x+ 11

9

(c) y = −5x− 18

(d) y = −x

2. (a) f(x) =
4

x+ 2
Domain: (−∞,−2) ∪ (−2,∞)
No x-intercepts
y-intercept: (0, 2)
Vertical asymptote: x = −2
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−7−6−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

(b) f(x) =
5x

6− 2x
Domain: (−∞, 3) ∪ (3,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptote: x = 3
As x→ 3−, f(x)→∞
As x→ 3+, f(x)→ −∞
Horizontal asymptote: y = −5

2

As x→ −∞, f(x)→ −5
2

+

As x→∞, f(x)→ −5
2

−

x

y

−3−2−1 1 2 3 4 5 6 7 8 9

−7

−6

−5

−4

−3

−2

−1

1

2

3

(c) f(x) =
1

x2

Domain: (−∞, 0) ∪ (0,∞)
No x-intercepts
No y-intercepts
Vertical asymptote: x = 0
As x→ 0−, f(x)→∞
As x→ 0+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0+

As x→∞, f(x)→ 0+ x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

5
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(d) f(x) =
1

x2 + x− 12
Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
No x-intercepts
y-intercept: (0,− 1

12)
Vertical asymptotes: x = −4 and x = 3
As x→ −4−, f(x)→∞
As x→ −4+, f(x)→ −∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0+

As x→∞, f(x)→ 0+

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4

−1

1

(e) f(x) =
2x− 1

−2x2 − 5x+ 3
Domain: (−∞,−3) ∪ (−3, 1

2) ∪ (1
2 ,∞)

No x-intercepts
y-intercept: (0,−1

3)

f(x) =
−1

x+ 3
, x 6= 1

2

Hole in the graph at (1
2 ,−

2
7)

Vertical asymptote: x = −3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0+

As x→∞, f(x)→ 0+

x

y

−7 −6 −5 −4 −3 −2 −1 1 2

−1

1

(f) f(x) =
x

x2 + x− 12
Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptotes: x = −4 and x = 3
As x→ −4−, f(x)→ −∞
As x→ −4+, f(x)→∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5

−1

1
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(g) f(x) =
4x

x2 + 4
Domain: (−∞,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
No vertical asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−7−6−5−4−3−2−1 1 2 3 4 5 6 7

−1

1

(h) f(x) =
4x

x2 − 4
=

4x

(x+ 2)(x− 2)
Domain: (−∞,−2) ∪ (−2, 2) ∪ (2,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptotes: x = −2, x = 2
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y
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(i) f(x) =
x2 − x− 12

x2 + x− 6
=
x− 4

x− 2
Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
x-intercept: (4, 0)
y-intercept: (0, 2)
Vertical asymptote: x = 2
As x→ 2−, f(x)→∞
As x→ 2+, f(x)→ −∞
Hole at

(
−3, 7

5

)
Horizontal asymptote: y = 1
As x→ −∞, f(x)→ 1+

As x→∞, f(x)→ 1−

x
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(j) f(x) =
3x2 − 5x− 2

x2 − 9
=

(3x+ 1)(x− 2)

(x+ 3)(x− 3)
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
x-intercepts:

(
−1

3 , 0
)
, (2, 0)

y-intercept:
(
0, 2

9

)
Vertical asymptotes: x = −3, x = 3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 3
As x→ −∞, f(x)→ 3+

As x→∞, f(x)→ 3−
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(k) f(x) =
x3 + 2x2 + x

x2 − x− 2
=
x(x+ 1)

x− 2
Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptote: x = 2
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→ −∞
Hole at (−1, 0)
Slant asymptote: y = x+ 3
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→∞
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(l) f(x) =
−x3 + 4x

x2 − 9
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
x-intercepts: (−2, 0), (0, 0), (2, 0)
y-intercept: (0, 0)
Vertical asymptotes: x = −3, x = 3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
As x→ 3−, f(x)→∞
As x→ 3+, f(x)→ −∞
Slant asymptote: y = −x
As x→ −∞, f(x)→∞
As x→∞, f(x)→ −∞
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(m) f(x) =
x2 − 2x+ 1

x3 + x2 − 2x
Domain: (−∞,−2)∪(−2, 0)∪(0, 1)∪(1,∞)

f(x) =
x− 1

x(x+ 2)
, x 6= 1

No x-intercepts
No y-intercepts
Vertical asymptotes: x = −2 and x = 0
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
As x→ 0−, f(x)→∞
As x→ 0+, f(x)→ −∞
Hole in the graph at (1, 0)
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+
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4. (a) f(x) =
1

x− 2

Shift the graph of y =
1

x
to the right 2 units.

x

y
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(b) g(x) = 1− 3

x

Vertically stretch the graph of y =
1

x
by a factor of 3.

Reflect the graph of y =
3

x
about the x-axis.

Shift the graph of y = −3

x
up 1 unit.

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7



266 Rational Functions

(c) h(x) =
−2x+ 1

x
= −2 +

1

x

Shift the graph of y =
1

x
down 2 units. x

y

−3 −2 −1 1 2 3
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(d) j(x) =
3x− 7

x− 2
= 3− 1

x− 2

Shift the graph of y =
1

x
to the right 2 units.

Reflect the graph of y =
1

x− 2
about the x-axis.

Shift the graph of y = − 1

x− 2
up 3 units.
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4.3 Rational Inequalities and Applications

In this section, we use sign diagrams to solve rational inequalities including some that arise from
real-world applications. Our first example showcases the critical difference in procedure between
solving a rational equation and a rational inequality.

Example 4.3.1.

1. Solve
x3 − 2x+ 1

x− 1
=

1

2
x− 1.

2. Solve
x3 − 2x+ 1

x− 1
≥ 1

2
x− 1.

3. Use your calculator to graphically check your answers to 1 and 2.

Solution.

1. To solve the equation, we clear denominators

x3 − 2x+ 1

x− 1
=

1

2
x− 1(

x3 − 2x+ 1

x− 1

)
· 2(x− 1) =

(
1

2
x− 1

)
· 2(x− 1)

2x3 − 4x+ 2 = x2 − 3x+ 2 expand
2x3 − x2 − x = 0

x(2x+ 1)(x− 1) = 0 factor
x = −1

2 , 0, 1

Since we cleared denominators, we need to check for extraneous solutions. Sure enough, we
see that x = 1 does not satisfy the original equation and must be discarded. Our solutions
are x = −1

2 and x = 0.

2. To solve the inequality, it may be tempting to begin as we did with the equation − namely
by multiplying both sides by the quantity (x − 1). The problem is that, depending on x,
(x − 1) may be positive (which doesn’t affect the inequality) or (x − 1) could be negative
(which would reverse the inequality). Instead of working by cases, we collect all of the terms
on one side of the inequality with 0 on the other and make a sign diagram using the technique
given on page 247 in Section 4.2.
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x3 − 2x+ 1

x− 1
≥ 1

2
x− 1

x3 − 2x+ 1

x− 1
− 1

2
x+ 1 ≥ 0

2
(
x3 − 2x+ 1

)
− x(x− 1) + 1(2(x− 1))

2(x− 1)
≥ 0 get a common denominator

2x3 − x2 − x
2x− 2

≥ 0 expand

Viewing the left hand side as a rational function r(x) we make a sign diagram. The only
value excluded from the domain of r is x = 1 which is the solution to 2x− 2 = 0. The zeros
of r are the solutions to 2x3 − x2 − x = 0, which we have already found to be x = 0, x = −1

2
and x = 1, the latter was discounted as a zero because it is not in the domain. Choosing test
values in each test interval, we construct the sign diagram below.

−1
2

0 1

(+) 0 (−) 0 (+) ‽ (+)

We are interested in where r(x) ≥ 0. We find r(x) > 0, or (+), on the intervals
(
−∞,−1

2

)
,

(0, 1) and (1,∞). We add to these intervals the zeros of r, −1
2 and 0, to get our final solution:(

−∞,−1
2

]
∪ [0, 1) ∪ (1,∞).

3. Geometrically, if we set f(x) = x3−2x+1
x−1 and g(x) = 1

2x− 1, the solutions to f(x) = g(x) are
the x-coordinates of the points where the graphs of y = f(x) and y = g(x) intersect. The
solution to f(x) ≥ g(x) represents not only where the graphs meet, but the intervals over
which the graph of y = f(x) is above (>) the graph of g(x). We obtain the graphs below.

The ‘Intersect’ command confirms that the graphs cross when x = −1
2 and x = 0. It is clear

from the calculator that the graph of y = f(x) is above the graph of y = g(x) on
(
−∞,−1

2

)
as well as on (0,∞). According to the calculator, our solution is then

(
−∞,−1

2

]
∪ [0,∞)
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which almost matches the answer we found analytically. We have to remember that f is
not defined at x = 1, and, even though it isn’t shown on the calculator, there is a hole1 in
the graph of y = f(x) when x = 1 which is why x = 1 needs to be excluded from our final
answer.

Our next example deals with the average cost function of PortaBoy Game systems from Example
2.1.5 in Section 2.1.

Example 4.3.2. Given a cost function C(x), which returns the total cost of producing x products,

the average cost function, AC(x) = C(x)
x , computes the cost per item. Recall that the cost C, in

dollars, to produce x PortaBoy game systems for a local retailer is C(x) = 80x+ 150, x ≥ 0.

1. Find an expression for the average cost function AC(x). Determine an appropriate applied
domain for AC.

2. Find and interpret AC(10).

3. Solve AC(x) < 100 and interpret.

4. Determine the behavior of AC(x) as x→∞ and interpret.

Solution.

1. From AC(x) = C(x)
x , we obtain AC(x) = 80x+150

x . The domain of C is x ≥ 0, but since x = 0
causes problems for AC(x), we get our domain to be x > 0, or (0,∞).

2. We find AC(10) = 80(10)+150
10 = 95, so the average cost to produce 10 game systems is $95

per system.

3. Solving AC(x) < 100 means we solve 80x+150
x < 100. We proceed as in the previous example.

80x+ 150

x
< 100

80x+ 150

x
− 100 < 0

80x+ 150− 100x

x
< 0 common denominator

150− 20x

x
< 0

If we take the left hand side to be a rational function r(x), we need to keep in mind the the
applied domain of the problem is x > 0. This means we consider only the positive half of the
number line for our sign diagram. On (0,∞), r is defined everywhere so we need only look
for zeros of r. Setting r(x) = 0 gives 150− 20x = 0, so that x = 15

2 = 7.5. The test intervals
on our domain are (0, 7.5) and (7.5,∞). We find r(x) < 0 on (7.5,∞).

1There is no asymptote at x = 1 since the graph is well behaved near x = 1. According to Theorem 4.1, there
must be a hole there.
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0

‽

7.5

(+) 0 (−)

In the context of the problem, x represents the number of PortaBoy games systems produced
and AC(x) is the average cost to produce each system. Solving AC(x) < 100 means we are
trying to find how many systems we need to produce so that the average cost is less than $100
per system. Our solution, (7.5,∞) tells us that we need to produce more than 7.5 systems to
achieve this. Since it doesn’t make sense to produce half a system, our final answer is [8,∞).

4. We can apply Theorem 4.2 to AC(x) and we find y = 80 is a horizontal asymptote to the
graph of y = AC(x). To more precisely determine the behavior of AC(x) as x → ∞, we
first use long division2 and rewrite AC(x) = 80 + 150

x . As x → ∞, 150
x → 0+, which means

AC(x) ≈ 80 + very small (+). Thus the average cost per system is getting closer to $80
per system. If we set AC(x) = 80, we get 150

x = 0, which is impossible, so we conclude
that AC(x) > 80 for all x > 0. This means the average cost per system is always greater
than $80 per system, but the average cost is approaching this amount as more and more
systems are produced. Looking back at Example 2.1.5, we realize $80 is the variable cost
per system − the cost per system above and beyond the fixed initial cost of $150. Another
way to interpret our answer is that ‘infinitely’ many systems would need to be produced to
effectively counterbalance the fixed cost.

Our next example is another classic ‘box with no top’ problem.

Example 4.3.3. A box with a square base and no top is to be constructed so that it has a volume
of 1000 cubic centimeters. Let x denote the width of the box, in centimeters. Refer to the figure
below.

width, x

height depth

1. Express the height h in centimeters as a function of the width x and state the applied domain.

2. Solve h(x) ≥ x and interpret.

3. Find and interpret the behavior of h(x) as x→ 0+ and as x→∞.

4. Express the surface area S of the box as a function of x and state the applied domain.

5. Use a calculator to approximate (to two decimal places) the dimensions of the box which
minimize the surface area.

2In this case, long division amounts to term-by-term division.
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Solution.

1. We are told the volume of the box is 1000 cubic centimeters and that x represents the width,
in centimeters. From geometry, we know Volume = width × height × depth. Since the base
of the box is to be a square, the width and the depth are both x centimeters. Using h for the
height, we have 1000 = x2h, so that h = 1000

x2 . Using function notation,3 h(x) = 1000
x2 As for

the applied domain, in order for there to be a box at all, x > 0, and since every such choice
of x will return a positive number for the height h we have no other restrictions and conclude
our domain is (0,∞).

2. To solve h(x) ≥ x, we proceed as before and collect all nonzero terms on one side of the
inequality and use a sign diagram.

h(x) ≥ x

1000

x2
≥ x

1000

x2
− x ≥ 0

1000− x3

x2
≥ 0 common denominator

We consider the left hand side of the inequality as our rational function r(x). We see r is
undefined at x = 0, but, as in the previous example, the applied domain of the problem is
x > 0, so we are considering only the behavior of r on (0,∞). The sole zero of r comes when
1000−x3 = 0, which is x = 10. Choosing test values in the intervals (0, 10) and (10,∞) gives
the following diagram.

0

‽ (+)

10

0 (−)

We see r(x) > 0 on (0, 10), and since r(x) = 0 at x = 10, our solution is (0, 10]. In the context
of the problem, h represents the height of the box while x represents the width (and depth)
of the box. Solving h(x) ≥ x is tantamount to finding the values of x which result in a box
where the height is at least as big as the width (and, in this case, depth.) Our answer tells
us the width of the box can be at most 10 centimeters for this to happen.

3. As x→ 0+, h(x) = 1000
x2 →∞. This means the smaller the width x (and, in this case, depth),

the larger the height h has to be in order to maintain a volume of 1000 cubic centimeters. As
x → ∞, we find h(x) → 0+, which means to maintain a volume of 1000 cubic centimeters,
the width and depth must get bigger the smaller the height becomes.

3That is, h(x) means ‘h of x’, not ‘h times x’ here.
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4. Since the box has no top, the surface area can be found by adding the area of each of the
sides to the area of the base. The base is a square of dimensions x by x, and each side has
dimensions x by h. We get the surface area, S = x2 + 4xh. To get S as a function of x, we
substitute h = 1000

x2 to obtain S = x2 + 4x
(

1000
x2

)
. Hence, as a function of x, S(x) = x2 + 4000

x .
The domain of S is the same as h, namely (0,∞), for the same reasons as above.

5. A first attempt at the graph of y = S(x) on the calculator may lead to frustration. Chances
are good that the first window chosen to view the graph will suggest y = S(x) has the x-axis
as a horizontal asymptote. From the formula S(x) = x2 + 4000

x , however, we get S(x) ≈ x2 as
x→∞, so S(x)→∞. Readjusting the window, we find S does possess a relative minimum
at x ≈ 12.60. As far as we can tell,4 this is the only relative extremum, and so it is the
absolute minimum as well. This means the width and depth of the box should each measure
approximately 12.60 centimeters. To determine the height, we find h(12.60) ≈ 6.30, so the
height of the box should be approximately 6.30 centimeters.

4.3.1 Variation

In many instances in the sciences, rational functions are encountered as a result of fundamental
natural laws which are typically a result of assuming certain basic relationships between variables.
These basic relationships are summarized in the definition below.

Definition 4.4. Suppose x, y, and z are variable quantities. We say

• y varies directly with (or is directly proportional to) x if there is a constant k such
that y = kx.

• y varies inversely with (or is inversely proportional to) x if there is a constant k such
that y = k

x .

• z varies jointly with (or is jointly proportional to) x and y if there is a constant k
such that z = kxy.

The constant k in the above definitions is called the constant of proportionality.

4without Calculus, that is...
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Example 4.3.4. Translate the following into mathematical equations using Definition 4.4.

1. Hooke’s Law: The force F exerted on a spring is directly proportional the extension x of the
spring.

2. Boyle’s Law: At a constant temperature, the pressure P of an ideal gas is inversely propor-
tional to its volume V .

3. The volume V of a right circular cone varies jointly with the height h of the cone and the
square of the radius r of the base.

4. Ohm’s Law: The current I through a conductor between two points is directly proportional to
the voltage V between the two points and inversely proportional to the resistance R between
the two points.

5. Newton’s Law of Universal Gravitation: Suppose two objects, one of mass m and one of mass
M , are positioned so that the distance between their centers of mass is r. The gravitational
force F exerted on the two objects varies directly with the product of the two masses and
inversely with the square of the distance between their centers of mass.

Solution.

1. Applying the definition of direct variation, we get F = kx for some constant k.

2. Since P and V are inversely proportional, we write P = k
V .

3. There is a bit of ambiguity here. It’s clear the volume and height of the cone is represented by
the quantities V and h, respectively, but does r represent the radius of the base or the square
of the radius of the base? It is the former. Usually, if an algebraic operation is specified
(like squaring), it is meant to be expressed in the formula. We apply Definition 4.4 to get
V = khr2.

4. Even though the problem doesn’t use the phrase ‘varies jointly’, the fact that the current I
is given as relating to two different quantities implies this. Since I varies directly with V but
inversely with R, we write I = kV

R .

5. We write the product of the masses mM and the square of the distance as r2. We have F
varies directly with mM and inversely with r2, so that F = kmM

r2 .

In many of the formulas in the previous example, more than two varying quantities are related. In
practice, however, usually all but two quantities are held constant in an experiment and the data
collected is used to relate just two of the variables. Comparing just two varying quantities allows
us to view the relationship between them as functional, as the next example illustrates.

http://en.wikipedia.org/wiki/Hooke's_law
http://en.wikipedia.org/wiki/Boyle's_law
http://en.wikipedia.org/wiki/Ohm's_law
http://en.wikipedia.org/wiki/Law_of_universal_gravitation
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Example 4.3.5. According to this website the actual data relating the volume V of a gas and its
pressure P used by Boyle and his assistant in 1662 to verify the gas law that bears his name is
given below.

V 48 46 44 42 40 38 36 34 32 30 28 26 24

P 29.13 30.56 31.94 33.5 35.31 37 39.31 41.63 44.19 47.06 50.31 54.31 58.81

V 23 22 21 20 19 18 17 16 15 14 13 12

P 61.31 64.06 67.06 70.69 74.13 77.88 82.75 87.88 93.06 100.44 107.81 117.56

1. Use your calculator to generate a scatter diagram for these data using V as the independent
variable and P as the dependent variable. Does it appear from the graph that P is inversely
proportional to V ? Explain.

2. Assuming P and V do vary inversely, use the data to approximate the constant of propor-
tionality.

3. Use your calculator to determine a ‘Power Regression’ to this data5 and use it verify your
results in 1 and 2.

Solution.

1. If P really does vary inversely with V , then P = k
V for some constant k. From the data plot,

the points do seem to like along a curve like y = k
x .

2. To determine the constant of proportionality, we note that from P = k
V , we get k = PV .

Multiplying each of the volume numbers times each of the pressure numbers,6 we produce a
number which is always approximately 1400. We suspect that P = 1400

V . Graphing y = 1400
x

along with the data gives us good reason to believe our hypotheses that P and V are, in fact,
inversely related.

The graph of the data The data with y = 1400
x

5We will talk more about this in the coming chapters.
6You can use tell the calculator to do this algebra on the lists and save yourself some time.

http://web.lemoyne.edu/~giunta/classicalcs/boyleverify.html
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3. After performing a ‘Power Regression’, the calculator fits the data to the curve y = axb where
a ≈ 1400 and b ≈ −1 with a correlation coefficient which is darned near perfect7. In other
words, y = 1400x−1 or y = 1400

x , as we guessed.

7We will revisit this example once we have developed logarithms in Chapter 6 to see how we can actually ‘linearize’
this data and do a linear regression to obtain the same result.
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4.3.2 Exercises

1. Solve each rational equation. Be sure to check for extraneous solutions.

(a)
x

5x+ 4
= 3

(b)
3x− 1

x2 + 1
= 1

(c)
1

x+ 3
+

1

x− 3
=
x2 − 3

x2 − 9

(d)
2x+ 17

x+ 1
= x+ 5

(e)
x2 − 2x+ 1

x3 + x2 − 2x
= 1

(f)
−x3 + 4x

x2 − 9
= 4x

2. Solve each rational inequality. Express your answer using interval notation.

(a)
1

x+ 2
≥ 0

(b)
x− 3

x+ 2
≤ 0

(c)
x

x2 − 1
> 0

(d)
4x

x2 + 4
≤ 0

(e)
4x

x2 − 4
≥ 0

(f)
x2 − x− 12

x2 + x− 6
> 0

(g)
3x2 − 5x− 2

x2 − 9
< 0

(h)
x3 + 2x2 + x

x2 − x− 2
≥ 0

(i)
x2 + 5x+ 6

x2 − 1
> 0

(j)
3x− 1

x2 + 1
≤ 1

(k)
2x+ 17

x+ 1
> x+ 5

(l)
−x3 + 4x

x2 − 9
≥ 4x

(m)
1

x2 + 1
< 0

(n)
x4 − 4x3 + x2 − 2x− 15

x3 − 4x2
≥ x (o)

5x3 − 12x2 + 9x+ 10

x2 − 1
≥ 3x− 1

3. Another Classic Problem: A can is made in the shape of a right circular cylinder and is to
hold one pint. (For dry goods, one pint is equal to 33.6 cubic inches.)8

(a) Find an expression for the volume V of the can based on the height h and the base
radius r.

(b) Find an expression for the surface area S of the can based on the height h and the base
radius r. (Hint: The top and bottom of the can are circles of radius r and the side of
the can is really just a rectangle that has been bent into a cylinder.)

(c) Using the fact that V = 33.6, write S as a function of r and state its applied domain.

(d) Use your graphing calculator to find the dimensions of the can which has minimal surface
area.

4. In Exercise 11 in Section 1.5, the population of Sasquatch in Portage County was modeled
by the function P (t) = 150t

t+15 , where t = 0 represents the year 1803. When were there fewer
than 100 Sasquatch in the county?

8According to www.dictionary.com, there are different values given for this conversion. We will stick with 33.6in3

for this problem.

http://dictionary.reference.com/browse/pint
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5. The cost C in dollars to remove p% of the invasive species of Ippizuti fish from Sasquatch
Pond is given by C(p) = 1770p

100−p where 0 ≤ p < 100.

(a) Find and interpret C(25) and C(95).

(b) What does the vertical asymptote at x = 100 mean within the context of the problem?

(c) What percentage of the Ippizuti fish can you remove for $40000?

6. Translate the following into mathematical equations.

(a) At a constant pressure, the temperature T of an ideal gas is directly proportional to its
volume V . (This is Charles’s Law)

(b) The frequency of a wave f is inversely proportional to the wavelength of the wave λ.

(c) The density d of a material is directly proportional to the mass of the object m and
inversely proportional to its volume V .

(d) The square of the orbital period of a planet P is directly proportional to the cube of the
semi-major axis of its orbit a. (This is Kepler’s Third Law of Planetary Motion )

(e) The drag of an object traveling through a fluid D varies jointly with the density of the
fluid ρ and the square of the velocity of the object ν.

(f) Suppose two electric point charges, one with charge q and one with charge Q, are posi-
tioned r units apart. The electrostatic force F exerted on the charges varies directly with
the product of the two charges and inversely with the square of the distance between
the charges. (This is Coulomb’s Law)

7. According to this webpage, the frequency f of a vibrating string is given by f =
1

2L

√
T

µ
where T is the tension, µ is the linear mass9 of the string and L is the length of the vibrating
part of the string. Express this relationship using the language of variation.

8. According to the Centers for Disease Control and Prevention www.cdc.gov, a person’s Body
Mass Index B is directly proportional to his weight W in pounds and inversely proportional
to the square of his height h in inches.

(a) Express this relationship as a mathematical equation.

(b) If a person who was 5 feet, 10 inches tall weighed 235 pounds had a Body Mass Index
of 33.7, what is the value of the constant of proportionality?

(c) Rewrite the mathematical equation found in part 8a to include the value of the constant
found in part 8b and then find your Body Mass Index.

9. We know that the circumference of a circle varies directly with its radius with 2π as the
constant of proportionality. (That is, we know C = 2πr.) With the help of your classmates,
compile a list of other basic geometric relationships which can be seen as variations.

9Also known as the linear density. It is simply a measure of mass per unit length.

http://en.wikipedia.org/wiki/Charles's_law
http://en.wikipedia.org/wiki/Kepler
http://en.wikipedia.org/wiki/Electrostatic#Coulomb.27s_law
http://en.wikipedia.org/wiki/Vibrating_string
http://www.cdc.gov
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4.3.3 Answers

1. (a) x = −6
7

(b) x = 1, x = 2

(c) x = −1

(d) x = −6, x = 2

(e) No solution

(f) x = 0, x = ±2
√

2

2. (a) (−2,∞)

(b) (−2, 3]

(c) (−1, 0) ∪ (1,∞)

(d) (−∞, 0]

(e) (−2, 0] ∪ (2,∞)

(f) (−∞,−3) ∪ (−3, 2) ∪ (4,∞)

(g)
(
−3,−1

3

)
∪ (2, 3)

(h) (−1, 0] ∪ (2,∞)

(i) (−∞,−3) ∪ (−2,−1) ∪ (1,∞)

(j) (−∞, 1] ∪ [2,∞)

(k) (−∞,−6) ∪ (−1, 2)

(l) (−∞,−3) ∪
[
−2
√

2, 0
]
∪
[
2
√

2, 3
)

(m) No solution

(n) [−3, 0) ∪ (0, 4) ∪ [5,∞)

(o)
(
−1,−1

2

]
∪ (1,∞)

3. (a) V = πr2h.

(b) S = 2πr2 + 2πrh

(c) S(r) = 2πr2 + 67.2
r , Domain r > 0

(d) r ≈ 1.749 in. and h ≈ 3.498 in.

4. P (30) = 100 so before 1903 there were fewer than 100 Sasquatch in Portage County.

5. (a) C(25) = 590 means it costs $590 to remove 25% of the fish and and C(95) = 33630
means it would cost $33630 to remove 95% of the fish from the pond.

(b) The vertical asymptote at x = 100 means that as we try to remove 100% of the fish from
the pond, the cost increases without bound; i.e., it’s impossible to remove all of the fish.

(c) For $40000 you could remove about 95.76% of the fish.

6. (a) T = kV

(b) 10 f =
k

λ
.

(c) d =
km

V
(d) P 2 = ka3

(e) 11 D = kρν2.

(f) 12 F =
kqQ

r2

7. Rewriting f =
1

2L

√
T

µ
as f =

1
2

√
T

L
√
µ

we see that the frequency f varies directly with the

square root of the tension and varies inversely with the length and the square root of the
linear mass.

8. (a) B =
kW

h2
(b) 13 k = 702.68 (c) B =

703W

h2

10The character λ is the lower case Greek letter ‘lambda.’
11Note: The characters ρ and ν are the lower case Greek letters ‘rho’ and ‘nu,’ respectively.
12Note the similarity to this formula and Newton’s Law of Universal Gravitation as discussed in Example 5.
13The CDC uses 703.



Chapter 5

Further Topics in Functions

5.1 Function Composition

Before we embark upon any further adventures with functions, we need to take some time to gather
our thoughts and gain some perspective. Chapter 1 first introduced us to functions in Section 1.4.
At that time, functions were specific kinds of relations - sets of points in the plane which passed the
Vertical Line Test, Theorem 1.1. In Section 1.5, we developed the idea that functions are processes
- rules which match inputs to outputs - and this gave rise to the concepts of domain and range.
We spoke about how functions could be combined in Section 1.6 using the four basic arithmetic
operations, took a more detailed look at their graphs in Section 1.7 and studied how their graphs
behaved under certain classes of transformations in Section 1.8. In Chapter 2, we took a closer
look at three families of functions: linear functions (Section 2.1), absolute value functions1 (Section
2.2), and quadratic functions (Section 2.3). Linear and quadratic functions were special cases of
polynomial functions, which we studied in generality in Chapter 3. Chapter 3 culminated with
the Real Factorization Theorem, Theorem 3.16, which says that all polynomial functions with real
coefficients can be thought of as products of linear and quadratic functions. Our next step was to
enlarge our field2 of study to rational functions in Chapter 4. Being quotients of polynomials, we
can ultimately view this family of functions as being built up of linear and quadratic functions as
well. So in some sense, Chapters 2, 3, and 4 can be thought of as an exhaustive study of linear and
quadratic3 functions and their arithmetic combinations as described in Section 1.6. We now wish
to study other algebraic functions, such as f(x) =

√
x and g(x) = x2/3, and the purpose of the

first two sections of this chapter is to see how these kinds of functions arise from polynomial and
rational functions. To that end, we first study a new way to combine functions as defined below.

Definition 5.1. Suppose f and g are two functions. The composite of g with f , denoted g ◦ f ,
is defined by the formula (g ◦ f)(x) = g(f(x)), provided x is an element of the domain of f and
f(x) is an element of the domain of g.

1These were introduced, as you may recall, as piecewise-defined linear functions.
2This is a really bad math pun.
3If we broaden our concept of functions to allow for complex valued coefficients, the Complex Factorization

Theorem, Theorem 3.14, tells us every function we have studied thus far is a combination of linear functions.
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The quantity g ◦f is also read ‘g composed with f ’ or, more simply ‘g of f .’ At its most basic level,
Definition 5.1 tells us to obtain the formula for (g ◦ f) (x), we replace every occurrence of x in the
formula for g(x) with the formula we have for f(x). If we take a step back and look at this from a
procedural, ‘inputs and outputs’ perspective, Defintion 5.1 tells us the output from g ◦ f is found
by taking the output from f , f(x), and then making that the input to g. The result, g(f(x)), is
the output from g ◦ f . From this perspective, we see g ◦ f as a two step process taking an input x
and first applying the procedure f then applying the procedure g. Abstractly, we have

f g

g ◦ f

x f(x)

g(f(x))

In the expression g(f(x)), the function f is often called the ‘inside’ function while g is often called
the ‘outside’ function. There are two ways to go about evaluating composite functions - ‘inside
out’ and ‘outside in’ - depending on which function we replace with its formula first. Both ways
are demonstrated in the following example.

Example 5.1.1. Let f(x) = x2 − 4x, g(x) = 2−
√
x+ 3, and h(x) =

2x

x+ 1
. Find and simplify the

indicated composite functions. State the domain of each.

1. (g ◦ f)(x)

2. (f ◦ g)(x)

3. (g ◦ h)(x)

4. (h ◦ g)(x)

5. (h ◦ h)(x)

6. (h ◦ (g ◦ f))(x)

7. ((h ◦ g) ◦ f)(x)

Solution.

1. By definition, (g ◦ f)(x) = g(f(x)). We now illustrate the two ways to evaluate this.

• inside out : We insert the expression f(x) into g first to get

(g ◦ f)(x) = g(f(x)) = g
(
x2 − 4x

)
= 2−

√
(x2 − 4x) + 3 = 2−

√
x2 − 4x+ 3

Hence, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.
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• outside in: We use the formula for g first to get

(g ◦ f)(x) = g(f(x)) = 2−
√
f(x) + 3 = 2−

√
(x2 − 4x) + 3 = 2−

√
x2 − 4x+ 3

We get the same answer as before, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

To find the domain of g ◦ f , we need to find the elements in the domain of f whose outputs
f(x) are in the domain of g. We accomplish this by following the rule set forth in Section
1.5, that is, we find the domain before we simplify. To that end, we examine (g ◦ f)(x) =
2−

√
(x2 − 4x) + 3. To keep the square root happy, we solve the inequality x2 − 4x+ 3 ≥ 0

by creating a sign diagram. If we let r(x) = x2 − 4x + 3, we find the zeros of r to be x = 1
and x = 3. We obtain

1 3

(+) 0 (−) 0 (+)

Our solution to x2 − 4x+ 3 ≥ 0, and hence the domain of g ◦ f , is (−∞, 1] ∪ [3,∞).

2. To find (f ◦ g)(x), we find f(g(x)).

• inside out : We insert the expression g(x) into f first to get

(f ◦ g)(x) = f(g(x))

= f
(
2−
√
x+ 3

)
=

(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
= 4− 4

√
x+ 3 +

(√
x+ 3

)2 − 8 + 4
√
x+ 3

= 4 + x+ 3− 8
= x− 1

• outside in: We use the formula for f(x) first to get

(f ◦ g)(x) = f(g(x))

= (g(x))2 − 4 (g(x))

=
(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
= x− 1 same algebra as before

Thus we get (f ◦ g)(x) = x − 1. To find the domain of (f ◦ g), we look to the step before

we did any simplification and find (f ◦ g)(x) =
(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
. To keep the

square root happy, we set x+ 3 ≥ 0 and find our domain to be [−3,∞).

3. To find (g ◦ h)(x), we compute g(h(x)).
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• inside out : We insert the expression h(x) into g first to get

(g ◦ h)(x) = g(h(x))

= g

(
2x

x+ 1

)

= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

2x

x+ 1
+

3(x+ 1)

x+ 1
get common denominators

= 2−
√

5x+ 3

x+ 1

• outside in: We use the formula for g(x) first to get

(g ◦ h)(x) = g(h(x))

= 2−
√
h(x) + 3

= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

5x+ 3

x+ 1
get common denominators as before

Hence, (g ◦ h)(x) = 2−
√

5x+3
x+1 . To find the domain, we look to the step before we began to

simplify: (g ◦ h)(x) = 2−
√(

2x
x+1

)
+ 3. To avoid division by zero, we need x 6= −1. To keep

the radical happy, we need to solve 2x
x+1 + 3 ≥ 0. Getting common denominators as before,

this reduces to 5x+3
x+1 ≥ 0. Defining r(x) = 5x+3

x+1 , we have that r is undefined at x = −1 and

r(x) = 0 at x = −3
5 . We get

−1 −3
5

(+) ‽ (−) 0 (+)

Our domain is (−∞,−1) ∪
[
−3

5 ,∞
)
.

4. We find (h ◦ g)(x) by finding h(g(x)).

• inside out : We insert the expression g(x) into h first to get

(h ◦ g)(x) = h(g(x))
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= h
(
2−
√
x+ 3

)
=

2
(
2−
√
x+ 3

)(
2−
√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

• outside in: We use the formula for h(x) first to get

(h ◦ g)(x) = h(g(x))

=
2 (g(x))

(g(x)) + 1

=
2
(
2−
√
x+ 3

)(
2−
√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

Hence, (h ◦ g)(x) = 4−2
√
x+3

3−
√
x+3

. To find the domain of h ◦ g, we look to the step before any

simplification: (h ◦ g)(x) =
2(2−

√
x+3)

(2−
√
x+3)+1

. To keep the square root happy, we require x+ 3 ≥ 0

or x ≥ −3. Setting the denominator equal to zero gives
(
2−
√
x+ 3

)
+ 1 = 0 or

√
x+ 3 = 3.

Squaring both sides gives us x+ 3 = 9, or x = 6. Since x = 6 checks in the original equation,(
2−
√
x+ 3

)
+1 = 0, we know x = 6 is the only zero of the denominator. Hence, the domain

of h ◦ g is [−3, 6) ∪ (6,∞).

5. To find (h ◦ h)(x), we substitute the function h into itself, h(h(x)).

• inside out : We insert the expression h(x) into h to get

(h ◦ h)(x) = h(h(x))

= h

(
2x

x+ 1

)

=

2

(
2x

x+ 1

)
(

2x

x+ 1

)
+ 1

=

4x

x+ 1
2x

x+ 1
+ 1
· (x+ 1)

(x+ 1)
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=

4x

x+ 1
· (x+ 1)(

2x

x+ 1

)
· (x+ 1) + 1 · (x+ 1)

=

4x

���
�: 1

(x+ 1)
·����(x+ 1)

2x

���
�: 1

(x+ 1)
·����(x+ 1) + x+ 1

=
4x

3x+ 1

• outside in: This approach yields

(h ◦ h)(x) = h(h(x))

=
2(h(x))

h(x) + 1

=

2

(
2x

x+ 1

)
(

2x

x+ 1

)
+ 1

=
4x

3x+ 1
same algebra as before

To find the domain of h ◦ h, we analyze (h ◦ h)(x) =
2
(

2x
x+1

)
(

2x
x+1

)
+ 1

. To keep the denominator

x + 1 happy, we need x 6= −1. Setting the denominator 2x
x+1 + 1 = 0 gives x = −1

3 . Our

domain is (−∞,−1) ∪
(
−1,−1

3

)
∪
(
−1

3 ,∞
)
.

6. The expression (h ◦ (g ◦ f))(x) indicates that we first find the composite, g ◦ f and compose
the function h with the result. We know from number 1 that (g ◦ f)(x) = 2−

√
x2 − 4x+ 3.

We now proceed as usual.

• inside out : We insert the expression (g ◦ f)(x) into h first to get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x))

= h
(

2−
√
x2 − 4x+ 3

)
=

2
(

2−
√
x2 − 4x+ 3

)
(

2−
√
x2 − 4x+ 3

)
+ 1
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=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

• outside in: We use the formula for h(x) first to get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x))

=
2 ((g ◦ f)(x))

((g ◦ f)(x)) + 1

=
2
(

2−
√
x2 − 4x+ 3

)
(

2−
√
x2 − 4x+ 3

)
+ 1

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

So we get (h ◦ (g ◦ f))(x) = 4−2
√
x2−4x+3

3−
√
x2−4x+3

. To find the domain, we look at the step before

we began to simplify, (h ◦ (g ◦ f))(x) =
2(2−

√
x2−4x+3)

(2−
√
x2−4x+3)+1

. For the square root, we need

x2 − 4x + 3 ≥ 0, which we determined in number 1 to be (−∞, 1] ∪ [3,∞). Next, we set

the denominator to zero and solve:
(

2−
√
x2 − 4x+ 3

)
+ 1 = 0. We get

√
x2 − 4x+ 3 = 3,

and, after squaring both sides, we have x2 − 4x + 3 = 9. To solve x2 − 4x − 6 = 0, we use
the quadratic formula and get x = 2 ±

√
10. The reader is encouraged to check that both

of these numbers satisfy the original equation,
(

2−
√
x2 − 4x+ 3

)
+ 1 = 0. Hence we must

exclude these numbers from the domain of h ◦ (g ◦ f). Our final domain for h ◦ (f ◦ g) is
(−∞, 2−

√
10) ∪ (2−

√
10, 1] ∪

[
3, 2 +

√
10
)
∪
(
2 +
√

10,∞
)
.

7. The expression ((h◦g)◦f)(x) indicates that we first find the composite h◦g and then compose

that with f . From number 4, we gave (h ◦ g)(x) = 4−2
√
x+3

3−
√
x+3

. We now proceed as before.

• inside out : We insert the expression f(x) into h ◦ g first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x))

= (h ◦ g)
(
x2 − 4x

)
=

4− 2
√

(x2 − 4x) + 3

3−
√

(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

• outside in: We use the formula for (h ◦ g)(x) first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x))
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=
4− 2

√
(f(x)) + 3

3−
√
f(x)) + 3

=
4− 2

√
(x2 − 4x) + 3

3−
√

(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

We note that the formula for ((h ◦ g) ◦ f)(x) before simplification is identical to that of
(h ◦ (g ◦ f))(x) before we simplified it. Hence, the two functions have the same domain,
h ◦ (f ◦ g) is (−∞, 2−

√
10) ∪ (2−

√
10, 1] ∪

[
3, 2 +

√
10
)
∪
(
2 +
√

10,∞
)
.

It should be clear from Example 5.1.1 that, in general, when you compose two functions, such as
f and g above, the order matters.4 We found that the functions f ◦ g and g ◦ f were different as
were g ◦h and h ◦ g. Thinking of functions as processes, this isn’t all that surprising. If we think of
one process as putting on our socks, and the other as putting on our shoes, the order in which we
do these two tasks does matter.5 Also note the importance of finding the domain of the composite
function before simplifying. For instance, the domain of f ◦ g is much different than its simplified
formula would indicate. Composing a function with itself, as in the case of h ◦ h, may seem odd.
Looking at this from a procedural perspective, however, this merely indicates performing a task
h and then doing it again - like setting the washing machine to do a ‘double rinse’. Composing a
function with itself is called ‘iterating’ the function, and we could easily spend an entire course on
just that. The last two problems in Example 5.1.1 serve to demonstrate the associative property
of functions. That is, when composing three (or more) functions, as long as we keep the order the
same, it doesn’t matter which two functions we compose first. This property as well as another
important property are listed in the theorem below.

Theorem 5.1. Properties of Function Composition: Suppose f , g, and h are functions.

• h ◦ (g ◦ f) = (h ◦ g) ◦ f , provided the composite functions are defined.

• If I is defined as I(x) = x for all real numbers x, then I ◦ f = f ◦ I = f .

By repeated applications of Definition 5.1, we find (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))).
Similarly, ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))). This establishes that the formulas for the
two functions are the same. We leave it to the reader to think about why the domains of these
two functions are identical, too. These two facts establish the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f .
A consequence of the associativity of function composition is that there is no need for parentheses

4This shows us function composition isn’t commutative. An example of an operation we perform on two functions
which is commutative is function addition, which we defined in Section 1.6. In other words, the functions f + g and
g + f are always equal. Which of the remaining operations on functions we have discussed are commutative?

5A more mathematical example in which the order of two processes matters can be found in Section 1.8. In fact,
all of the transformations in that section can be viewed in terms of composing functions with linear functions.
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when we write h ◦ g ◦ f . The second property can also be verified using Definition 5.1. Recall that
the function I(x) = x is called the identity function and was introduced in Exercise 15 in Section
2.1. If we compose the function I with a function f , then we have (I ◦ f)(x) = I(f(x)) = f(x),
and a similar computation shows (f ◦ I)(x) = f(x). This establishes that we have an identity
for function composition much in the same way the real number 1 is an identity for real number
multiplication. That is, just as for any real number x, 1 · x = x · 1 = x , we have for any function
f , I ◦ f = f ◦ I = f . We shall see the concept of an identity take on great significance in the next
section. Out in the wild, function composition is often used to relate two quantities which may not
be directly related, but have a variable in common, as illustrated in our next example.

Example 5.1.2. The surface area S of a sphere is a function of its radius r and is given by the
formula S(r) = 4πr2. Suppose the sphere is being inflated so that the radius of the sphere is
increasing according to the formula r(t) = 3t2, where t is measured in seconds, t ≥ 0, and r is
measured in inches. Find and interpret (S ◦ r)(t).
Solution. If we look at the functions S(r) and r(t) individually, we see the former gives the
surface area of a sphere of a given radius while the latter gives the radius at a given time. So,
given a specific time, t, we could find the radius at that time, r(t) and feed that into S(r) to find
the surface area at that time. From this we see that the surface area S is ultimately a function of
time t and we find (S ◦ r)(t) = S(r(t)) = 4π(r(t))2 = 4π

(
3t2
)2

= 36πt4. This formula allows us to
compute the surface area directly given the time without going through the ‘middle man’ r.

A useful skill in Calculus is to be able to take a complicated function and break it down into a
composition of easier functions which our last example illustrates.

Example 5.1.3. Write each of the following functions as a composition of two or more (non-identity)
functions. Check your answer by performing the function composition.

1. F (x) = |3x− 1|

2. G(x) =
2

x2 + 1

3. H(x) =

√
x+ 1√
x− 1

Solution. There are many approaches to this kind of problem, and we showcase a different
methodology in each of the solutions below.

1. Our goal is to express the function F as F = g ◦ f for functions g and f . From Definition
5.1, we know F (x) = g(f(x)), and we can think of f(x) as being the ‘inside’ function and g
as being the ‘outside’ function. Looking at F (x) = |3x − 1| from an ‘inside versus outside’
perspective, we can think of 3x − 1 being inside the absolute value symbols. Taking this
cue, we define f(x) = 3x − 1. At this point, we have F (x) = |f(x)|. What is the outside
function? The function which takes the absolute value of its input, g(x) = |x|. Sure enough,
(g ◦ f)(x) = g(f(x)) = |f(x)| = |3x− 1| = F (x), so we are done.
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2. We attack deconstructing G from an operational approach. Given an input x, the first step
is to square x, then add 1, then divide the result into 2. We will assign each of these steps a
function so as to write G as a composite of three functions: f , g and h. Our first function,
f , is the function that squares its input, f(x) = x2. The next function is the function that
adds 1 to its input, g(x) = x + 1. Our last function takes its input and divides it into 2,
h(x) = 2

x . The claim is that G = h ◦ g ◦ f . We find (h ◦ g ◦ f)(x) = h(g(f(x))) = h(g
(
x2
)
) =

h
(
x2 + 1

)
= 2

x2+1
= G(x).

3. If we look H(x) =
√
x+1√
x−1

with an eye towards building a complicated function from simpler

functions, we see the expression
√
x is a simple piece of the larger function. If we define

f(x) =
√
x, we have H(x) = f(x)+1

f(x)−1 . If we want to decompose H = g ◦ f , then we can glean

the formula from g(x) by looking at what is being done to f(x). We find g(x) = x+1
x−1 . We

check (g ◦ f)(x) = g(f(x)) = f(x)+1
f(x)−1 =

√
x+1√
x−1

= H(x), as required.
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5.1.1 Exercises

1. Let f(x) = 3x − 6, g(x) = |x|, h(x) =
√
x and k(x) =

1

x
. Find and simplify the indicated

composite functions. State the domain of each.

(a) (f ◦ g)(x)

(b) (g ◦ f)(x)

(c) (f ◦ h)(x)

(d) (h ◦ f)(x)

(e) (g ◦ h)(x)

(f) (h ◦ g)(x)

(g) (f ◦ k)(x)

(h) (k ◦ f)(x)

(i) (h ◦ k)(x)

(j) (k ◦ h)(x)

(k) (f ◦ g ◦ h)(x)

(l) (h ◦ g ◦ k)(x)

(m) (k ◦ h ◦ f)(x)

(n) (h ◦ k ◦ g ◦ f)(x)

2. Let f(x) = 2x + 1, g(x) = x2 − x − 6 and h(x) =
x+ 6

x− 6
. Find and simplify the indicated

composite functions. Find the domain of each.

(a) (g ◦ f) (x)

(b) (h ◦ f) (x)

(c) (h ◦ g) (x)

(d) (h ◦ h) (x)

3. Let f(x) =
√
x− 3, g(x) = 4x + 3 and h(x) =

x− 2

x+ 3
. Find and simplify the indicated

composite functions. Find the domain of each.

(a) (f ◦ g) (x)

(b) (g ◦ f) (x)

(c) (f ◦ h) (x)

(d) (h ◦ f) (x)

(e) (g ◦ h) (x)

(f) (h ◦ g) (x)

(g) (f ◦ f) (x)

(h) (g ◦ g) (x)

(i) (h ◦ h) (x)

4. Let f(x) =
√

9− x2 and g(x) = x2− 9. Find and simplify the indicated composite functions.
State the domain of each.

(a) (f ◦ f)(x)

(b) (g ◦ g)(x)

(c) (g ◦ f)(x)

(d) (f ◦ g)(x)
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5. Let f be the function defined by f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)} and
let g be the function defined g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}.
Find the each of the following values if it exists.

(a) (f ◦ g)(3)

(b) f(g(−1))

(c) (f ◦ f)(0)

(d) (f ◦ g)(−3)

(e) (g ◦ f)(3)

(f) g(f(−3))

(g) (g ◦ g)(−2)

(h) (g ◦ f)(−2)

(i) g(f(g(0)))

(j) f(f(f(−1)))

(k) f(f(f(f(f(1)))))

(l)

n times︷ ︸︸ ︷
(g ◦ g ◦ · · · ◦ g)(0)

6. Let g(x) = −x, h(x) = x+2, j(x) = 3x and k(x) = x−4. In what order must these functions
be composed with f(x) =

√
x to create F (x) = 3

√
−x+ 2− 4?

7. What linear functions could be used to transform f(x) = x3 into F (x) = −1
2(2x − 7)3 + 1?

What is the proper order of composition?

8. Write the following as a composition of two or more non-identity functions.

(a) h(x) =
√

2x− 1

(b) r(x) =
2

5x+ 1

(c) F (x) =
(
x2 − 1

)3
(d) R(x) =

2x3 + 1

x3 − 1

9. Write the function F (x) =

√
x3 + 6

x3 − 9
as a composition of three or more non-identity functions.

10. The volume V of a cube is a function of its side length x. Let’s assume that x = t + 1 is
also a function of time t, where x is measured in inches and t is measured in minutes. Find
a formula for V as a function of t.

11. Suppose a local vendor charges $2 per hot dog and that the number of hot dogs sold per hour
x is given by x(t) = −4t2 + 20t+ 92, where t is the number of hours since 10 AM, 0 ≤ t ≤ 4.

(a) Find an expression for the revenue per hour R as a function of x.

(b) Find and simplify (R ◦ x) (t). What does this represent?

(c) What is the revenue per hour at noon?

12. Discuss with your classmates how ‘real-world’ processes such as filling out federal income tax
forms or computing your final course grade could be viewed as a use of function composition.
Find a process for which composition with itself (iteration) makes sense.
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5.1.2 Answers

1. (a) (f ◦ g)(x) = 3|x| − 6
Domain: (−∞,∞)

(b) (g ◦ f)(x) = |3x− 6|
Domain: (−∞,∞)

(c) (f ◦ h)(x) = 3
√
x− 6

Domain: [0,∞)

(d) (h ◦ f)(x) =
√

3x− 6
Domain: [2,∞)

(e) (g ◦ h)(x) =
√
x

Domain: [0,∞)

(f) (h ◦ g)(x) =
√
|x|

Domain: (−∞,∞)

(g) (f ◦ k)(x) =
3

x
− 6

Domain: (−∞, 0) ∪ (0,∞)

(h) (k ◦ f)(x) =
1

3x− 6
Domain: (−∞, 2) ∪ (2,∞)

(i) (h ◦ k)(x) =

√
1

x
Domain: (0,∞)

(j) (k ◦ h)(x) =
1√
x

Domain: (0,∞)

(k) (f ◦ g ◦ h)(x) = 3
√
x− 6

Domain: [0,∞)

(l) (h ◦ g ◦ k)(x) =

√∣∣∣∣1x
∣∣∣∣

Domain: (−∞, 0) ∪ (0,∞)

(m) (k ◦ h ◦ f)(x) =
1√

3x− 6
Domain: (2,∞)

(n) (h ◦ k ◦ g ◦ f)(x) =

√
1

|3x− 6|
Domain: (−∞, 2) ∪ (2,∞)

2. (a) (g ◦ f) (x) = 4x2 + 2x− 6

Domain: (−∞,∞)

(b) (h ◦ f) (x) =
2x+ 7

2x− 5

Domain:
(
−∞, 5

2

)
∪
(

5
2 ,∞

)

(c) (h ◦ g) (x) =
x2 − x

x2 − x− 12
Domain: (−∞,−3) ∪ (−3, 4) ∪ (4,∞)

(d) (h ◦ h) (x) = −7x− 30

5x− 42
Domain: (−∞, 6) ∪

(
6, 42

5

)
∪
(

42
5 ,∞

)
3. (a) (f ◦ g) (x) = 2

√
x

Domain: [0,∞)

(b) (g ◦ f) (x) = 4
√
x− 3 + 3

Domain: [3,∞)

(c) (f ◦ h) (x) =

√
−2x− 11

x+ 3

Domain:
[
−11

2 ,−3
)

(d) (h ◦ f) (x) =

√
x− 3− 2√
x− 3 + 3

Domain: [3,∞)

(e) (g ◦ h) (x) =
7x+ 1

x+ 3
Domain: (−∞,−3) ∪ (−3,∞)

(f) (h ◦ g) (x) =
4x+ 1

4x+ 6

Domain:
(
−∞,−3

2

)
∪
(
−3

2 ,∞
)

(g) (f ◦ f) (x) =
√√

x− 3− 3

Domain: [12,∞)

(h) (g ◦ g) (x) = 16x+ 15

Domain: (−∞,∞)

(i) (h ◦ h) (x) =
−x− 8

4x+ 7

Domain:

(−∞,−3) ∪
(
−3,−7

4

)
∪
(
−7

4 ,∞
)
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4. (a) (f ◦ f)(x) = |x|
Domain: [−3, 3]

(b) (g ◦ g)(x) = x4 − 18x2 + 72
Domain: (−∞,∞)

(c) (g ◦ f)(x) = −x2

Domain: [−3, 3]

(d) (f ◦ g)(x) =
√
−x4 + 18x2 − 72

Domain: [−
√

12,−
√

6] ∪ [
√

6,
√

12]6

5. (a) (f ◦ g)(3) = f(g(3)) = f(2) = 4

(b) f(g(−1)) = f(−4) which is undefined

(c) (f ◦ f)(0) = f(f(0)) = f(1) = 3

(d) (f ◦ g)(−3) = f(g(−3)) = f(−2) = 2

(e) (g ◦ f)(3) = g(f(3)) = g(−1) = −4

(f) g(f(−3)) = g(4) which is undefined

(g) (g ◦ g)(−2) = g(g(−2)) = g(0) = 0

(h) (g ◦ f)(−2) = g(f(−2)) = g(2) = 1

(i) g(f(g(0))) = g(f(0)) = g(1) = −3

(j) f(f(f(−1))) = f(f(0)) = f(1) = 3

(k) f(f(f(f(f(1))))) = f(f(f(f(3)))) =
f(f(f(−1))) = f(f(0)) = f(1) = 3

(l)

n times︷ ︸︸ ︷
(g ◦ g ◦ · · · ◦ g)(0) = 0

6. F (x) = 3
√
−x+ 2− 4 = k(j(f(h(g(x)))))

7. One possible solution is F (x) = −1
2(2x− 7)3 + 1 = k(j(f(h(g(x))))) where g(x) = 2x, h(x) =

x − 7, j(x) = −1
2x and k(x) = x + 1. You could also have F (x) = H(f(G(x))) where

G(x) = 2x− 7 and H(x) = −1
2x+ 1.

8. (a) h(x) = (g ◦ f) (x) where f(x) = 2x − 1
and g(x) =

√
x.

(b) r(x) = (g ◦ f) (x) where f(x) = 5x + 1

and g(x) =
2

x
.

(c) F (x) = (g ◦ f) (x) where f(x) = x2 − 1
and g(x) = x3.

(d) R(x) = (g ◦ f) (x) where f(x) = x3 and

g(x) =
2x+ 1

x− 1
.

9. F (x) =

√
x3 + 6

x3 − 9
= (h(g(f(x))) where f(x) = x3, g(x) =

x+ 6

x− 9
and h(x) =

√
x.

10. V (x) = x3 so V (x(t)) = (t+ 1)3

11. (a) R(x) = 2x

(b) (R ◦ x) (t) = −8t2 + 40t+ 184, 0 ≤ t ≤ 4. This gives the revenue per hour as a function
of time.

(c) Noon corresponds to t = 2, so (R ◦ x) (2) = 232. The hourly revenue at noon is $232
per hour.

6The quantity −x4 + 18x2 − 72 is a ‘quadratic in disguise’ which factors nicely. See Example 3.3.4 is Section 3.3.
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5.2 Inverse Functions

Thinking of a function as a process like we did in Section 1.5, in this section we seek another
function which might reverse that process. As in real life, we will find that some processes (like
putting on socks and shoes) are reversible while some (like cooking a steak) are not. We start by
discussing a very basic function which is reversible, f(x) = 3x+ 4. Thinking of f as a process, we
start with an input x and apply two steps, as we saw in Section 1.5

1. multiply by 3

2. add 4

To reverse this process, we seek a function g which will undo each of these steps and take the output
from f , 3x+ 4, and return the input x. If we think of the real-world reversible two-step process of
first putting on socks then putting on shoes, to reverse the process, we first take off the shoes, and
then we take off the socks. In much the same way, the function g should undo the second step of
f first. That is, the function g should

1. subtract 4

2. divide by 3

Following this procedure, we get g(x) = x−4
3 . Let’s check to see if the function g does the job.

If x = 5, then f(5) = 3(5) + 4 = 15 + 4 = 19. Taking the output 19 from f , we substitute it
into g to get g(19) = 19−4

3 = 15
3 = 5, which is our original input to f . To check that g does

the job for all x in the domain of f , we take the generic output from f , f(x) = 3x + 4, and

substitute that into g. That is, g(f(x)) = g(3x + 4) = (3x+4)−4
3 = 3x

3 = x, which is our original
input to f . If we carefully examine the arithmetic as we simplify g(f(x)), we actually see g first
‘undoing’ the addition of 4, and then ‘undoing’ the multiplication by 3. Not only does g undo
f , but f also undoes g. That is, if we take the output from g, g(x) = x−4

3 , and put that into
f , we get f(g(x)) = f

(
x−4

3

)
= 3

(
x−4

3

)
+ 4 = (x − 4) + 4 = x. Using the language of function

composition developed in Section 5.1, the statements g(f(x)) = x and f(g(x)) = x can be written
as (g ◦ f)(x) = x and (f ◦ g)(x) = x, respectively. Abstractly, we can visualize the relationship
between f and g in the diagram below.

f

g

x = g(f(x)) y = f(x)
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The main idea to get from the diagram is that g takes the outputs from f and returns them to
their respective inputs, and conversely, f takes outputs from g and returns them to their respective
inputs. We now have enough background to state the central definition of the section.

Definition 5.2. Suppose f and g are two functions such that

1. (g ◦ f)(x) = x for all x in the domain of f and

2. (f ◦ g)(x) = x for all x in the domain of g.

Then f and g are said to be inverses of each other. The functions f and g are said to be
invertible.

Our first result of the section formalizes the concepts that inverse functions exchange inputs and
outputs and is a consequence of Definition 5.2 and the Fundamental Graphing Principle for Func-
tions.

Theorem 5.2. Properties of Inverse Functions: Suppose f and g are inverse functions.

• The rangea of f is the domain of g and the domain of f is the range of g

• f(a) = b if and only if g(b) = a

• (a, b) is on the graph of f if and only if (b, a) is on the graph of g

aRecall this is the set of all outputs of a function.

The third property in Theorem 5.2 tells us that the graphs of inverse functions are reflections about
the line y = x. For a proof of this, we refer the reader to Example 1.1.6 in Section 1.1 and Exercise
14 in Section 2.1. A plot of the inverse functions f(x) = 3x+ 4 and g(x) = x−4

3 confirms this.

x

y

y = f(x)

y = g(x)

y = x

−2 −1 1 2

−1

−2

1

2

If we abstract one step further, we can express the sentiment in Definition 5.2 by saying that f and
g are inverses if and only if g ◦ f = I1 and f ◦ g = I2 where I1 is the identity function restricted1

to the domain of f and I2 is the identity function restricted to the domain of g. In other words,
I1(x) = x for all x in the domain of f and I2(x) = x for all x in the domain of g. Using this
description of inverses along with the properties of function composition listed in Theorem 5.1,

1The identity function I, which was introduced in Section 2.1 and mentioned in Theorem 5.1, has a domain of all
real numbers. In general, the domains of f and g are not all real numbers, which necessitates the restrictions listed
here.
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we can show that function inverses are unique.2 Suppose g and h are both inverses of a function
f . By Theorem 5.2, the domain of g is equal to the domain of h, since both are the range of f .
This means the identity function I2 applies both to the domain of h and the domain of g. Thus
h = h ◦ I2 = h ◦ (f ◦ g) = (h ◦ f) ◦ g = I1 ◦ g = g, as required.3 We summarize the discussion of the
last two paragraphs in the following theorem.4

Theorem 5.3. Uniqueness of Inverse Functions and Their Graphs : Suppose f is an
invertible function.

• There is exactly one inverse function for f , denoted f−1 (read f -inverse)

• The graph of y = f−1(x) is the reflection of the graph of y = f(x) across the line y = x.

The notation f−1 is an unfortunate choice since you’ve been programmed since Elementary Algebra
to think of this as 1

f . This is most definitely not the case since, for instance, f(x) = 3x+ 4 has as

its inverse f−1(x) = x−4
3 , which is certainly different than 1

f(x) = 1
3x+4 . Why does this confusing

notation persist? As we mentioned in Section 5.1, the identity function I is to function composition
what the real number 1 is to real number multiplication. The choice of notation f−1 alludes to the
property that f−1 ◦ f = I1 and f ◦ f−1 = I2, in much the same way as 3−1 · 3 = 1 and 3 · 3−1 = 1.

Let’s turn our attention to the function f(x) = x2. Is f invertible? A likely candidate for the inverse
is the function g(x) =

√
x. Checking the composition yields (g◦f)(x) = g(f(x)) =

√
x2 = |x|, which

is not equal to x for all x in the domain (−∞,∞). For example, when x = −2, f(−2) = (−2)2 = 4,
but g(4) =

√
4 = 2, which means g failed to return the input −2 from its output 4. What g did,

however, is match the output 4 to a different input, namely 2, which satisfies f(2) = 4. This issue
is presented schematically in the picture below.

f

g

x = −2

x = 2

4

We see from the diagram that since both f(−2) and f(2) are 4, it is impossible to construct a
function which takes 4 back to both x = 2 and x = −2. (By definition, a function matches

2In other words, invertible functions have exactly one inverse.
3It is an excellent exercise to explain each step in this string of equalities.
4In the interests of full disclosure, the authors would like to admit that much of the discussion in the previous

paragraphs could have easily been avoided had we appealed to the description of a function as a set of ordered pairs.
We make no apology for our discussion from a function composition standpoint, however, since it exposes the reader
to more abstract ways of thinking of functions and inverses. We will revisit this concept again in Chapter 8.
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a real number with exactly one other real number.) From a graphical standpoint, we know that
if y = f−1(x) exists, its graph can be obtained by reflecting y = x2 about the line y = x, in
accordance with Theorem 5.3. Doing so produces

(−2, 4) (2, 4)

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = f(x) = x2

reflect across y = x
−−−−−−−−−−−−−−−→
switch x and y coordinates

(4,−2)

(4, 2)

x

y

1 2 3 4 5 6 7

−2

−1

1

2

y = f−1(x) ?

We see that the line x = 4 intersects the graph of the supposed inverse twice - meaning the graph
fails the Vertical Line Test, Theorem 1.1, and as such, does not represent y as a function of x. The
vertical line x = 4 on the graph on the right corresponds to the horizontal line y = 4 on the graph
of y = f(x). The fact that the horizontal line y = 4 intersects the graph of f twice means two
different inputs, namely x = −2 and x = 2, are matched with the same output, 4, which is the
cause of all of the trouble. In general, for a function to have an inverse, different inputs must go
to different outputs, or else we will run into the same problem we did with f(x) = x2. We give
this property a name.

Definition 5.3. A function f is said to be one-to-one if f matches different inputs to different
outputs. Equivalently, f is one-to-one if and only if whenever f(c) = f(d), then c = d.

Graphically, we detect one-to-one functions using the test below.

Theorem 5.4. The Horizontal Line Test: A function f is one-to-one if and only if no
horizontal line intersects the graph of f more than once.

We say that the graph of a function passes the Horizontal Line Test if no horizontal line intersects
the graph more than once; otherwise, we say the graph of the function fails the Horizontal Line
Test. We have argued that if f is invertible, then f must be one-to-one, otherwise the graph given
by reflecting the graph of y = f(x) about the line y = x will fail the Vertical Line Test. It turns
out that being one-to-one is also enough to guarantee invertibility. To see this, we think of f as
the set of ordered pairs which constitute its graph. If switching the x- and y-coordinates of the
points results in a function, then f is invertible and we have found f−1. This is precisely what the
Horizontal Line Test does for us: it checks to see whether or not a set of points describes x as a
function of y. We summarize these results below.
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Theorem 5.5. Equivalent Conditions for Invertibility: Suppose f is a function. The fol-
lowing statements are equivalent.

• f is invertible.

• f is one-to-one.

• The graph of f passes the Horizontal Line Test.

We put this result to work in the next example.

Example 5.2.1. Determine if the following functions are one-to-one in two ways: (a) analytically
using Definition 5.3 and (b) graphically using the Horizontal Line Test.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

3. h(x) = x2 − 2x+ 4

4. F = {(−1, 1), (0, 2), (2, 1)}

Solution.

1. (a) To determine if f is one-to-one analytically, we assume f(c) = f(d) and attempt to
deduce that c = d.

f(c) = f(d)

1− 2c

5
=

1− 2d

5
1− 2c = 1− 2d
−2c = −2d
c = d X

Hence, f is one-to-one.

(b) To check if f is one-to-one graphically, we look to see if the graph of y = f(x) passes the
Horizontal Line Test. We have that f is a non-constant linear function, which means its
graph is a non-horizontal line. Thus the graph of f passes the Horizontal Line Test as
seen below.

2. (a) We begin with the assumption that g(c) = g(d) and try to show c = d.

g(c) = g(d)

2c

1− c
=

2d

1− d
2c(1− d) = 2d(1− c)
2c− 2cd = 2d− 2dc

2c = 2d
c = d X

We have shown that g is one-to-one.
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(b) We can graph g using the six step procedure outlined in Section 4.2. We get the sole
intercept at (0, 0), a vertical asymptote x = 1 and a horizontal asymptote (which the
graph never crosses) y = −2. We see from that the graph of g passes the Horizontal
Line Test.

x

y

−2 −1 1 2

−1

−2

1

2

y = f(x)

x

y

−2 −1 1 2−1

−2

−3

−4

−5

−6

1

2

3

4

y = g(x)

3. (a) We begin with h(c) = h(d). As we work our way through the problem, we encounter a
nonlinear equation. We move the non-zero terms to the left, leave a 0 on the right and
factor accordingly.

h(c) = h(d)
c2 − 2c+ 4 = d2 − 2d+ 4

c2 − 2c = d2 − 2d
c2 − d2 − 2c+ 2d = 0

(c+ d)(c− d)− 2(c− d) = 0
(c− d)((c+ d)− 2) = 0 factor by grouping

c− d = 0 or c+ d− 2 = 0
c = d or c = 2− d

We get c = d as one possibility, but we also get the possibility that c = 2 − d. This
suggests that f may not be one-to-one. Taking d = 0, we get c = 0 or c = 2. With
f(0) = 4 and f(2) = 4, we have produced two different inputs with the same output
meaning f is not one-to-one.

(b) We note that h is a quadratic function and we graph y = h(x) using the techniques
presented in Section 2.3. The vertex is (1, 3) and the parabola opens upwards. We see
immediately from the graph that h is not one-to-one, since there are several horizontal
lines which cross the graph more than once.

4. (a) The function F is given to us as a set of ordered pairs. The condition F (c) = F (d)
means the outputs from the function (the y-coordinates of the ordered pairs) are the
same. We see that the points (−1, 1) and (2, 1) are both elements of F with F (−1) = 1
and F (2) = 1. Since −1 6= 2, we have established that F is not one-to-one.

(b) Graphically, we see the horizontal line y = 1 crosses the graph more than once. Hence,
the graph of F fails the Horizontal Line Test.
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x

y

1 2

−1

1

2

3

4

5

6

y = h(x)

x

y

−2 −1 1 2

1

2

y = F (x)

We have shown that the functions f and g in Example 5.2.1 are one-to-one. This means they are
invertible, so it is natural to wonder what f−1(x) and g−1(x) would be. For f(x) = 1−2x

5 , we can
think our way through the inverse since there is only one occurrence of x. We can track step-by-step
what is done to x and reverse those steps as we did at the beginning of the chapter. The function
g(x) = 2x

1−x is a bit trickier since x occurs in two places. When one evaluates g(x) for a specific
value of x, which is first, the 2x or the 1 − x? We can imagine functions more complicated than
these so we need to develop a general methodology to attack this problem. Theorem 5.2 tells us
equation y = f−1(x) is equivalent to f(y) = x and this is the basis of our algorithm.

Steps for finding the Inverse of a One-to-one Function

1. Write y = f(x)

2. Interchange x and y

3. Solve x = f(y) for y to obtain y = f−1(x)

Note that we could have simply written ‘Solve x = f(y) for y’ and be done with it. The act of
interchanging the x and y is there to remind us that we are finding the inverse function by switching
the inputs and outputs.

Example 5.2.2. Find the inverse of the following one-to-one functions. Check your answers ana-
lytically using function composition and graphically.

1. f(x) =
1− 2x

5
2. g(x) =

2x

1− x

Solution.

1. As we mentioned earlier, it is possible to think our way through the inverse of f by recording
the steps we apply to x and the order in which we apply them and then reversing those steps
in the reverse order. We encourage the reader to do this. We, on the other hand, will practice
the algorithm. We write y = f(x) and proceed to switch x and y
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y = f(x)

y =
1− 2x

5

x =
1− 2y

5
switch x and y

5x = 1− 2y
5x− 1 = −2y
5x− 1

−2
= y

y = −5
2x+ 1

2

We have f−1(x) = −5
2x+1

2 . To check this answer analytically, we first check that
(
f−1 ◦ f

)
(x) =

x for all x in the domain of f , which is all real numbers.

(
f−1 ◦ f

)
(x) = f−1(f(x))

= −5
2f(x) + 1

2

= −5
2

(
1− 2x

5

)
+ 1

2

= −1
2(1− 2x) + 1

2

= −1
2 + x+ 1

2
= x X

We now check that
(
f ◦ f−1

)
(x) = x for all x in the range of f which is also all real numbers.

(Recall that the domain of f−1) is the range of f .)

(
f ◦ f−1

)
(x) = f(f−1(x))

=
1− 2f−1(x)

5

=
1− 2

(
−5

2x+ 1
2

)
5

=
1 + 5x− 1

5

=
5x

5
= x X

To check our answer graphically, we graph y = f(x) and y = f−1(x) on the same set of axes.5

They appear to be reflections across the line y = x.

5Note that if you perform your check on a calculator for more sophisticated functions, you’ll need to take advantage
of the ‘ZoomSquare’ feature to get the correct geometric perspective.
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x

y

y = f(x)

y = f−1(x)

y = x

−4 −3 −2 −1 1 2 3 4

−1

−2

1

2

2. To find g−1(x), we start with y = g(x). We note that the domain of g is (−∞, 1) ∪ (1,∞).

y = g(x)

y =
2x

1− x
x =

2y

1− y
switch x and y

x(1− y) = 2y

x− xy = 2y

x = xy + 2y

x = y(x+ 2) factor

y =
x

x+ 2

We obtain g−1(x) = x
x+2 . To check this analytically, we first check

(
g−1 ◦ g

)
(x) = x for all x

in the domain of g, that is, for all x 6= 1.(
g−1 ◦ g

)
(x) = g−1(g(x))

= g−1

(
2x

1− x

)

=

(
2x

1− x

)
(

2x

1− x

)
+ 2

=

(
2x

1− x

)
(

2x

1− x

)
+ 2

· (1− x)

(1− x)
clear denominators



302 Further Topics in Functions

=
2x

2x+ 2(1− x)

=
2x

2x+ 2− 2x

=
2x

2
= x X

Next, we check g
(
g−1(x)

)
= x for all x in the range of g. From the graph of g in Example

5.2.1, we have that the range of g is (−∞,−2) ∪ (−2,∞). This matches the domain we get
from the formula g−1(x) = x

x+2 , as it should.

(
g ◦ g−1

)
(x) = g

(
g−1(x)

)
= g

(
x

x+ 2

)

=

2

(
x

x+ 2

)
1−

(
x

x+ 2

)

=

2

(
x

x+ 2

)
1−

(
x

x+ 2

) · (x+ 2)

(x+ 2)
clear denominators

=
2x

(x+ 2)− x

=
2x

2

= x X

Graphing y = g(x) and y = g−1(x) on the same set of axes is busy, but we can see the sym-
metric relationship if we thicken the curve for y = g−1(x). Note that the vertical asymptote
x = 1 of the graph of g corresponds to the horizontal asymptote y = 1 of the graph of g−1,
as it should since x and y are switched. Similarly, the horizontal asymptote y = −2 of the
graph of g corresponds to the vertical asymptote x = −2 of the graph of g−1.
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x

y

y = x
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y = g(x) and y = g−1(x)

We now return to f(x) = x2. We know that f is not one-to-one, and thus, is not invertible.
However, if we restrict the domain of f , we can produce a new function g which is one-to-one. If
we define g(x) = x2, x ≥ 0, then we have

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = f(x) = x2
restrict domain to x ≥ 0
−−−−−−−−−−−−−−−→

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = g(x) = x2, x ≥ 0

The graph of g passes the Horizontal Line Test. To find an inverse of g, we proceed as usual

y = g(x)
y = x2, x ≥ 0
x = y2, y ≥ 0 switch x and y
y = ±

√
x

y =
√
x since y ≥ 0
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We get g−1(x) =
√
x. At first it looks like we’ll run into the same trouble as before, but when

we check the composition, the domain restriction on g saves the day. We get
(
g−1 ◦ g

)
(x) =

g−1(g(x)) = g−1
(
x2
)

=
√
x2 = |x| = x, since x ≥ 0. Checking

(
g ◦ g−1

)
(x) = g

(
g−1(x)

)
=

g (
√
x) = (

√
x)

2
= x. Graphing6 g and g−1 on the same set of axes shows that they are reflections

about the line y = x.

y = x

y = g(x)

y = g−1(x)

x

y

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Our next example continues the theme of domain restriction.

Example 5.2.3. Graph the following functions to show they are one-to-one and find their inverses.
Check your answers analytically using function composition and graphically.

1. j(x) = x2 − 2x+ 4, x ≤ 1. 2. k(x) =
√
x+ 2− 1

Solution.

1. The function j is a restriction of the function h from Example 5.2.1. Since the domain of j
is restricted to x ≤ 1, we are selecting only the ‘left half’ of the parabola. We see that the
graph of j passes the Horizontal Line Test and thus j is invertible.

x

y

1 2

−1

1

2

3

4

5

6

y = j(x)

6We graphed y =
√
x in Section 1.8.
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We now use our algorithm to find j−1(x).

y = j(x)
y = x2 − 2x+ 4, x ≤ 1
x = y2 − 2y + 4, y ≤ 1 switch x and y
0 = y2 − 2y + 4− x

y =
2±

√
(−2)2 − 4(1)(4− x)

2(1)
quadratic formula, c = 4− x

y =
2±
√

4x− 12

2

y =
2±

√
4(x− 3)

2

y =
2± 2

√
x− 3

2

y =
2
(
1±
√
x− 3

)
2

y = 1±
√
x− 3

y = 1−
√
x− 3 since y ≤ 1.

We have j−1(x) = 1 −
√
x− 3. When we simplify

(
j−1 ◦ j

)
(x), we need to remember that

the domain of j is x ≤ 1.(
j−1 ◦ j

)
(x) = j−1(j(x))

= j−1
(
x2 − 2x+ 4

)
, x ≤ 1

= 1−
√

(x2 − 2x+ 4)− 3

= 1−
√
x2 − 2x+ 1

= 1−
√

(x− 1)2

= 1− |x− 1|
= 1− (−(x− 1)) since x ≤ 1
= x X

Checking j ◦ j−1, we get(
j ◦ j−1

)
(x) = j

(
j−1(x)

)
= j

(
1−
√
x− 3

)
=

(
1−
√
x− 3

)2 − 2
(
1−
√
x− 3

)
+ 4

= 1− 2
√
x− 3 +

(√
x− 3

)2 − 2 + 2
√
x− 3 + 4

= 3 + x− 3
= x X

We can use what we know from Section 1.8 to graph y = j−1(x) on the same axes as y = j(x)
to get
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y = j(x)

y = j−1(x)

y = x

x

y

1 2 3 4 5 6

−1

1

2

3

4

5

6

2. We graph y = k(x) =
√
x+ 2−1 using what we learned in Section 1.8 and see k is one-to-one.

x

y

−2 −1 1 2

−2

−1

1

2

y = k(x)

We now try to find k−1.

y = k(x)
y =

√
x+ 2− 1

x =
√
y + 2− 1 switch x and y

x+ 1 =
√
y + 2

(x+ 1)2 =
(√
y + 2

)2
x2 + 2x+ 1 = y + 2

y = x2 + 2x− 1

We have k−1(x) = x2 +2x−1. Based on our experience, we know something isn’t quite right.
We determined k−1 is a quadratic function, and we have seen several times in this section
that these are not one-to-one unless their domains are suitably restricted. Theorem 5.2 tells
us that the domain of k−1 is the range of k. From the graph of k, we see that the range
is [−1,∞), which means we restrict the domain of k−1 to x ≥ −1. We now check that this
works in our compositions.
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(
k−1 ◦ k

)
(x) = k−1(k(x))

= k−1
(√
x+ 2− 1

)
, x ≥ −2

=
(√
x+ 2− 1

)2
+ 2

(√
x+ 2− 1

)
− 1

=
(√
x+ 2

)2 − 2
√
x+ 2 + 1 + 2

√
x+ 2− 2− 1

= x+ 2− 2
= x X

and

(
k ◦ k−1

)
(x) = k

(
x2 + 2x− 1

)
x ≥ −1

=
√

(x2 + 2x− 1) + 2− 1

=
√
x2 + 2x+ 1− 1

=
√

(x+ 1)2 − 1
= |x+ 1| − 1
= x+ 1− 1 since x ≥ −1
= x X

Graphically, everything checks out as well, provided that we remember the domain restriction
on k−1 means we take the right half of the parabola.

y = k(x)

y = k−1(x)

x

y

−2 −1 1 2

−2

−1

1

2

Our last example of the section gives an application of inverse functions.

Example 5.2.4. Recall from Section 2.1 that the price-demand equation for the PortaBoy game
system is p(x) = −1.5x + 250 for 0 ≤ x ≤ 166, where x represents the number of systems sold
weekly and p is the price per system in dollars.

1. Explain why p is one-to-one and find a formula for p−1(x). State the restricted domain.

2. Find and interpret p−1(220).

3. Recall from Section 2.3 that the weekly profit P , in dollars, as a result of selling x systems is
given by P (x) = −1.5x2 + 170x− 150. Find and interpret

(
P ◦ p−1

)
(x).



308 Further Topics in Functions

4. Use your answer to part 3 to determine the price per PortaBoy which would yield the maxi-
mum profit. Compare with Example 2.3.3.

Solution.

1. We leave to the reader to show the graph of p(x) = −1.5x + 250, 0 ≤ x ≤ 166, is a line
segment from (0, 250) to (166, 1), and as such passes the Horizontal Line Test. Hence, p is
one-to-one. We find the expression for p−1(x) as usual and get p−1(x) = 500−2x

3 . The domain
of p−1 should match the range of p, which is [1, 250], and as such, we restrict the domain of
p−1 to 1 ≤ x ≤ 250.

2. We find p−1(220) = 500−2(220)
3 = 20. Since the function p took as inputs the weekly sales and

furnished the price per system as the output, p−1 takes the price per system and returns the
weekly sales as its output. Hence, p−1(220) = 20 means 20 systems will be sold in a week if
the price is set at $220 per system.

3. We compute
(
P ◦ p−1

)
(x) = P

(
p−1(x)

)
= P

(
500−2x

3

)
= −1.5

(
500−2x

3

)2
+170

(
500−2x

3

)
−150.

After a hefty amount of Elementary Algebra,7 we obtain
(
P ◦ p−1

)
(x) = −2

3x
2 +220x− 40450

3 .
To understand what this means, recall that the original profit function P gave us the weekly
profit as a function of the weekly sales. The function p−1 gives us the weekly sales as a
function of the price. Hence, P ◦ p−1 takes as its input a price. The function p−1 returns the
weekly sales, which in turn is fed into P to return the weekly profit. Hence,

(
P ◦ p−1

)
(x)

gives us the weekly profit (in dollars) as a function of the price per system, x, using the weekly
sales p−1(x) as the ‘middle man’.

4. We know from Section 2.3 that the graph of y =
(
P ◦ p−1

)
(x) is a parabola opening down-

wards. The maximum profit is realized at the vertex. Since we are concerned only with the
price per system, we need only find the x-coordinate of the vertex. Identifying a = −2

3 and

b = 220, we get, by the Vertex Formula, Equation 2.4, x = − b
2a = 165. Hence, weekly profit

is maximized if we set the price at $165 per system. Comparing this with our answer from
Example 2.3.3, there is a slight discrepancy to the tune of $0.50. We leave it to the reader to
balance the books appropriately.

7It is good review to actually do this!
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5.2.1 Exercises

1. Show that the following functions are one-to-one and find the inverse. Check your answers
algebraically and graphically. Verify the range of f is the domain of f−1 and vice-versa.

(a) f(x) = 6x− 2

(b) f(x) = 5x− 3

(c) f(x) = 1− 4 + 3x

5
(d) f(x) = −

√
x− 5 + 2

(e) f(x) =
√

3x− 1 + 5

(f) f(x) = 5
√

3x− 1

(g) f(x) = x2 − 10x, x ≥ 5

(h) f(x) = 3(x+ 4)2 − 5, x ≤ −4

(i) f(x) = x2 − 6x+ 5, x ≤ 3

(j) f(x) = 4x2 + 4x+ 1, x < −1

(k) f(x) =
3

4− x

(l) f(x) =
x

1− 3x

(m) f(x) =
2x− 1

3x+ 4

(n) f(x) =
4x+ 2

3x− 6

(o) f(x) =
−3x− 2

x+ 3

2. Show that the Fahrenheit to Celsius conversion function found in Exercise 3 in Section 2.1 is
invertible and that its inverse is the Celsius to Fahrenheit conversion function.

3. Analytically show that the function f(x) = x3 + 3x+ 1 is one-to-one. Since finding a formula
for its inverse is beyond the scope of this textbook, use Theorem 5.2 to help you compute
f−1(1), f−1(5), and f−1(−3).

4. With the help of your classmates, find a formula for the inverse of the following.

(a) f(x) = ax+ b, a 6= 0

(b) f(x) = a
√
x− h+ k, a 6= 0, x ≥ h

(c) f(x) = ax+b
cx+d , a 6= 0, b 6= 0, c 6= 0, d 6= 0

(d) f(x) = ax2 + bx+ c where a 6= 0, x ≥ − b
2a .

5. Let f(x) = 2x
x2−1

. Using the techniques in Section 4.2, graph y = f(x). Verify f is one-
to-one on the interval (−1, 1). Use the procedure outlined on Page 299 and your graphing
calculator to find the formula for f−1(x). Note that since f(0) = 0, it should be the case that
f−1(0) = 0. What goes wrong when you attempt to substitute x = 0 into f−1(x)? Discuss
with your classmates how this problem arose and possible remedies.

6. Suppose f is an invertible function. Prove that if graphs of y = f(x) and y = f−1(x) intersect
at all, they do so on the line y = x.

7. With the help of your classmates, explain why a function which is either strictly increasing
or strictly decreasing on its entire domain would have to be one-to-one, hence invertible.

8. Let f and g be invertible functions. With the help of your classmates show that (f ◦ g) is
one-to-one, hence invertible, and that (f ◦ g)−1(x) = (g−1 ◦ f−1)(x).

9. What graphical feature must a function f possess for it to be its own inverse?
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5.2.2 Answers

1. (a) f−1(x) =
x+ 2

6

(b) f−1(x) =
x+ 3

5

(c) f−1(x) = −5
3x+ 1

3

(d) f−1(x) = (x− 2)2 + 5, x ≤ 2

(e) f−1(x) = 1
3(x− 5)2 + 1

3 , x ≥ 5

(f) f−1(x) = 1
3x

5 + 1
3

(g) f−1(x) = 5 +
√
x+ 25

(h) f−1(x) = −
√

x+5
3 − 4

(i) f−1(x) = 3−
√
x+ 4

(j) f−1(x) = −
√
x+1
2 , x > 1

(k) f−1(x) =
4x− 3

x

(l) f−1(x) =
x

3x+ 1

(m) f−1(x) =
4x+ 1

2− 3x

(n) f−1(x) =
6x+ 2

3x− 4

(o) f−1(x) =
−3x− 2

x+ 3

3. Given that f(0) = 1, we have f−1(1) = 0. Similarly f−1(5) = 1 and f−1(−3) = −1
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5.3 Other Algebraic Functions

This section serves as a watershed for functions which are combinations of polynomial, and more
generally, rational functions, with the operations of radicals. It is business of Calculus to discuss
these functions in all the detail they demand so our aim in this section is to help shore up the
requisite skills needed so that the reader can answer Calculus’s call when the time comes. We
briefly recall the definition and some of the basic properties of radicals from Intermediate Algebra.1

Definition 5.4. Let x be a real number and n a natural number.a If n is odd, the principal

nth root of x, denoted n
√
x is the unique real number satisfying ( n

√
x)
n

= x. If n is even, n
√
x is

defined similarlyb provided x ≥ 0 and n
√
x ≥ 0. The index is the number n and the radicand is

the number x. For n = 2, we write
√
x instead of 2

√
x.

aRecall this means n = 1, 2, 3, . . ..
bRecall both x = −2 and x = 2 satisfy x4 = 16, but 4

√
16 = 2, not −2.

It is worth remarking that, in light of Section 5.2, we could define f(x) = n
√
x functionally as the

inverse of g(x) = xn with the stipulation that when n is even, the domain of g is restricted to [0,∞).
From what we know about g(x) = xn from Section 3.1 along with Theorem 5.3, we can produce
the graphs of f(x) = n

√
x by reflecting the graphs of g(x) = xn across the line y = x. Below are the

graphs of y =
√
x, y = 4

√
x and y = 6

√
x. The point (0, 0) is indicated as a reference. The axes are

hidden so we can see the vertical steepening near x = 0 and the horizontal flattening as x→∞.

y =
√
x y = 4

√
x y = 6

√
x

The odd-indexed radical functions also follow a predictable trend - steepening near x = 0 and
flattening as x→ ±∞. In the exercises, you’ll have a chance to graph some basic radical functions
using the techniques presented in Section 1.8.

y = 3
√
x y = 5

√
x y = 7

√
x

We have used all of the following properties at some point in the textbook for the case n = 2 (the
square root), but we list them here in generality for completeness.

1Although we discussed imaginary numbers in Section 3.4, we restrict our attention to real numbers in this section.
See the epilogue on page 226 for more details.
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Theorem 5.6. Properties of Radicals: Let x and y be real numbers and m and n be natural
numbers. If n

√
x, n
√
y are real numbers, then

• Product Rule: n
√
xy = n

√
x n
√
y

• Powers of Radicals: n
√
xm = ( n

√
x)
m

• Quotient Rule: n

√
x

y
=

n
√
x

n
√
y

, provided y 6= 0.

• If n is odd, n
√
xn = x; if n is even, n

√
xn = |x|.

The proof of Theorem 5.6 is based on the definition of the principal roots and properties of expo-
nents. To establish the product rule, consider the following. If n is odd, then by definition n

√
xy

is the unique real number such that ( n
√
xy)n = xy. Given that

(
n
√
x n
√
y
)n

= ( n
√
x)
n (

n
√
y
)n

= xy,
it must be the case that n

√
xy = n

√
x n
√
y. If n is even, then n

√
xy is the unique non-negative real

number such that ( n
√
xy)n = xy. Also note that since n is even, n

√
x and n

√
y are also non-negative

and hence so is n
√
x n
√
y. Proceeding as above, we find that n

√
xy = n

√
x n
√
y. The quotient rule is

proved similarly and is left as an exercise. The power rule results from repeated application of the
product rule, so long as n

√
x is a real number to start with.2 The last property is an application of

the power rule when n is odd, and the occurrence of the absolute value when n is even is due to
the requirement that n

√
x ≥ 0 in Definition 5.4. For instance, 4

√
(−2)4 = 4

√
16 = 2 = | − 2|, not −2.

It’s this last property which makes compositions of roots and powers delicate. This is especially
true when we use exponential notation for radicals. Recall the following definition.

Definition 5.5. Let x be a real number, m an integera and n a natural number.

• x
1
n = n

√
x and is defined whenever n

√
x is defined.

• x
m
n = ( n

√
x)
m

= n
√
xm, whenever ( n

√
x)
m

is defined.

aRecall this means m = 0,±1,±2, . . .

The rational exponents defined in Definition 5.5 behave very similarly to the usual integer exponents

from Elementary Algebra with one critical exception. Consider the expression
(
x2/3

)3/2
. Applying

the usual laws of exponents, we’d be tempted to simplify this as
(
x2/3

)3/2
= x

2
3
· 3
2 = x1 = x.

However, if we substitute x = −1 and apply Definition 5.5, we find (−1)2/3 =
(

3
√
−1
)2

= (−1)2 = 1

so that
(
(−1)2/3

)3/2
= 13/2 =

(√
1
)3

= 13 = 1. We see in this case that
(
x2/3

)3/2 6= x. If we take

the time to rewrite
(
x2/3

)3/2
with radicals, we see

(
x2/3

)3/2
=
((

3
√
x
)2)3/2

=

(√(
3
√
x
)2)3

=
(∣∣ 3
√
x
∣∣)3 =

∣∣∣( 3
√
x
)3∣∣∣ = |x|

In the play-by-play analysis, we see that when we canceled the 2’s in multiplying 2
3 ·

3
2 , we were,

2Otherwise we’d run into the same paradox we did in Section 3.4.
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in fact, attempting to cancel a square with a square root. The fact that
√
x2 = |x| and not

simply x is the root3 of the trouble. It may amuse the reader to know that
(
x3/2

)2/3
= x, and

this verification is left as an exercise. The moral of the story is that when simplifying fractional
exponents, it’s usually best to rewrite them as radicals.4 The last major property we will state,
and leave to Calculus to prove, is that radical functions are continuous on their domains, so the
Intermediate Value Theorem, Theorem 3.1, applies. This means that if we take combinations of
radical functions with polynomial and rational functions to form what the authors consider the
algebraic functions,5 we can make sign diagrams using the procedure set forth in Section 4.2.

Steps for Constructing a Sign Diagram for an Algebraic Function

Suppose f is an algebraic function.

1. Place any values excluded from the domain of f on the number line with an ‘‽’ above them.

2. Find the zeros of f and place them on the number line with the number 0 above them.

3. Choose a test value in each of the intervals determined in steps 1 and 2.

4. Determine the sign of f(x) for each test value in step 3, and write that sign above the
corresponding interval.

Our next example reviews quite a bit of Intermediate Algebra and demonstrates some of the new
features of these graphs.

Example 5.3.1. For the following functions, state their domains and create sign diagrams. Check
your answer graphically using your calculator.

1. f(x) = 3x 3
√

2− x

2. g(x) =
√

2− 4
√
x+ 3

3. h(x) = 3

√
8x

x+ 1

4. k(x) =
2x√
x2 − 1

Solution.

1. As far as domain is concerned, f(x) has no denominators and no even roots, which means its
domain is (−∞,∞). To create the sign diagram, we find the zeros of f .

3Did you like that pun?
4In most other cases, though, rational exponents are preferred.
5As mentioned in Section 2.2, f(x) =

√
x2 = |x| so that absolute value is also considered an algebraic functions.
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f(x) = 0
3x 3
√

2− x = 0
3x = 0 or 3

√
2− x = 0

x = 0 or
(

3
√

2− x
)3

= 03

x = 0 or 2− x = 0
x = 0 or x = 2

The zeros 0 and 2 divide the real number line into three test intervals. The sign diagram
and accompanying graph are below. Note that the intervals on which f is (+) correspond
to where the graph of f is above the x-axis, and where the graph of f is below the x-axis
we have that f is (−). The calculator suggests something mysterious happens near x = 2.
Zooming in shows the graph becomes nearly vertical there. You’ll have to wait until Calculus
to fully understand this phenomenon.

(−)

0

0 (+)

2

0 (−)

y = f(x) y = f(x) near x = 2.

2. In g(x) =
√

2− 4
√
x+ 3, we have two radicals both of which are even indexed. To satisfy

4
√
x+ 3, we require x+ 3 ≥ 0 or x ≥ −3. To satisfy

√
2− 4
√
x+ 3, we need 2− 4

√
x+ 3 ≥ 0.

While it may be tempting to write this as 2 ≥ 4
√
x+ 3 and take both sides to the fourth

power, there are times when this technique will produce erroneous results.6 Instead, we solve
2 − 4
√
x+ 3 ≥ 0 using a sign diagram. If we let r(x) = 2 − 4

√
x+ 3, we know x ≥ −3, so we

concern ourselves with only this portion of the number line. To find the zeros of r we set
r(x) = 0 and solve 2− 4

√
x+ 3 = 0. We get 4

√
x+ 3 = 2 so that

(
4
√
x+ 3

)4
= 24 from which

we obtain x+ 3 = 16 or x = 13. Since we raised both sides of an equation to an even power,
we need to check to see if x = 13 is an extraneous solution.7 We find x = 13 does check since
2− 4
√
x+ 3 = 2− 4

√
13 + 3 = 2− 4

√
16 = 2− 2 = 0. Below is our sign diagram for r.

−3

(+)

13

0 (−)

We find 2− 4
√
x+ 3 ≥ 0 on [−3, 13] so this is the domain of g. To find a sign diagram for g,

we look for the zeros of g. Setting g(x) = 0 is equivalent to
√

2− 4
√
x+ 3 = 0. After squaring

6For instance, −2 ≥ 4
√
x+ 3, which has no solution or −2 ≤ 4

√
x+ 3 whose solution is [−3,∞).

7Recall, this means we have produced a candidate which doesn’t satisfy the original equation. Do you remember
how raising both sides of an equation to an even power could cause this?
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both sides, we get 2 − 4
√
x+ 3 = 0, whose solution we have found to be x = 13. Since we

squared both sides, we double check and find g(13) is, in fact, 0. Our sign diagram and graph
of g are below. Since the domain of g is [−3, 13], what we have below is not just a portion
of the graph of g, but the complete graph. It is always above or on the x-axis, which verifies
our sign diagram.

−3

(+)

13

The complete graph of y = g(x).

3. The radical in h(x) is odd, so our only concern is the denominator. Setting x + 1 = 0 gives
x = −1, so our domain is (−∞,−1) ∪ (−1,∞). To find the zeros of h, we set h(x) = 0. To

solve 3

√
8x
x+1 = 0, we cube both sides to get 8x

x+1 = 0. We get 8x = 0, or x = 0. Below is

the resulting sign diagram and corresponding graph. From the graph, it appears as though
x = −1 is a vertical asymptote. Carrying out an analysis as x→ −1 as in Section 4.2 confirms
this. (We leave the details to the reader.) Near x = 0, we have a situation similar to x = 2
in the graph of f in number 1 above. Finally, it appears as if the graph of h has a horizontal
asymptote y = 2. Using techniques from Section 4.2, we find as x → ±∞, 8x

x+1 → 8. From

this, it is hardly surprising that as x→ ±∞, h(x) = 3

√
8x
x+1 ≈

3
√

8 = 2.

(+)

−1

‽ (−)

0

0 (+)

y = h(x)

4. To find the domain of k, we have both an even root and a denominator to concern ourselves
with. To satisfy the square root, x2 − 1 ≥ 0. Setting r(x) = x2 − 1, we find the zeros of r to
be x = ±1, and we find the sign diagram of r to be

(+)

−1

0 (−)

1

0 (+)
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We find x2 − 1 ≥ 0 for (−∞,−1] ∪ [1,∞). To keep the denominator of k(x) away from zero,
we set

√
x2 − 1 = 0. We leave it to the reader to verify the solutions are x = ±1, both of

which must be excluded from the domain. Hence, the domain of k is (−∞,−1) ∪ (1,∞). To
build the sign diagram for k, we need the zeros of k. Setting k(x) = 0 results in 2x√

x2−1
= 0.

We get 2x = 0 or x = 0. However, x = 0 isn’t in the domain of k, which means k has no zeros.
We construct our sign diagram on the domain of k below alongside the graph of k. It appears
that the graph of k has two vertical asymptotes, one at x = −1 and one at x = 1. The gap
in the graph between the asymptotes is because of the gap in the domain of k. Concerning
end behavior, there appear to be two horizontal asymptotes, y = 2 and y = −2. To see why
this is the case, we think of x→ ±∞. The radicand of the denominator x2 − 1 ≈ x2, and as
such, k(x) = 2x√

x2−1
≈ 2x√

x2
= 2x
|x| . As x→∞, we have |x| = x so k(x) ≈ 2x

x = 2. On the other

hand, as x → −∞, |x| = −x, and as such k(x) ≈ 2x
−x = −2. Finally, it appears as though

the graph of k passes the Horizontal Line Test which means k is one to one and k−1 exists.
Computing k−1 is left as an exercise.

(−)

−1

‽

1

‽ (+)

y = k(x)

As the previous example illustrates, the graphs of general algebraic functions can have features
we’ve seen before, like vertical and horizontal asymptotes, but they can occur in new and exciting
ways. For example, k(x) = 2x√

x2−1
had two distinct horizontal asymptotes. You’ll recall that

rational functions could have at most one horizontal asymptote. Also some new characteristics like
‘unusual steepness’8 and cusps9 can appear in the graphs of arbitrary algebraic functions. Our next
example first demonstrates how we can use sign diagrams to solve nonlinear inequalities. (Don’t
panic. The technique is very similar to the ones used in Chapters 2, 3 and 4.) We then check our
answers graphically with a calculator and see some of the new graphical features of the functions
in this extended family.

Example 5.3.2. Solve the following inequalities. Check your answers graphically using a calculator.

1. x2/3 < x4/3 − 6

2. 3(2− x)1/3 ≤ x(2− x)−2/3

8The proper Calculus term for this is ‘vertical tangent’, but for now we’ll be okay calling it ‘unusual steepness’.
9See page 185 for the first reference to this feature.
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Solution.

1. To solve x2/3 < x4/3 − 6, we get 0 on one side and attempt to solve x4/3 − x2/3 − 6 > 0. We
set r(x) = x4/3 − x2/3 − 6 and note that since the denominators in the exponents are 3, they
correspond to cube roots, which means the domain of r is (−∞,∞). To find the zeros for
the sign diagram, we set r(x) = 0 and attempt to solve x4/3 − x2/3 − 6 = 0. At this point,
it may be unclear how to proceed. We could always try as a last resort converting back to
radical notation, but in this case we can take a cue from Example 3.3.4. Since there are
three terms, and the exponent on one of the variable terms, x4/3, is exactly twice that of the
other, x2/3, we have ourselves a ‘quadratic in disguise’ and we can rewrite x4/3−x2/3− 6 = 0

as
(
x2/3

)2 − x2/3 − 6 = 0. If we let u = x2/3, then in terms of u, we get u2 − u − 6 = 0.

Solving for u, we obtain u = −2 or u = 3. Replacing x2/3 back in for u, we get x2/3 = −2
or x2/3 = 3. To avoid the trouble we encountered in the discussion following Definition 5.5,
we now convert back to radical notation. By interpreting x2/3 as

3
√
x2 we have

3
√
x2 = −2

or
3
√
x2 = 3. Cubing both sides of these equations results in x2 = −8, which admits no

real solution, or x2 = 27, which gives x = ±3
√

3. We construct a sign diagram and find
x4/3 − x2/3 − 6 > 0 on

(
−∞,−3

√
3
)
∪
(
3
√

3,∞
)
. To check our answer graphically, we set

f(x) = x2/3 and g(x) = x4/3 − 6. The solution to x2/3 < x4/3 − 6 corresponds to the
inequality f(x) < g(x), which means we are looking for the x values for which the graph of
f is below the graph of g. Using the ‘Intersect’ command we confirm10 that the graphs cross
at x = ±3

√
3. We see that the graph of f is below the graph of g (the thicker curve) on(

−∞,−3
√

3
)
∪
(
3
√

3,∞
)
.

(+)

−3
√

3

0 (−)

3
√

3

0 (+)

y = f(x) and y = g(x)

As a point of interest, if we take a closer look at the graphs of f and g near x = 0 with
the axes off, we see that despite the fact they both involve cube roots, they exhibit different
behavior near x = 0. The graph of f has a sharp turn, or cusp, while g does not.11

10Or at least confirm to several decimal places
11Again, we introduced this feature on page 185 as a feature which makes the graph of a function ‘not smooth’.
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y = f(x) near x = 0 y = g(x) near x = 0

2. To solve 3(2− x)1/3 ≤ x(2− x)−2/3, we gather all the nonzero terms on one side and obtain
3(2 − x)1/3 − x(2 − x)−2/3 ≤ 0. We set r(x) = 3(2 − x)1/3 − x(2 − x)−2/3. As in number
1, the denominators of the rational exponents are odd, which means there are no domain
concerns there. However, the negative exponent on the second term indicates a denominator.
Rewriting r(x) with positive exponents, we obtain r(x) = 3(2− x)1/3 − x

(2−x)2/3 . Setting the

denominator equal to zero we get (2− x)2/3 = 0, or 3
√

(2− x)2 = 0. After cubing both sides,
and subsequently taking square roots, we get 2− x = 0, or x = 2. Hence, the domain of r is
(−∞, 2)∪ (2,∞). To find the zeros of r, we set r(x) = 0. There are two school of thought on
how to proceed and we demonstrate both.

• Factoring Approach. From r(x) = 3(2− x)1/3 − x(2− x)−2/3, we note that the quantity
(2−x) is common to both terms. When we factor out common factors, we factor out the
quantity with the smaller exponent. In this case, since −2

3 <
1
3 , we factor (2 − x)−2/3

from both quantities. While it may seem odd to do so, we need to factor (2 − x)−2/3

from (2−x)1/3, which results in subtracting the exponent −2
3 from 1

3 . We proceed using
the usual properties of exponents and exercise special care when reducing the 3

3 power
to 1.

r(x) = 3(2− x)1/3 − x(2− x)−2/3

= (2− x)−2/3
[
3(2− x)

1
3
−(− 2

3) − x
]

= (2− x)−2/3
[
3(2− x)3/3 − x

]
= (2− x)−2/3

[
3(2− x)1 − x

]
since

3
√
u3 = ( 3

√
u)

3
= u

= (2− x)−2/3 (6− 4x)

= (2− x)−2/3 (6− 4x)

To solve r(x) = 0, we set (2− x)−2/3 (6− 4x) = 0, or 6−4x
(2−x)2/3 = 0. We have 6− 4x = 0

or x = 3
2 .
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• Common Denominator Approach. We rewrite

r(x) = 3(2− x)1/3 − x(2− x)−2/3

= 3(2− x)1/3 − x

(2− x)2/3

=
3(2− x)1/3(2− x)2/3

(2− x)2/3
− x

(2− x)2/3
common denominator

=
3(2− x)

1
3

+ 2
3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)3/3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)1

(2− x)2/3
− x

(2− x)2/3
since

3
√
u3 = ( 3

√
u)

3
= u

=
3(2− x)− x
(2− x)2/3

=
6− 4x

(2− x)2/3

As before, when we set r(x) = 0 we obtain x = 3
2 .

We now create our sign diagram and find 3(2−x)1/3−x(2−x)−2/3 ≤ 0 on
[

3
2 , 2
)
∪ (2,∞). To

check this graphically, we set f(x) = 3(2− x)1/3 and g(x) = x(2− x)−2/3 (the thicker curve).
We confirm that the graphs intersect at x = 3

2 and the graph of f is below the graph of g for
x ≥ 3

2 , with the exception of x = 2 where it appears the graph of g has a vertical asymptote.

(+)

3
2

0 (−)

2

‽ (−)

y = f(x) and y = g(x)

One application of algebraic functions was given in Example 1.7.6 in Section 1.1. Our last example
is a more sophisticated application of distance.

Example 5.3.3. Carl wishes to get high speed internet service installed in his remote Sasquatch
observation post located 30 miles from Route 117. The nearest junction box is located 50 miles
downroad from the post, as indicated in the diagram below. Suppose it costs $15 per mile to run
cable along the road and $20 per mile to run cable off of the road.
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Outpost

Junction Box
xy

z

Route 117

50 miles

3
0

m
il
es

1. Express the total cost C of connecting the Junction Box to the Outpost as a function of x,
the number of miles the cable is run along Route 117 before heading off road directly towards
the Outpost. Determine a reasonable applied domain for the problem.

2. Use your calculator to graph y = C(x) on its domain. What is the minimum cost? How far
along Route 117 should the cable be run before turning off of the road?

Solution.

1. The cost is broken into two parts: the cost to run cable along Route 117 at $15 per mile, and
the cost to run it off road at $20 per mile. Since x represents the miles of cable run along
Route 117, the cost for that portion is 15x. From the diagram, we see that the number of
miles the cable is run off road is z, so the cost of that portion is 20z. Hence, the total cost is
C = 15x+ 20z. Our next goal is to determine z as a function of x. The diagram suggests we
can use the Pythagorean Theorem to get y2 + 302 = z2. But we also see x + y = 50 so that
y = 50 − x. Hence, z2 = (50 − x)2 + 900. Solving for z, we obtain z = ±

√
(50− x)2 + 900.

Since z represents a distance, we choose z =
√

(50− x)2 + 900 so that our cost as a function
of x only is given by

C(x) = 15x+ 20
√

(50− x)2 + 900

From the context of the problem, we have 0 ≤ x ≤ 50.

2. Graphing y = C(x) on a calculator in a suitable window produces the graph below. Using
the ‘Minimum’ feature, we find the relative minimum (which is also the absolute minimum
in this case) to two decimal places be (15.98, 1146.86). Here the x-coordinate tells us that in
order to minimize cost, we should run 15.98 miles of cable along Route 117 and then turn off
of the road and head towards the outpost. The y-coordinate tells us that the minimum cost,
in dollars, to do so is $1146.86. The ability to stream live SasquatchCasts? Priceless.
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5.3.1 Exercises

1. For each function below

• Find its domain.

• Create a sign diagram.

• Use your calculator to help you sketch its graph and identify any vertical or horizontal
asymptotes, ‘unusual steepness’ or cusps.

(a) f(x) =
√

1− x2

(b) f(x) = 4

√
16x

x2 − 9

(c) f(x) = x
2
3 (x− 7)

1
3

(d) f(x) =
5x

3
√
x3 + 8

(e) f(x) = x
3
2 (x− 7)

1
3

(f) f(x) =
√
x(x+ 5)(x− 4)

(g) f(x) = 3
√
x3 + 3x2 − 6x− 8

2. Use the transformations presented in Section 1.8 to graph the following functions.

(a) f(x) = −2 3
√
x+ 1 + 4

(b) f(x) = 3 4
√
x− 7− 1

(c) f(x) = 5
√
x+ 2 + 3

(d) f(x) = 8
√
−x− 2

3. Solve the following equations and inequalities.

(a) x+ 1 =
√

3x+ 7

(b) 2x+ 1 =
√

3− 3x

(c) x+
√

3x+ 10 = −2

(d) 3x+
√

6− 9x = 2

(e) 2x− 1 =
√
x+ 3

(f) x
3
2 = 8

(g) x
2
3 = 4

(h)
√
x− 2 +

√
x− 5 = 3

(i)
√

2x+ 1 = 3 +
√

4− x

(j) 5− (4− 2x)
2
3 = 1

(k) 10−
√
x− 2 ≤ 11

(l) 3
√
x ≤ x

(m) 2(x− 2)−
1
3 − 2

3x(x− 2)−
4
3 ≤ 0

(n) −4
3(x− 2)−

4
3 + 8

9x(x− 2)−
7
3 ≥ 0

(o) 2x−
1
3 (x− 3)

1
3 + x

2
3 (x− 3)−

2
3 ≥ 0

(p) 1
3x

3
4 (x− 3)−

2
3 + 3

4x
− 1

4 (x− 3)
1
3 < 0

(q) 3
√
x3 + 3x2 − 6x− 8 > x+ 1

(r) x−
1
3 (x− 3)−

2
3 − x−

4
3 (x− 3)−

5
3 (x2 − 3x+ 2) ≥ 0

(s) 2
3(x+ 4)

3
5 (x− 2)−

1
3 + 3

5(x+ 4)−
2
5 (x− 2)

2
3 ≥ 0

4. Show that
(
x

3
2

) 2
3

= x for all x ≥ 0.

5. Verify the Quotient Rule for Radicals in Theorem 5.6.



322 Further Topics in Functions

6. Find the inverse of k(x) =
2x√
x2 − 1

.

7. The period of a pendulum in seconds is given by

T = 2π

√
L

g

(for small displacements) where L is the length of the pendulum in meters and g = 9.8
meters per second per second is the acceleration due to gravity. My Seth-Thomas antique
schoolhouse clock needs T = 1

2 second and I can adjust the length of the pendulum via a
small dial on the bottom of the bob. At what length should I set the pendulum?

8. The Cobb-Douglas production model states that the yearly total dollar value of the production
output P in an economy is a function of labor x (the total number of hours worked in a year)
and capital y (the total dollar value of all of the stuff purchased in order to make things).
Specifically, P = axby1−b. By fixing P , we create what’s known as an ‘isoquant’ and we can
then solve for y as a function of x. Let’s assume that the Cobb-Douglas production model
for the country of Sasquatchia is P = 1.23x0.4y0.6.

(a) Let P = 300 and solve for y in terms of x. If x = 100, what is y?

(b) Graph the isoquant 300 = 1.23x0.4y0.6. What information does an ordered pair (x, y)
which makes P = 300 give you? With the help of your classmates, find several different
combinations of labor and capital all of which yield P = 300. Discuss any patterns you
may see.

9. According to Einstein’s Theory of Special Relativity, the observed mass m of an object is a
function of how fast the object is traveling. Specifically,

m(x) =
mr√

1− x2

c2

where m(0) = mr is the mass of the object at rest, x is the speed of the object and c is the
speed of light.

(a) Find the applied domain of the function.

(b) Compute m(.1c), m(.5c), m(.9c) and m(.999c).

(c) As x→ c−, what happens to m(x)?

(d) How slowly must the object be traveling so that the observed mass is no greater than
100 times its mass at rest?

10. Show that 3
√

2 is an irrational number by first showing that it is a zero of p(x) = x3 − 2 and
then showing p has no rational zeros. (You’ll need the Rational Zeros Theorem, Theorem 3.9,
in order to show this last part.)
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11. With the help of your classmates, generalize the previous exercise to show that n
√
c is an

irrational number provided that cn is not a rational number.

12. Suppose Fritzy the Fox, positioned at a point (x, y) in the first quadrant, spots Chewbacca
the Bunny at (0, 0). Chewbacca begins to run along a fence (the positive y-axis) towards his
warren. Fritzy, of course, takes chase and constantly adjusts his direction so that he is always
running directly at Chewbacca. If Chewbacca’s speed is v1 and Frity’s speed is v2, the path
Fritzy will take to intercept Chewbacca, provided v2 is directly proportional to, but not equal
to, v1 is modeled by

y =
1

2

(
x1+v1/v2

1 + v1/v2
− x1−v1/v2

1− v1/v2

)
+

v1v2

v2
2 − v2

1

(a) Determine the path Fritzy will take if he runs exactly twice as fast as Chewbacca; that
is, v2 = 2v1. Use your calculator to graph this path for x ≥ 0. What is the significance
of the y-intercept of the graph?

(b) Determine the path Fritzy will take if Chewbacca runs exactly twice as fast as he does;
that is, v1 = 2v2. Use your calculator to graph this path for x > 0. Describe the behavior
of y as x→ 0+ and interpret this physically.

(c) With the help of your classmates, generalize parts (a) and (b) to two cases: v2 > v1 and
v2 < v1. We will discuss the case of v1 = v2 in Exercise 10 in Section 6.5.
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5.3.2 Answers

1. (a) f(x) =
√

1− x2

Domain: [−1, 1]

−1

(+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps x

y

−1 1

1

(b) f(x) = 4

√
16x

x2 − 9
Domain: (−3, 0] ∪ (3,∞)

(+)

−3

‽

0

0 ‽

3

(+)

Vertical asymptotes: x = −3 and x = 3
Horizontal asymptote: y = 0
Unusual steepness at x = 0
No cusps

x

y

−3 −2 −1 1 2 3 4 5 6 7 8

1

2

3

4

5

(c) f(x) = x
2
3 (x− 7)

1
3

Domain: (−∞,∞)
(−)

0

0 (−)

7

0 (+)

No vertical or horizontal asymptotes12

Unusual steepness at x = 7
Cusp at x = 0

x

y

−3−2−1 1 2 3 4 5 6 7 8 9

−4

−3

−2

−1

1

2

3

4

5

(d) f(x) =
5x

3
√
x3 + 8

Domain: (−∞,−2) ∪ (−2,∞)
(+)

−2

‽ (−)

0

0 (+)

Vertical asymptote x = −2
Horizontal asymptote y = 5
No unusual steepness or cusps

x

y

−4−3−2−1 1 2 3 4

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

12Using Calculus it can be shown that y = x− 7
3

is a slant asymptote of this graph.
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(e) f(x) = x
3
2 (x− 7)

1
3

Domain: [0,∞)

0

0 (−)

7

0 (+)

No asymptotes
Unusual steepness at x = 7
No cusps

x

y

1 2 3 4 5 6 7 8

−15

−10

−5

5

10

15

20

25

(f) f(x) =
√
x(x+ 5)(x− 4)

Domain: [−5, 0] ∪ [4,∞)

−5

0 (+)

0

0

4

0 (+)

No asymptotes
Unusual steepness at x = −5, x = 0 and
x = 4
No cusps x

y

−5−4−3−2−1 1 2 3 4 5

1

2

3

4

5

6

7

8

9

(g) f(x) = 3
√
x3 + 3x2 − 6x− 8

Domain: (−∞,∞)
(−)

−4

0 (+)

−1

0 (−)

2

0 (+)

No vertical or horizontal asymptotes13

Unusual steepness at x = −4, x = −1 and
x = 2
No cusps

x

y

−5−4−3−2−1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4

5

6

2. (a) f(x) = −2 3
√
x+ 1 + 4

x

y

−6−5−4−3−2−1 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

(b) f(x) = 3 4
√
x− 7− 1

x

y

7 8 23−1

1

2

3

4

5

13Using Calculus it can be shown that y = x+ 1 is a slant asymptote of this graph.
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(c) f(x) = 5
√
x+ 2 + 3

x

y

−34 −2 30

1

2

3

4

5

(d) f(x) = 8
√
−x− 2

x

y

−40 −30 −20 −10

−2

−1

3. (a) x = 3

(b) x = 1
4

(c) x = −3

(d) x = −1
3 ,

2
3

(e) x = 5+
√

57
8

(f) x = 4

(g) x = ±8

(h) x = 6

(i) x = 4

(j) x = −2, 6

(k) [2,∞)

(l) [−1, 0] ∪ [1,∞)

(m) (−∞, 2) ∪ (2, 3]

(n) (2, 6]

(o) (−∞, 0) ∪ [2, 3) ∪ (3,∞)

(p)
(
0, 27

13

)
(q) (−∞,−1)

(r) (−∞, 0) ∪ (0, 3)

(s) (−∞,−4) ∪
(
−4,−22

19

]
∪ (2,∞)

6. k−1(x) =
x√

x2 − 4

7. 9.8

(
1

4π

)2

≈ 0.062 meters or 6.2 centimeters

8. (a) First rewrite the model as P = 1.23x
2
5 y

3
5 . Then 300 = 1.23x

2
5 y

3
5 yields y =

(
300

1.23x
2
5

) 5
3

.

If x = 100 then y ≈ 441.93687.

9. (a) [0, c)

(b) m(.1c) =
mr√
.99
≈ 1.005mr

m(.5c) =
mr√
.75
≈ 1.155mr

m(.9c) =
mr√
.19
≈ 2.294mr

m(.999c) =
mr√

.0.001999
≈ 22.366mr

(c) As x→ c−, m(x)→∞
(d) If the object is traveling no faster than approximately 0.99995 times the speed of light,

then its observed mass will be no greater than 100mr.



5.3 Other Algebraic Functions 327

12. (a) y = 1
3x

3/2 −
√
x+ 2

3 . The point
(
0, 2

3

)
is when Fritzy’s path crosses Chewbacca’s path -

in other words, where Fritzy catches Chewbacca.

(b) y = 1
6x

3 + 1
2x −

2
3 . Using the techniques from Chapter 4, we find as x → 0+, y → ∞

which means, in this case, Fritzy’s pursuit never ends; he never catches Chewbacca. This
makes sense since Chewbacca has a head start and is running faster than Fritzy.

y = 1
3x

3/2 −
√
x+ 2

3 y = 1
6x

3 + 1
2x −

2
3
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Chapter 6

Exponential and Logarithmic
Functions

6.1 Introduction to Exponential and Logarithmic Functions

Of all of the functions we study in this text, exponential and logarithmic functions are possibly
the ones which impact everyday life the most.1 This section will introduce us to these functions
while the rest of the chapter will more thoroughly explore their properties. Up to this point, we
have dealt with functions which involve terms like x2 or x2/3, in other words, terms of the form xp

where the base of the term, x, varies but the exponent of each term, p, remains constant. In this
chapter, we study functions of the form f(x) = bx where the base b is a constant and the exponent
x is the variable. We start our exploration of these functions with f(x) = 2x. (Apparently this is a
tradition. Every College Algebra book we have ever read starts with f(x) = 2x.) We make a table
of values, plot the points and connect them in a pleasing fashion.

x f(x) (x, f(x))

−3 2−3 = 1
8

(
−3, 1

8

)
−2 2−2 = 1

4

(
−2, 1

4

)
−1 2−1

(
−1, 1

2

)
0 20 = 1 (0, 1)

1 21 = 2 (1, 2)

2 22 = 4 (2, 4)

3 23 = 8 (2, 8)
x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

y = f(x) = 2x

A few remarks about the graph of f(x) = 2x which we have constructed are in order. As x→ −∞
1Take a class in Differential Equations and you’ll see why.



330 Exponential and Logarithmic Functions

and attains values like x = −100 or x = −1000, the function f(x) = 2x takes on values like
f(−100) = 2−100 = 1

2100 or f(−1000) = 2−1000 = 1
21000 . In other words, as x→ −∞,

2x ≈ 1

very big (+)
≈ very small (+)

So as x → −∞, 2x → 0+. This is represented graphically using the x-axis (the line y = 0) as a
horizontal asymptote. On the flip side, as x→∞, we find f(100) = 2100, f(1000) = 21000, and so
on, thus 2x →∞. As a result, our graph suggests the range of f is (0,∞). The graph of f passes
the Horizontal Line Test which means f is one-to-one and hence invertible. We also note that when
we ‘connected the dots in a pleasing fashion’, we have made the implicit assumption that f(x) = 2x

is continuous2 and has a domain of all real numbers. In particular, we have suggested that things
like 2

√
3 exist as real numbers. We should take a moment to discuss what something like 2

√
3 might

mean, and refer the interested reader to a solid course in Calculus for a more rigorous explanation.
The number

√
3 = 1.73205 . . . is an irrational number3 and as such, its decimal representation

neither repeats nor terminates. We can, however, approximate
√

3 by terminating decimals, and
it stands to reason4 we can use these to approximate 2

√
3. For example, if we approximate

√
3

by 1.73, we can approximate 2
√

3 ≈ 21.73 = 2
173
100 =

100
√

2173. It is not, by any means, a pleasant
number, but it is at least a number that we understand in terms of powers and roots. It also stands
to reason that better and better approximations of

√
3 yield better and better approximations of

2
√

3, so the value of 2
√

3 should be the result of this sequence of approximations.5

Suppose we wish to study the family of functions f(x) = bx. Which bases b make sense to study?
We find that we run into difficulty if b < 0. For example, if b = −2, then the function f(x) = (−2)x

has trouble, for instance, at x = 1
2 since (−2)1/2 =

√
−2 is not a real number. In general, if x

is any rational number with an even denominator, then (−2)x is not defined, so we must restrict
our attention to bases b ≥ 0. What about b = 0? The function f(x) = 0x is undefined for x ≤ 0
because we cannot divide by 0 and 00 is an indeterminant form. For x > 0, 0x = 0 so the function
f(x) = 0x is the same as the function f(x) = 0, x > 0. We know everything we can possibly know
about this function, so we exclude it from our investigations. The only other base we exclude is
b = 1, since the function f(x) = 1x = 1 is, once again, a function we have already studied. We are
now ready for our definition of exponential functions.

Definition 6.1. A function of the form f(x) = bx where b is a fixed real number, b > 0, b 6= 1 is
called a base b exponential function.

We leave it to the reader to verify6 that if b > 1, then the exponential function f(x) = bx will share
the same basic shape and characteristics as f(x) = 2x. What if 0 < b < 1? Consider g(x) =

(
1
2

)x
.

We could certainly build a table of values and connect the points, or we could take a step back and
note that g(x) =

(
1
2

)x
=
(
2−1
)x

= 2−x = f(−x), where f(x) = 2x. Thinking back to Section 1.8,

2Recall that this means there are no holes or other kinds of breaks in the graph.
3You can actually prove this by considering the polynomial p(x) = x2 − 3 and showing it has no rational zeros by

applying Theorem 3.9.
4This is where Calculus and continuity come into play.
5Want more information? Look up “convergent sequences” on the Internet.
6Meaning, graph some more examples on your own.
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the graph of f(−x) is obtained from the graph of f(x) by reflecting it across the y-axis. As such,
we have

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = f(x) = 2x

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = g(x) = 2−x =
(

1
2

)x
We see that the domain and range of g match that of f , namely (−∞,∞) and (0,∞), respectively.
Like f , g is also one-to-one. Whereas f is always increasing, g is always decreasing. As a result,
as x→ −∞, g(x)→∞, and on the flip side, as x→∞, g(x)→ 0+. It shouldn’t be too surprising
that for all choices of the base 0 < b < 1, the graph of y = bx behaves similarly to the graph of
g. We summarize these observations, and more, in the following theorem whose proof ultimately
requires Calculus.

Theorem 6.1. Properties of Exponential Functions: Suppose f(x) = bx.

• The domain of f is (−∞,∞) and the range of f is (0,∞).

• (0, 1) is on the graph of f and y = 0 is a horizontal asymptote to the graph of f .

• f is one-to-one, continuous and smootha

• If b > 1:

– f is always increasing

– As x→ −∞, f(x)→ 0+

– As x→∞, f(x)→∞
– The graph of f resembles:

y = bx, b > 1

• If 0 < b < 1:

– f is always decreasing

– As x→ −∞, f(x)→∞
– As x→∞, f(x)→ 0+

– The graph of f resembles:

y = bx, 0 < b < 1

aRecall that this means the graph of f has no sharp turns or corners.
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Of all of the bases for exponential functions, two occur the most often in scientific circles. The first,
base 10, is often called the common base. The second base is an irrational number, e ≈ 2.718,
called the natural base. We will more formally discuss the origins of this number in Section 6.5.
For now, it is enough to know that since e > 1, f(x) = ex is an increasing exponential function.
The following examples offer a glimpse as to the kind of real-world phenomena these functions can
model.

Example 6.1.1. The value of a car can be modeled by V (x) = 25
(

4
5

)x
, where x ≥ 0 is age of the

car in years and V (x) is the value in thousands of dollars.

1. Find and interpret V (0).

2. Sketch the graph of y = V (x) using transformations.

3. Find and interpret the horizontal asymptote of the graph you found in 2.

Solution.

1. To find V (0), we replace x with 0 to obtain V (0) = 25
(

4
5

)0
= 25. Since x represents the age

of the car in years, x = 0 corresponds to the car being brand new. Since V (x) is measured
in thousands of dollars, V (0) = 25 corresponds to a value of $25, 000. Putting it all together,
we interpret V (0) = 25 to mean the purchase price of the car was $25, 000.

2. To graph y = 25
(

4
5

)x
, we start with the basic exponential function f(x) =

(
4
5

)x
. Since the

base b = 4
5 is between 0 and 1, the graph of y = f(x) is decreasing. We plot the y-intercept

(0, 1) and two other points,
(
−1, 5

4

)
and

(
1, 4

5

)
, and label the horizontal asymptote y = 0.

To obtain V (x) = 25
(

4
5

)x
, x ≥ 0, we multiply the output from f by 25, in other words,

V (x) = 25f(x). In accordance with Theorem 1.5, this results in a vertical stretch by a factor
of 25. We multiply all of the y values in the graph by 25 (including the y value of the
horizontal asymptote) and obtain the points

(
−1, 125

4

)
, (0, 25) and (1, 20). The horizontal

asymptote remains y = 0. Finally, we restrict the domain to [0,∞) to fit with the applied
domain given to us. We have the result below.

(0, 1)

H.A. y = 0

x

y

−3−2−1 1 2 3

2

y = f(x) =
(

4
5

)x vertical scale by a factor of 25
−−−−−−−−−−−−−−−−−−−−−→

multiply each y-coordinate by 25

(0, 25)

H.A. y = 0

x

y

1 2 3 4 5 6

5

10

15

20

30

y = V (x) = 25f(x), x ≥ 0

3. We see from the graph of V that its horizontal asymptote is y = 0. (We leave it to reader to
verify this analytically by thinking about what happens as we take larger and larger powers
of 4

5 .) This means as the car gets older, its value diminishes to 0.
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The function in the previous example is often called a ‘decay curve’. Increasing exponential func-
tions are used to model ‘growth curves’ and we shall see several different examples of those in
Section 6.5. For now, we present another common decay curve which will serve as the basis for
further study of exponential functions. Although it may look more complicated than the previ-
ous example, it is actually just a basic exponential function which has been modified by a few
transformations from Section 1.8.

Example 6.1.2. According to Newton’s Law of Cooling7 the temperature of coffee T (in degrees
Fahrenheit) t minutes after it is served can be modeled by T (t) = 70 + 90e−0.1t.

1. Find and interpret T (0).

2. Sketch the graph of y = T (t) using transformations.

3. Find and interpret the horizontal asymptote of the graph.

Solution.

1. To find T (0), we replace every occurrence of the independent variable t with 0 to obtain
T (0) = 70 + 90e−0.1(0) = 160. This means that the coffee was served at 160◦F.

2. To graph y = T (t) using transformations, we start with the basic function, f(t) = et. As we
have already remarked, e ≈ 2.718 > 1 so the graph of f is an increasing exponential with
y-intercept (0, 1) and horizontal asymptote y = 0. The points

(
−1, e−1

)
≈ (−1, 0.37) and

(1, e) ≈ (1, 2.72) are also on the graph. Since the formula T (t) looks rather complicated, we
rewrite T (t) in the form presented in Theorem 1.7 and use that result to track the changes to
our three points and the horizontal asymptote. We have T (t) = 90e−0.1t+ 70 = 90f(−0.1t) +
70. Multiplication of the input to f , t, by −0.1 results in a horizontal expansion by a factor
of 10 as well as a reflection about the y-axis. We divide each of the x values of our points by
−0.1 (which amounts to multiplying them by −10) to obtain

(
10, e−1

)
, (0, 1), and (−10, e).

Since none of these changes affected the y values, the horizontal asymptote remains y = 0.
Next, we see that the output from f is being multiplied by 90. This results in a vertical
stretch by a factor of 90. We multiply the y-coordinates by 90 to obtain

(
10, 90e−1

)
, (0, 90),

and (−10, 90e). We also multiply the y value of the horizontal asymptote y = 0 by 90, and it
remains y = 0. Finally, we add 70 to all of the y-coordinates, which shifts the graph upwards to
obtain

(
10, 90e−1 + 70

)
≈ (10, 103.11), (0, 160), and (−10, 90e+ 70) ≈ (−10, 314.64). Adding

70 to the horizontal asymptote shifts it upwards as well to y = 70. We connect these three
points using the same shape in the same direction as in the graph of f and, last but not least,
we restrict the domain to match the applied domain [0,∞). The result is below.

7We will discuss this in greater detail in Section 6.5.

http://en.wikipedia.org/wiki/Heat_transfer#Newton.27s_law_of_cooling
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(0, 1)

H.A. y = 0

t

y

−3−2−1 1 2 3

2

3

4

5

6

7

y = f(t) = et −−−−−−−−−−−−→

H.A. y = 70

t

y

2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

120

140

160

180

y = T (t)

3. From the graph, we see that the horizontal asymptote is y = 70. It is worth a moment or two
of our time to see how this happens analytically and to review some of the ‘number sense’
developed in Chapter 4. As t → ∞, We get T (t) = 70 + 90e−0.1t ≈ 70 + 90every big (−). Since
e > 1, every big (−) = 1

every big (+) ≈ 1
very big (+)

≈ very small (+). The larger t becomes, the smaller

e−0.1t becomes, so the term 90e−0.1t ≈ very small (+). Hence, T (t) ≈ 70 + very small (+)
which means the graph is approaching the horizontal line y = 70 from above. This means
that as time goes by, the temperature of the coffee is cooling to 70◦F, presumably room
temperature.

As we have already remarked, the graphs of f(x) = bx all pass the Horizontal Line Test. Thus the
exponential functions are invertible. We now turn our attention to these inverses, the logarithmic
functions, which are called ‘logs’ for short.

Definition 6.2. The inverse of the exponential function f(x) = bx is called the base b logarithm
function, and is denoted f−1(x) = logb(x) The expression logb(x) is read ‘log base b of x.’

We have special notations for the common base, b = 10, and the natural base, b = e.

Definition 6.3. The common logarithm of a real number x is log10(x) and is usually written
log(x). The natural logarithm of a real number x is loge(x) and is usually written ln(x).

Since logs are defined as the inverses of exponential functions, we can use Theorems 5.2 and 5.3 to
tell us about logarithmic functions. For example, we know that the domain of a log function is the
range of an exponential function, namely (0,∞), and that the range of a log function is the domain
of an exponential function, namely (−∞,∞). Since we know the basic shapes of y = f(x) = bx for
the different cases of b, we can obtain the graph of y = f−1(x) = logb(x) by reflecting the graph of
f across the line y = x as shown below. The y-intercept (0, 1) on the graph of f corresponds to
an x-intercept of (1, 0) on the graph of f−1. The horizontal asymptotes y = 0 on the graphs of the
exponential functions become vertical asymptotes x = 0 on the log graphs.
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y = bx, b > 1
y = logb(x), b > 1

y = bx, 0 < b < 1
y = logb(x), 0 < b < 1

On a procedural level, logs undo the exponentials. Consider the function f(x) = 2x. When we
evaluate f(3) = 23 = 8, the input 3 becomes the exponent on the base 2 to produce the real
number 8. The function f−1(x) = log2(x) then takes the number 8 as its input and returns the
exponent 3 as its output. In symbols, log2(8) = 3. More generally, log2(x) is the exponent you
put on 2 to get x. Thus, log2(16) = 4, because 24 = 16. The following theorem summarizes the
basic properties of logarithmic functions, all of which come from the fact that they are inverses of
exponential functions.

Theorem 6.2. Properties of Logarithmic Functions: Suppose f(x) = logb(x).

• The domain of f is (0,∞) and the range of f is (−∞,∞).

• (1, 0) is on the graph of f and x = 0 is a vertical asymptote of the graph of f .

• f is one-to-one, continuous and smooth

• ba = c if and only if logb(c) = a. That is, logb(c) is the exponent you put on b to obtain c.

• logb (bx) = x for all x and blogb(x) = x for all x > 0

• If b > 1:

– f is always increasing

– As x→ 0+, f(x)→ −∞
– As x→∞, f(x)→∞
– The graph of f resembles:

y = logb(x), b > 1

• If 0 < b < 1:

– f is always decreasing

– As x→ 0+, f(x)→∞
– As x→∞, f(x)→ −∞
– The graph of f resembles:

y = logb(x), 0 < b < 1



336 Exponential and Logarithmic Functions

As we have mentioned, Theorem 6.2 is a consequence of Theorems 5.2 and 5.3. However, it is worth
the reader’s time to understand Theorem 6.2 from an exponential perspective. For instance, we
know that the domain of g(x) = log2(x) is (0,∞). Why? Because the range of f(x) = 2x is (0,∞).
In a way, this says everything, but at the same time, it doesn’t. For example, if we try to find
log2(−1), we are trying to find the exponent we put on 2 to give us −1. In other words, we are
looking for x that satisfies 2x = −1. There is no such real number, since all powers of 2 are positive.
While what we have said is exactly the same thing as saying ‘the domain of g(x) = log2(x) is (0,∞)
because the range of f(x) = 2x is (0,∞)’, we feel it is in a student’s best interest to understand
the statements in Theorem 6.2 at this level instead of just merely memorizing the facts.

Example 6.1.3. Simplify the following.

1. log3(81)

2. log2

(
1

8

)

3. log√5(25)

4. ln
(

3
√
e2
)

5. log(0.001)

6. 2log2(8)

7. 117− log117(6)

Solution.

1. The number log3(81) is the exponent we put on 3 to get 81. As such, we want to write 81 as
a power of 3. We find 81 = 34, so that log3(81) = 4.

2. To find log2

(
1

8

)
, we need rewrite 1

8 as a power of 2. We find 1
8 = 1

23 = 2−3, so log2

(
1

8

)
= −3.

3. To determine log√5(25), we need to express 25 as a power of
√

5. We know 25 = 52, and

5 =
(√

5
)2

, so we have 25 =
((√

5
)2)2

=
(√

5
)4

. We get log√5(25) = 4.

4. First, recall that the notation ln
(

3
√
e2
)

means loge

(
3
√
e2
)

, so we are looking for the exponent

to put on e to obtain
3
√
e2. Rewriting

3
√
e2 = e2/3, we find ln

(
3
√
e2
)

= ln
(
e2/3

)
= 2

3 .

5. Rewriting log(0.001) as log10(0.001), we see that we need to write 0.001 as a power of 10. We
have 0.001 = 1

1000 = 1
103 = 10−3. Hence, log(0.001) = log

(
10−3

)
= −3.

6. We can use Theorem 6.2 directly to simplify 2log2(8) = 8. We can also understand this problem
by first finding log2(8). By definition, log2(8) is the exponent we put on 2 to get 8. Since
8 = 23, we have log2(8) = 3. We now substitute to find 2log2(8) = 23 = 8.

7. We note that we cannot apply Theorem 6.2 directly to 117− log117(6). (Why not?) We use

a property of exponents to rewrite 117− log117(6) as
1

117log117(6)
. At this point, we can apply
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Theorem 6.2 to get 117log117(6) = 6 and thus 117− log117(6) =
1

117log117(6)
= 1

6 . It is worth

a moment of your time to think your way through why 117log117(6) = 6. By definition,
log117(6) is the exponent we put on 117 to get 6. What are we doing with this exponent?
We are putting it on 117. By definition we get 6. In other words, the exponential function
f(x) = 117x undoes the logarithmic function g(x) = log117(x).

Up until this point, restrictions on the domains of functions came from avoiding division by zero
and keeping negative numbers from beneath even radicals. With the introduction of logs, we now
have another restriction. Since the domain of f(x) = logb(x) is (0,∞), the argument8 of the log
must be strictly positive.

Example 6.1.4. Find the domain of the following functions. Check your answers graphically using
the calculator.

1. f(x) = 2 log(3− x)− 1

2. g(x) = ln

(
x

x− 1

)
Solution.

1. We set 3−x > 0 to obtain x < 3, or (−∞, 3). The graph from the calculator below verifies this.
Note that we could have graphed f using transformations. Taking a cue from Theorem 1.7, we
rewrite f(x) = 2 log10(−x+3)−1 and find the main function involved is y = h(x) = log10(x).
We select three points to track,

(
1
10 ,−1

)
, (1, 0) and (10, 1), along with the vertical asymptote

x = 0. Since f(x) = 2h(−x+ 3)− 1, Theorem 1.7 tells us that to obtain the destinations of
these points, we first subtract 3 from the x-coordinates (shifting the graph left 3 units), then
divide (multiply) by the x-coordinates by −1 (causing a reflection across the y-axis). These
transformations apply to the vertical asymptote x = 0 as well. Subtracting 3 gives us x = −3
as our asymptote, then multplying by −1 gives us the vertical asymptote x = 3. Next, we
multiply the y-coordinates by 2 which results in a vertical stretch by a factor of 2, then we
finish by subtracting 1 from the y-coordinates which shifts the graph down 1 unit. We leave
it to the reader to perform the indicated arithmetic on the points themselves and to verify
the graph produced by the calculator below.

2. To find the domain of g, we set x
x−1 > 0 and use a sign diagram to solve this inequality. We

define r(x) = x
x−1 find its domain to be r is (−∞, 1) ∪ (1,∞). Setting r(x) = 0 gives x = 0.

(+)

0

0 (−)

1

‽ (+)

8See page 44 if you’ve forgotten what this term means.
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We find x
x−1 > 0 on (−∞, 0)∪ (1,∞) to get the domain of g. The graph of y = g(x) confirms

this. We can tell from the graph of g that it is not the result of Section 1.8 transformations
being applied to the graph y = ln(x), so barring a more detailed analysis using Calculus, the
calculator graph is the best we can do. One thing worthy of note, however, is the end behavior
of g. The graph suggests that as x→ ±∞, g(x)→ 0. We can verify this analytically. Using
results from Chapter 4 and continuity, we know that as x→ ±∞, x

x−1 ≈ 1. Hence, it makes

sense that g(x) = ln
(

x
x−1

)
≈ ln(1) = 0.

y = f(x) = 2 log(3− x)− 1 y = g(x) = ln

(
x

x− 1

)

While logarithms have some interesting applications of their own which you’ll explore in the exer-
cises, their primary use to us will be to undo exponential functions. (This is, after all, how they
were defined.) Our last example solidifies this and reviews all of the material in the section.

Example 6.1.5. Let f(x) = 2x−1 − 3.

1. Graph f using transformations and state the domain and range of f .

2. Explain why f is invertible and find a formula for f−1(x).

3. Graph f−1 using transformations and state the domain and range of f−1.

4. Verify
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and

(
f ◦ f−1

)
(x) = x for all x in the

domain of f−1.

5. Graph f and f−1 on the same set of axes and check the symmetry about the line y = x.

Solution.

1. If we identify g(x) = 2x, we see f(x) = g(x − 1) − 3. We pick the points
(
−1, 1

2

)
, (0, 1)

and (1, 2) on the graph of g along with the horizontal asymptote y = 0 to track through
the transformations. By Theorem 1.7 we first add 1 to the x-coordinates of the points on
the graph of g (shifting g to the right 1 unit) to get

(
0, 1

2

)
, (1, 1) and (2, 2). The horizontal

asymptote remains y = 0. Next, we subtract 3 from the y-coordinates, shifting the graph
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down 3 units. We get the points
(
0,−5

2

)
, (1,−2) and (2,−1) with the horizontal asymptote

now at y = −3. Connecting the dots in the order and manner as they were on the graph of
g, we get the graph below. We see that the domain of f is the same as g, namely (−∞,∞),
but that the range of f is (−3,∞).

x

y

−3−2−1 1 2 3 4

−3

−2

−1

1

2

3
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5
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7

8

y = h(x) = 2x −−−−−−−−−−−−→

x

y

−3−2−1 1 2 3 4

−2

−1

1

2

3

4

5

6

7

8

y = f(x) = 2x−1 − 3

2. The graph of f passes the Horizontal Line Test so f is one-to-one, hence invertible. To find
a formula for f−1(x), we normally set y = f(x), interchange the x and y, then proceed to
solve for y. Doing so in this situation leads us to the equation x = 2y−1 − 3. We have yet
to discuss how to solve this kind of equation, so we will attempt to find the formula for f−1

from a procedural perspective. If we break f(x) = 2x−1 − 3 into a series of steps, we find f
takes an input x and applies the steps

(a) subtract 1

(b) put as an exponent on 2

(c) subtract 3

Clearly, to undo subtracting 1, we will add 1, and similarly we undo subtracting 3 by adding
3. How do we undo the second step? The answer is we use the logarithm. By definition,
log2(x) undoes exponentiation by 2. Hence, f−1 should

(a) add 3

(b) take the logarithm base 2

(c) add 1

In symbols, f−1(x) = log2(x+ 3) + 1.

3. To graph f−1(x) = log2(x + 3) + 1 using transformations, we start with j(x) = log2(x). We
track the points

(
1
2 ,−1

)
, (1, 0) and (2, 1) on the graph of j along with the vertical asymptote

x = 0 through the transformations using Theorem 1.7. Since f−1(x) = j(x+ 3) + 1, we first
subtract 3 from each of the x values (including the vertical asymptote) to obtain

(
−5

2 ,−1
)
,
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(−2, 0) and (−1, 1) with a vertical asymptote x = −3. Next, we add 1 to the y values on the
graph and get

(
−5

2 , 0
)
, (−2, 1) and (−1, 2). If you are experiencing déjà vu, there is a good

reason for it but we leave it to the reader to determine the source of this uncanny familiarity.
We obtain the graph below. The domain of f−1 is (−3,∞), which matches the range of f ,
and the range of f−1 is (−∞,∞), which matches the domain of f .

x

y

−3

−2

−1

1

2

3

4

−3−2−1 1 2 3 4 5 6 7 8

y = j(x) = log2(x) −−−−−−−−−−−−→

x

y

−3

−2

−1

1

2

3

4

−2−1 1 2 3 4 5 6 7 8

y = f−1(x) = log2(x+ 3) + 1

4. We now verify that f(x) = 2x−1 − 3 and f−1(x) = log2(x + 3) + 1 satisfy the composition
requirement for inverses. For all real numbers x,

(
f−1 ◦ f

)
(x) = f−1(f(x))

= f−1
(
2x−1 − 3

)
= log2

([
2x−1 − 3

]
+ 3
)

+ 1

= log2

(
2x−1

)
+ 1

= (x− 1) + 1 Since log2 (2u) = u for all real numbers u

= x X

For all real numbers x > −3, we have9

(
f ◦ f−1

)
(x) = f

(
f−1(x)

)
= f (log2(x+ 3) + 1)

= 2(log2(x+3)+1)−1 − 3

= 2log2(x+3) − 3

= (x+ 3)− 3 Since 2log2(u) = u for all real numbers u > 0

= x X

5. Last, but certainly not least, we graph y = f(x) and y = f−1(x) on the same set of axes and
see the symmetry about the line y = x.

9Pay attention - can you spot in which step below we need x > −3?
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x

y

y = f(x) = 2x−1 − 3

y = f−1(x) = log2(x+ 3) + 1

−3−2−1 1 2 3 4 5 6 7 8
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4
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6
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6.1.1 Exercises

1. Evaluate the expression.

(a) log3(27)

(b) log6(216)

(c) log2(32)

(d) log6

(
1
36

)
(e) log8(4)

(f) log36(216)

(g) log 1
5
(625)

(h) log 1
6
(216)

(i) log36(36)

(j) log
(

1
1000000

)
(k) log(0.01)

(l) ln
(
e3
)

(m) log4(8)

(n) log6(1)

(o) log13

(√
13
)

(p) log36

(
4
√

36
)

(q) 7log7(3)

(r) 36log36(216)

(s) log36

(
36216

)
(t) ln

(
e5
)

(u) log
(

9
√

1011
)

(v) log
(

3
√

105
)

(w) ln
(

1√
e

)
(x) log5

(
3log3(5)

)
(y) log

(
eln(100)

)
2. Find the domain of the function.

(a) f(x) = ln(x2 + 1)

(b) f(x) = log7(4x+ 8)

(c) f(x) = ln(4x− 20)

(d) f(x) = log
(
x2 + 9x+ 18

)
(e) f(x) = log

(
x+ 2

x2 − 1

)
(f) f(x) = log

(
x2 + 9x+ 18

4x− 20

)
(g) f(x) = ln(7− x) + ln(x− 4)

(h) f(x) = ln(4x− 20) + ln
(
x2 + 9x+ 18

)

(i) f(x) = log
(
x2 + x+ 1

)
(j) f(x) = 4

√
log4(x)

(k) f(x) = log9(|x+ 3| − 4)

(l) f(x) = ln(
√
x− 4− 3)

(m) f(x) =
1

3− log5(x)

(n) f(x) =

√
−1− x

log 1
2
(x)

(o) f(x) = ln(−2x3 − x2 + 13x− 6)

3. For each function given below, find its inverse from the ‘procedural perspective’ discussed in
Example 6.1.5 and graph the function and its inverse on the same set of axes.

(a) f(x) = 3x+2 − 4

(b) f(x) = log4(x− 1)

(c) f(x) = −2−x + 1

(d) f(x) = 5 log(x)− 2

4. Show that logb 1 = 0 and logb b = 1 for every b > 0, b 6= 1.

5. (Crazy bonus question) Without using your calculator, determine which is larger: eπ or πe.

6. (The Logarithmic Scales) There are three widely used measurement scales which involve
common logarithms: the Richter scale, the decibel scale and the pH scale. The computations
involved in all three scales are nearly identical so pay close attention to the subtle differences.
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(a) Earthquakes are complicated events and it is not our intent to provide a complete dis-
cussion of the science involved in them. Instead, we refer the interested reader to a
solid course in Geology10 or the U.S. Geological Survey’s Earthquake Hazards Program
found here and present only a simplified version of the Richter scale. The Richter scale
measures the magnitude of an earthquake by comparing the amplitude of the seismic
waves of the given earthquake to those of a “magnitude 0 event”, which was chosen to
be a seismograph reading of 0.001 millimeters recorded on a seismometer 100 kilometers
from the earthquake’s epicenter. Specifically, the magnitude of an earthquake is given
by

M(x) = log
( x

0.001

)
where x is the seismograph reading in millimeters of the earthquake recorded 100 kilo-
meters from the epicenter.

i. Show that M(0.001) = 0.

ii. Compute M(80, 000).

iii. Show that an earthquake which registered 6.7 on the Richter scale had a seismograph
reading ten times larger than one which measured 5.7.

iv. Find two news stories about recent earthquakes which give their magnitudes on the
Richter scale. How many times larger was the seismograph reading of the earthquake
with larger magnitude?

(b) While the decibel scale can be used in many disciplines,11 we shall restrict our attention
to its use in acoustics, specifically its use in measuring the intensity level of sound.12

The Sound Intensity Level L (measured in decibels) of a sound intensity I (measured in
watts per square meter) is given by

L(I) = 10 log

(
I

10−12

)
.

Like the Richter scale, this scale compares I to baseline: 10−12 W
m2 is the threshold of

human hearing.

i. Compute L(10−6).

ii. Damage to your hearing can start with short term exposure to sound levels around
115 decibels. What intensity I is needed to produce this level?

iii. Compute L(1). How does this compare with the threshold of pain which is around
140 decibels?

10Rock-solid, perhaps?
11See this webpage for more information.
12As of the writing of this exercise, the Wikipedia page given here states that it may not meet the “general notability

guideline” nor does it cite any references or sources. I find this odd because it is this very usage of the decibel scale
which shows up in every College Algebra book I have read. Perhaps those other books have been wrong all along
and we’re just blindly following tradition.

http://earthquake.usgs.gov/
http://en.wikipedia.org/wiki/Richter_scale
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Sound_intensity_level
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(c) The pH of a solution is a measure of its acidity or alkalinity. Specifically, pH = − log[H+]
where [H+] is the hydrogen ion concentration in moles per liter. A solution with a pH
less than 7 is an acid, one with a pH greater than 7 is a base (alkaline) and a pH of 7 is
regarded as neutral.

i. The hydrogen ion concentration of pure water is [H+] = 10−7. Find its pH.

ii. Find the pH of a solution with [H+] = 6.3× 10−13.

iii. The pH of gastric acid (the acid in your stomach) is about 0.7. What is the corre-
sponding hydrogen ion concentration?



6.1 Introduction to Exponential and Logarithmic Functions 345

6.1.2 Answers

1. (a) log3(27) = 3

(b) log6(216) = 3

(c) log2(32) = 5

(d) log6

(
1
36

)
= −2

(e) log8(4) = 2
3

(f) log36(216) = 3
2

(g) log 1
5
(625) = −4

(h) log 1
6
(216) = −3

(i) log36(36) = 1

(j) log 1
1000000 = −6

(k) log(0.01) = −2

(l) ln
(
e3
)

= 3

(m) log4(8) = 3
2

(n) log6(1) = 0

(o) log13

(√
13
)

= 1
2

(p) log36

(
4
√

36
)

= 1
4

(q) 7log7(3) = 3

(r) 36log36(216) = 216

(s) log36

(
36216

)
= 216

(t) ln(e5) = 5

(u) log
(

9
√

1011
)

= 11
9

(v) log
(

3
√

105
)

= 5
3

(w) ln
(

1√
e

)
= −1

2

(x) log5

(
3log3 5

)
= 1

(y) log
(
eln(100)

)
= 2

2. (a) (−∞,∞)

(b) (−2,∞)

(c) (5,∞)

(d) (−∞,−6) ∪ (−3,∞)

(e) (−2,−1) ∪ (1,∞)

(f) (−6,−3) ∪ (5,∞)

(g) (4, 7)

(h) (5,∞)

(i) (−∞,∞)

(j) [1,∞)

(k) (−∞,−7) ∪ (1,∞)

(l) (13,∞)

(m) (0, 125) ∪ (125,∞)

(n) No domain

(o) (−∞,−3) ∪
(

1
2 , 2
)

3. (a) f(x) = 3x+2 − 4
f−1(x) = log3(x+ 4)− 2

x

y

y = f(x) = 3x+2 − 4

y = f−1(x) = log3(x+ 4)− 2

−4−3−2−1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5

6

(b) f(x) = log4(x− 1)
f−1(x) = 4x + 1

x

y

y = f(x) = log4(x− 1)

y = f−1(x) = 4x + 1

−2−1 1 2 3 4 5 6

−2

−1

1

2

3

4

5

6
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(c) f(x) = −2−x + 1
f−1(x) = − log2(1− x)

x

y

y = f(x) = −2−x + 1
y = f−1(x) = − log2(1− x)

−2 −1 1 2

−2

−1

1

2

(d) f(x) = 5 log(x)− 2

f−1(x) = 10
x+2

5

x

y

y = f(x) = 5 log(x)− 2

y = f−1(x) = 10
x+2

5

−4−3−2−1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4

5

6. (a) i. M(0.001) = log

(
0.001

0.001

)
= log(1) = 0.

ii. M(80, 000) = log

(
80, 000

0.001

)
= log(80, 000, 000) ≈ 7.9.

(b) i. L(10−6) = 60 decibels.

ii. I = 10−.5 ≈ 0.316 watts per square meter.

iii. Since L(1) = 120 decibels and L(100) = 140 decibels, a sound with intensity level
140 decibels has an intensity 100 times greater than a sound with intensity level 120
decibels.

(c) i. The pH of pure water is 7.

ii. If [H+] = 6.3× 10−13 then the solution has a pH of 12.2.

iii. [H+] = 10−0.7 ≈ .1995 moles per liter.
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6.2 Properties of Logarithms

In Section 6.1, we introduced the logarithmic functions as inverses of exponential functions and
discussed a few of their functional properties from that perspective. In this section, we explore
the algebraic properties of logarithms. Historically, these have played a huge rule in the scientific
development of our society since, among other things, they were used to develop analog computing
devices called slide rules which enabled scientists and engineers to perform accurate calculations
leading to such things as space travel and the moon landing. As we shall see shortly, logs inherit
analogs of all of the properties of exponents you learned in Elementary and Intermediate Algebra.
We first extract two properties from Theorem 6.2 to remind us of the definition of a logarithm as
the inverse of an exponential function.

Theorem 6.3. (Inverse Properties of Exponential and Log Functions) Let b > 0, b 6= 1.

• ba = c if and only if logb(c) = a

• logb (bx) = x for all x and blogb(x) = x for all x > 0

Next, we spell out in more detail what it means for exponential and logarithmic functions to be
one-to-one.

Theorem 6.4. (One-to-one Properties of Exponential and Log Functions) Let f(x) = bx

and g(x) = logb(x) where b > 0, b 6= 1. Then f and g are one-to-one. In other words:

• bu = bw if and only if u = w for all real numbers u and w.

• logb(u) = logb(w) if and only if u = w for all real numbers u > 0, w > 0.

We now state the algebraic properties of exponential functions which will serve as a basis for the
properties of logarithms. While these properties may look identical to the ones you learned in
Elementary and Intermediate Algebra, they apply to real number exponents, not just rational
exponents. Note that in the theorem that follows, we are interested in the properties of exponential
functions, so the base b is restricted to b > 0, b 6= 1. An added benefit of this restriction is that it

eliminates the pathologies discussed in Section 5.3 when, for example, we simplified
(
x2/3

)3/2
and

obtained |x| instead of what we had expected from the arithmetic in the exponents, x1 = x.

Theorem 6.5. (Algebraic Properties of Exponential Functions) Let f(x) = bx be an
exponential function (b > 0, b 6= 1) and let u and w be real numbers.

• Product Rule: f(u+ w) = f(u)f(w). In other words, bu+w = bubw

• Quotient Rule: f(u− w) =
f(u)

f(w)
. In other words, bu−w =

bu

bw

• Power Rule: (f(u))w = f(uw). In other words, (bu)w = buw

While the properties listed in Theorem 6.5 are certainly believable based on similar properties of
integer and rational exponents, the full proofs require Calculus. To each of these properties of

http://en.wikipedia.org/wiki/Slide_rule
http://www.redorbit.com/news/space/73297/nasa_marks_35th_anniversary_of_first_moon_landing/
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exponential functions corresponds an analogous property of logarithmic functions. We list these
below in our next theorem.

Theorem 6.6. (Algebraic Properties of Logarithm Functions) Let g(x) = logb(x) be a
logarithmic function (b > 0, b 6= 1) and let u > 0 and w > 0 be real numbers.

• Product Rule: g(uw) = g(u) + g(w). In other words, logb(uw) = logb(u) + logb(w)

• Quotient Rule: g
( u
w

)
= g(u)− g(w). In other words, logb

( u
w

)
= logb(u)− logb(w)

• Power Rule: g (uw) = wg(u). In other words, logb (uw) = w logb(u)

There are a couple of different ways to understand why Theorem 6.6 is true. Consider the product
rule: logb(uw) = logb(u) + logb(w). Let a = logb(uw), c = logb(u), and d = logb(w). Then, by
definition, ba = uw, bc = u and bd = w. Hence, ba = uw = bcbd = bc+d, so that ba = bc+d. By
the one-to-one property of bx, we have a = c + d. In other words, logb(uw) = logb(u) + logb(w).
The remaining properties are proved similarly. From a purely functional approach, we can see
the properties in Theorem 6.6 as an example of how inverse functions interchange the roles of
inputs in outputs. For instance, the Product Rule for exponential functions given in Theorem 6.5,
f(u+w) = f(u)f(w), says that adding inputs results in multiplying outputs. Hence, whatever f−1

is, it must take the products of outputs from f and return them to the sum of their respective inputs.
Since the outputs from f are the inputs to f−1 and vice-versa, we have that that f−1 must take
products of its inputs to the sum of their respective outputs. This is precisely what the Product Rule
for Logarithmic functions states in Theorem 6.6: g(uw) = g(u)+g(w). The reader is encouraged to
view the remaining properties listed in Theorem 6.6 similarly. The following examples help build
familiarity with these properties. In our first example, we are asked to ‘expand’ the logarithms.
This means that we read the properties in Theorem 6.6 from left to right and rewrite products
inside the log as sums outside the log, quotients inside the log as differences outside the log, and
powers inside the log as factors outside the log. While it is the opposite process, which we will
practice later, that is most useful in Algebra, the utility of expanding logarithms becomes apparent
in Calculus.

Example 6.2.1. Expand the following using the properties of logarithms and simplify. Assume
when necessary that all quantities represent positive real numbers.

1. log2

(
8

x

)
2. log0.1

(
10x2

)
3. ln

(
3

ex

)2

4. log 3

√
100x2

yz5

5. log117

(
x2 − 4

)
Solution.

1. To expand log2

(
8
x

)
, we use the Quotient Rule identifying u = 8 and w = x and simplify.



6.2 Properties of Logarithms 349

log2

(
8

x

)
= log2(8)− log2(x) Quotient Rule

= 3− log2(x) Since 23 = 8

= − log2(x) + 3

2. In the expression log0.1

(
10x2

)
, we have a power (the x2) and a product. In order to use the

Product Rule, the entire quantity inside the logarithm must be raised to the same exponent.
Since the exponent 2 applies only to the x, we first apply the Product Rule with u = 10 and
w = x2. Once we get the x2 by itself inside the log, we may apply the Power Rule with u = x
and w = 2 and simplify.

log0.1

(
10x2

)
= log0.1(10) + log0.1

(
x2
)

Product Rule

= log0.1(10) + 2 log0.1(x) Power Rule

= −1 + 2 log0.1(x) Since (0.1)−1 = 10

= 2 log0.1(x)− 1

3. We have a power, quotient and product occurring in ln
(

3
ex

)2
. Since the exponent 2 applies

to the entire quantity inside the logarithm, we begin with the Power Rule with u = 3
ex and

w = 2. Next, we see the Quotient Rule is applicable, with u = 3 and w = ex, so we replace
ln
(

3
ex

)
with the quantity ln(3) − ln(ex). Since ln

(
3
ex

)
is being multiplied by 2, the entire

quantity ln(3)− ln(ex) is multiplied by 2. Finally, we apply the Product Rule with u = e and
w = x, and replace ln(ex) with the quantity ln(e) + ln(x), and simplify, keeping in mind that
the natural log is log base e.

ln

(
3

ex

)2

= 2 ln

(
3

ex

)
Power Rule

= 2 [ln(3)− ln(ex)] Quotient Rule

= 2 ln(3)− 2 ln(ex)

= 2 ln(3)− 2 [ln(e) + ln(x)] Product Rule

= 2 ln(3)− 2 ln(e)− 2 ln(x)

= 2 ln(3)− 2− 2 ln(x) Since e1 = e

= −2 ln(x) + 2 ln(3)− 2

4. In Theorem 6.6, there is no mention of how to deal with radicals. However, thinking back to
Definition 5.5, we can rewrite the cube root as a 1

3 exponent. We begin by using the Power
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Rule1, and we keep in mind that the common log is log base 10.

log 3

√
100x2

yz5
= log

(
100x2

yz5

)1/3

= 1
3 log

(
100x2

yz5

)
Power Rule

= 1
3

[
log
(
100x2

)
− log

(
yz5
)]

Quotient Rule

= 1
3 log

(
100x2

)
− 1

3 log
(
yz5
)

= 1
3

[
log(100) + log

(
x2
)]
− 1

3

[
log(y) + log

(
z5
)]

Product Rule

= 1
3 log(100) + 1

3 log
(
x2
)
− 1

3 log(y)− 1
3 log

(
z5
)

= 1
3 log(100) + 2

3 log(x)− 1
3 log(y)− 5

3 log(z) Power Rule

= 2
3 + 2

3 log(x)− 1
3 log(y)− 5

3 log(z) Since 102 = 100

= 2
3 log(x)− 1

3 log(y)− 5
3 log(z) + 2

3

5. At first it seems as if we have no means of simplifying log117

(
x2 − 4

)
, since none of the

properties of logs addresses the issue of expanding a difference inside the logarithm. However,
we may factor x2 − 4 = (x + 2)(x − 2) thereby introducing a product which gives us license
to use the Product Rule.

log117

(
x2 − 4

)
= log117 [(x+ 2)(x− 2)] Factor

= log117(x+ 2) + log117(x− 2) Product Rule

A couple of remarks about Example 6.2.1 are in order. First, while not explicitly stated in the above
example, a general rule of thumb to determine which log property to apply first to a complicated
problem is ‘reverse order of operations.’ For example, if we were to substitute a number for x into
the expression log0.1

(
10x2

)
, we would first square the x, then multiply by 10. The last step is the

multiplication, which tells us the first log property to apply is the Product Rule. In a multi-step
problem, this rule can give the required guidance on which log property to apply at each step.
The reader is encouraged to look through the solutions to Example 6.2.1 to see this rule in action.
Second, while we were instructed to assume when necessary that all quantities represented positive
real numbers, the authors would be committing a sin of omission if we failed to point out that, for
instance, the functions f(x) = log117

(
x2 − 4

)
and g(x) = log117(x+2)+log117(x−2) have different

domains, and, hence, are different functions. We leave it to the reader to verify the domain of f
is (−∞,−2) ∪ (2,∞) whereas the domain of g is (2,∞). In general, when using log properties to

1At this point in the text, the reader is encouraged to carefully read through each step and think of which quantity
is playing the role of u and which is playing the role of w as we apply each property.
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expand a logarithm, we may very well be restricting the domain as we do so. One last comment
before we move to reassembling logs from their various bits and pieces. The authors are well aware
of the propensity for some students to become overexcited and invent their own properties of logs
like log117

(
x2 − 4

)
= log117

(
x2
)
− log117(4), which simply isn’t true, in general. The unwritten2

property of logarithms is that if it isn’t written in a textbook, it probably isn’t true.

Example 6.2.2. Use the properties of logarithms to write the following as a single logarithm.

1. log3(x− 1)− log3(x+ 1)

2. log(x) + 2 log(y)− log(z)

3. 4 log2(x) + 3

4. − ln(x)− 1
2

Solution. Whereas in Example 6.2.1 we read the properties in Theorem 6.6 from left to right to
expand logarithms, in this example we read them from right to left.

1. The difference of logarithms requires the Quotient Rule: log3(x−1)−log3(x+1) = log3

(
x−1
x+1

)
.

2. In the expression, log(x) + 2 log(y)− log(z), we have both a sum and difference of logarithms.
However, before we use the product rule to combine log(x) + 2 log(y), we note that we need
to somehow deal with the coefficient 2 on log(y). This can be handled using the Power Rule.
We can then apply the Product and Quotient Rules as we move from left to right. Putting it
all together, we have

log(x) + 2 log(y)− log(z) = log(x) + log
(
y2
)
− log(z) Power Rule

= log
(
xy2
)
− log(z) Product Rule

= log

(
xy2

z

)
Quotient Rule

3. We can certainly get started rewriting 4 log2(x) + 3 by applying the Power Rule to 4 log2(x)
to obtain log2

(
x4
)
, but in order to use the Product Rule to handle the addition, we need to

rewrite 3 as a logarithm base 2. From Theorem 6.3, we know 3 = log2

(
23
)
, so we get

4 log2(x) + 3 = log2

(
x4
)

+ 3 Power Rule

= log2

(
x4
)

+ log2

(
23
)

Since 3 = log2

(
23
)

= log2

(
x4
)

+ log2(8)

= log2

(
8x4
)

Product Rule

2The authors relish the irony involved in writing what follows.



352 Exponential and Logarithmic Functions

4. To get started with − ln(x)− 1
2 , we rewrite − ln(x) as (−1) ln(x). We can then use the Power

Rule to obtain (−1) ln(x) = ln
(
x−1

)
. In order to use the Quotient Rule, we need to write 1

2

as a natural logarithm. Theorem 6.3 gives us 1
2 = ln

(
e1/2

)
= ln (

√
e). We have

− ln(x)− 1
2 = (−1) ln(x)− 1

2

= ln
(
x−1

)
− 1

2 Power Rule

= ln
(
x−1

)
− ln

(
e1/2

)
Since 1

2 = ln
(
e1/2

)
= ln

(
x−1

)
− ln (

√
e)

= ln

(
x−1

√
e

)
Quotient Rule

= ln

(
1

x
√
e

)

As we would expect, the rule of thumb for re-assembling logarithms is the opposite of what it
was for dismantling them. That is, if we are interested in rewriting an expression as a single
logarithm, we apply log properties following the usual order of operations: deal with multiples of
logs first with the Power Rule, then deal with addition and subtraction using the Product and
Quotient Rules, respectively. Additionally, we find that using log properties in this fashion can
increase the domain of the expression. For example, we leave it to the reader to verify the domain

of f(x) = log3(x−1)−log3(x+1) is (1,∞) but the domain of g(x) = log3

(
x−1
x+1

)
is (−∞,−1)∪(1,∞).

We will need to keep this in mind when we solve equations involving logarithms in Section 6.4 - it
is precisely for this reason we will have to check for extraneous solutions.

The two logarithm buttons commonly found on calculators are the ‘LOG’ and ‘LN’ buttons which
correspond to the common and natural logs, respectively. Suppose we wanted an approximation to
log2(7). The answer should be a little less than 3, (Can you explain why?) but how do we coerce
the calculator into telling us a more accurate answer? We need the following theorem.

Theorem 6.7. (Change of Base) Let a, b > 0, a, b 6= 1.

• ax = bx logb(a) for all real numbers x.

• loga(x) =
logb(x)

logb(a)
for all real numbers x > 0.

The proofs of the Change of Base formulas are a result of the other properties studied in this
section. If we start with bx logb(a) and use the Power Rule in the exponent to rewrite x logb(a) as
logb (ax) and then apply one of the Inverse Properties in Theorem 6.3, we get

bx logb(a) = blogb(a
x) = ax,
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as required. To verify the logarithmic form of the property, we also use the Power Rule and an
Inverse Property. We note that

loga(x) · logb(a) = logb

(
aloga(x)

)
= logb(x),

and we get the result by dividing through by logb(a). Of course, the authors can’t help but point
out the inverse relationship between these two change of base formulas. To change the base of
an exponential expression, we multiply the input by the factor logb(a). To change the base of a
logarithmic expression, we divide the output by the factor logb(a). While, in the grand scheme
of things, both change of base formulas are really saying the same thing, the logarithmic form is
the one usually encountered in Algebra while the exponential form isn’t usually introduced until
Calculus.3 What Theorem 6.7 really tells us is that all exponential and logarithmic functions are
just scalings of one another. Not only does this explain why their graphs have similar shapes, but
it also tells us that we could do all of mathematics with a single base - be it 10, e, 42, or 117. Your
Calculus teacher will have more to say about this when the time comes.

Example 6.2.3. Use an appropriate change of base formula to convert the following expressions to
ones with the indicated base. Verify your answers using a calculator, as appropriate.

1. 32 to base 10

2. 2x to base e

3. log4(5) to base e

4. ln(x) to base 10

Solution.

1. We apply the Change of Base formula with a = 3 and b = 10 to obtain 32 = 102 log(3). Typing
the latter in the calculator produces an answer of 9 as required.

2. Here, a = 2 and b = e so we have 2x = ex ln(2). To verify this on our calculator, we can graph
f(x) = 2x and g(x) = ex ln(2). Their graphs are indistinguishable which provides evidence
that they are the same function.

y = f(x) = 2x and y = g(x) = ex ln(2)

3The authors feel so strongly about showing students that every property of logarithms comes from and corresponds
to a property of exponents that we have broken tradition with the vast majority of other authors in this field. This
isn’t the first time this happened, and it certainly won’t be the last.
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3. Applying the change of base with a = 4 and b = e leads us to write log4(5) = ln(5)
ln(4) . Evaluating

this in the calculator gives ln(5)
ln(4) ≈ 1.16. How do we check this really is the value of log4(5)?

By definition, log4(5) is the exponent we put on 4 to get 5. The calculator confirms this.4

4. We write ln(x) = loge(x) = log(x)
log(e) . We graph both f(x) = ln(x) and g(x) = log(x)

log(e) and find
both graphs appear to be identical.

y = f(x) = ln(x) and y = g(x) = log(x)
log(e)

4Which means if it is lying to us about the first answer it gave us, at least it is being consistent.
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6.2.1 Exercises

1. Expand the following using the properties of logarithms and simplify. Assume when necessary
that all quantities represent positive real numbers.

(a) ln(x3y2)

(b) log2

(
128

x2 + 4

)
(c) log5

( z
25

)3

(d) log(1.23× 1037)

(e) ln

(√
z

xy

)
(f) log5

(
x2 − 25

)
(g) log√2

(
4x3
)

(h) log 1
3
(9x(y3 − 8))

(i) log
(
1000x3y5

)
(j) log3

(
x2

81y4

)
(k) ln

(
4

√
xy

ez

)
(l) log6

(
216

x3y

)4

(m) ln

(
3
√
x

10
√
yz

)

2. Use the properties of logarithms to write the following as a single logarithm.

(a) 4 ln(x) + 2 ln(y)

(b) 3− log(x)

(c) log2(x) + log2(y)− log2(z)

(d) log3(x)− 2 log3(y)

(e) 1
2 log3(x)− 2 log3(y)− log3(z)

(f) 2 ln(x)− 3 ln(y)− 4 ln(z)

(g) log(x)− 1
3 log(z) + 1

2 log(y)

(h) −1
3 ln(x)− 1

3 ln(y) + 1
3 ln(z)

(i) log2(x) + log 1
2
(x− 1)

(j) log2(x) + log4(x− 1)

(k) log5(x)− 3

(l) log7(x) + log7(x− 3)− 2

(m) ln(x) + 1
2

3. Use an appropriate change of base formula to convert the following expressions to ones with
the indicated base.

(a) 7x−1 to base e

(b) log3(x+ 2) to base 10
(c)

(
2

3

)x
to base e

(d) log(x2 + 1) to base e

4. Use the appropriate change of base formula to approximate the following logarithms.

(a) log3(12)

(b) log5(80)

(c) log6(72)

(d) log4

(
1

10

)
(e) log 3

5
(1000)

(f) log 2
3
(50)
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5. Compare and contrast the graphs of y = ln(x2) and y = 2 ln(x).

6. Prove the Quotient Rule and Power Rule for Logarithms.

7. Give numerical examples to show that, in general,

(a) logb(x+ y) 6= logb(x) + logb(y)

(b) logb(x− y) 6= logb(x)− logb(y)

(c) logb

(
x

y

)
6= logb(x)

logb(y)

8. The Henderson-Hasselbalch Equation: Suppose HA represents a weak acid. Then we have a
reversible chemical reaction

HA
 H+ +A−.

The acid disassociation constant, Ka, is given by

Kα =
[H+][A−]

[HA]
= [H+]

[A−]

[HA]
,

where the square brackets denote the concentrations just as they did in Exercise 6c in Section
6.1. The symbol pKa is defined similarly to pH in that pKa = − log(Ka). Using the definition
of pH from Exercise 6c and the properties of logarithms, derive the Henderson-Hasselbalch
Equation which states

pH = pKa + log
[A−]

[HA]

9. Research the history of logarithms including the origin of the word ‘logarithm’ itself. Why is
the abbreviation of natural log ‘ln’ and not ‘nl’?

10. There is a scene in the movie ‘Apollo 13’ in which several people at Mission Control use slide
rules to verify a computation. Was that scene accurate? Look for other pop culture references
to logarithms and slide rules.
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6.2.2 Answers

1. (a) 3 ln(x) + 2 ln(y)

(b) 7− log2(x2 + 4)

(c) 3 log5(z)− 6

(d) log(1.23) + 37

(e) 1
2 ln(z)− ln(x)− ln(y)

(f) log5(x− 5) + log5(x+ 5)

(g) 3 log√2(x) + 4

(h) −2+log 1
3
(x)+log 1

3
(y−2)+log 1

3
(y2+2y+4)

(i) 3 + 3 log(x) + 5 log(y)

(j) 2 log3(x)− 4− 4 log3(y)

(k) 1
4 ln(x) + 1

4 ln(y)− 1
4 −

1
4 ln(z)

(l) 12− 12 log6(x)− 4 log6(y)

(m) 1
3 ln(x)− ln(10)− 1

2 ln(y)− 1
2 ln(z)

2. (a) ln(x4y2)

(b) log

(
1000

x

)
(c) log2

(xy
z

)
(d) log3

(
x

y2

)
(e) log3

(√
x

y2z

)
(f) ln

(
x2

y3z4

)

(g) log

(
x
√
y

3
√
z

)
(h) ln

(
3

√
z

xy

)
(i) log2

(
x

x− 1

)
(j) log2

(
x
√
x− 1

)
(k) log5

( x

125

)
(l) log7

(
x(x− 3)

49

)
(m) ln (x

√
e)

3. (a) 7x−1 = e(x−1) ln(7)

(b) log3(x+ 2) =
log(x+ 2)

log(3)

(c)

(
2

3

)x
= ex ln( 2

3
)

(d) log(x2 + 1) =
ln(x2 + 1)

ln(10)

4. (a) log3(12) ≈ 2.26186

(b) log5(80) ≈ 2.72271

(c) log6(72) ≈ 2.38685

(d) log4

(
1

10

)
≈ −1.66096

(e) log 3
5
(1000) ≈ −13.52273

(f) log 2
3
(50) ≈ −9.64824
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6.3 Exponential Equations and Inequalities

In this section we will develop techniques for solving equations involving exponential functions.
Suppose, for instance, we wanted to solve the equation 2x = 128. After a moment’s calculation, we
find 128 = 27, so we have 2x = 27. The one-to-one property of exponential functions, detailed in
Theorem 6.4, tells us that 2x = 27 if and only if x = 7. This means that not only is x = 7 a solution
to 2x = 27, it is the only solution. Now suppose we change the problem ever so slightly to 2x = 129.
We could use one of the inverse properties of exponentials and logarithms listed in Theorem 6.3 to
write 129 = 2log2(129). We’d then have 2x = 2log2(129), which means our solution is x = log2(129).
This makes sense because, after all, the definition of log2(129) is ‘the exponent we put on 2 to get
129.’ Indeed we could have obtained this solution directly by rewriting the equation 2x = 129 in
its logarithmic form log2(129) = x. Either way, in order to get a reasonable decimal approximation
to this number, we’d use the change of base formula, Theorem 6.7, to give us something more
calculator friendly,1 say log2(129) = ln(129)

ln(2) . Another way to arrive at this answer is as follows

2x = 129
ln (2x) = ln(129) Take the natural log of both sides.
x ln(2) = ln(129) Power Rule

x =
ln(129)

ln(2)

‘Taking the natural log’ of both sides is akin to squaring both sides: since f(x) = ln(x) is a function,
as long as two quantities are equal, their natural logs are equal.2 Also note that we treat ln(2) as
any other non-zero real number and divide it through3 to isolate the variable x. We summarize
below the two common ways to solve exponential equations, motivated by our examples.

Steps for Solving an Equation involving Exponential Functions

1. Isolate the exponential function.

2. (a) If convenient, express both sides with a common base and equate the exponents.

(b) Otherwise, take the natural log of both sides of the equation and use the Power Rule.

Example 6.3.1. Solve the following equations. Check your answer graphically using a calculator.

1. 23x = 161−x

2. 2000 = 1000 · 3−0.1t

3. 9 · 3x = 72x

4. 75 = 100
1+3e−2t

5. 25x = 5x + 6

6. ex−e−x
2 = 5

Solution.

1You can use natural logs or common logs. We choose natural logs. (In Calculus, you’ll learn these are the most
‘mathy’ of the logarithms.)

2This is also the ‘if’ part of the statement logb(u) = logb(w) if and only if u = w in Theorem 6.4.
3Please resist the temptation to divide both sides by ‘ln’ instead of ln(2). Just like it wouldn’t make sense to

divide both sides by the square root symbol ‘
√

’ when solving x
√

2 = 5, it makes no sense to divide by ‘ln’.
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1. Since 16 is a power of 2, we can rewrite 23x = 161−x as 23x =
(
24
)1−x

. Using properties of

exponents, we get 23x = 24(1−x). Using the one-to-one property of exponential functions, we
get 3x = 4(1−x) which gives x = 4

7 . To check graphically, we set f(x) = 23x and g(x) = 161−x

and see that they intersect at x = 4
7 ≈ 0.5714.

2. We begin solving 2000 = 1000 ·3−0.1t by dividing both sides by 1000 to isolate the exponential
which yields 3−0.1t = 2. Since it is inconvenient to write 2 as a power of 3, we use the natural
log to get ln

(
3−0.1t

)
= ln(2). Using the Power Rule, we get −0.1t ln(3) = ln(2), so we

divide both sides by −0.1 ln(3) to get t = − ln(2)
0.1 ln(3) = −10 ln(2)

ln(3) . On the calculator, we graph

f(x) = 2000 and g(x) = 1000 · 3−0.1x and find that they intersect at x = −10 ln(2)
ln(3) ≈ −6.3093.

y = f(x) = 23x and y = f(x) = 2000 and
y = g(x) = 161−x y = g(x) = 1000 · 3−0.1x

3. We first note that we can rewrite the equation 9·3x = 72x as 32 ·3x = 72x to obtain 3x+2 = 72x.
Since it is not convenient to express both sides as a power of 3 (or 7 for that matter) we use
the natural log: ln

(
3x+2

)
= ln

(
72x
)
. The power rule gives (x + 2) ln(3) = 2x ln(7). Even

though this equation appears very complicated, keep in mind that ln(3) and ln(7) are just
constants. The equation (x+ 2) ln(3) = 2x ln(7) is actually a linear equation and as such we
gather all of the terms with x on one side, and the constants on the other. We then divide
both sides by the coefficient of x, which we obtain by factoring.

(x+ 2) ln(3) = 2x ln(7)
x ln(3) + 2 ln(3) = 2x ln(7)

2 ln(3) = 2x ln(7)− x ln(3)
2 ln(3) = x(2 ln(7)− ln(3)) Factor.

x = 2 ln(3)
2 ln(7)−ln(3)

Graphing f(x) = 9·3x and g(x) = 72x on the calculator, we see that these two graphs intersect

at x = 2 ln(3)
2 ln(7)−ln(3) ≈ 0.7866.

4. Our objective in solving 75 = 100
1+3e−2t is to first isolate the exponential. To that end, we

clear denominators and get 75
(
1 + 3e−2t

)
= 100. From this we get 75 + 225e−2t = 100,

which leads to 225e−2t = 25, and finally, e−2t = 1
9 . Taking the natural log of both sides
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gives ln
(
e−2t

)
= ln

(
1
9

)
. Since natural log is log base e, ln

(
e−2t

)
= −2t. We can also use

the Power Rule to write ln
(

1
9

)
= − ln(9). Putting these two steps together, we simplify

ln
(
e−2t

)
= ln

(
1
9

)
to −2t = − ln(9). We arrive at our solution, t = ln(9)

2 which simplifies to
t = ln(3). (Can you explain why?) The calculator confirms the graphs of f(x) = 75 and
g(x) = 100

1+3e−2x intersect at x = ln(3) ≈ 1.099.

y = f(x) = 9 · 3x and y = f(x) = 75 and

y = g(x) = 72x y = g(x) = 100
1+3e−2x

5. We start solving 25x = 5x + 6 by rewriting 25 = 52 so that we have
(
52
)x

= 5x + 6, or
52x = 5x + 6. Even though we have a common base, having two terms on the right hand side
of the equation foils our plan of equating exponents or taking logs. If we stare at this long
enough, we notice that we have three terms with the exponent on one term exactly twice that
of another. To our surprise and delight, we have a ‘quadratic in disguise’. Letting u = 5x,
we have u2 = (5x)2 = 52x so the equation 52x = 5x + 6 becomes u2 = u + 6. Solving this as
u2 − u − 6 = 0 gives u = −2 or u = 3. Since u = 5x, we have 5x = −2 or 5x = 3. Since
5x = −2 has no real solution, (Why not?) we focus on 5x = 3. Since it isn’t convenient to
express 3 as a power of 5, we take natural logs and get ln (5x) = ln(3) so that x ln(5) = ln(3)

or x = ln(3)
ln(5) . When we graph f(x) = 25x and g(x) = 5x + 6, we see that they intersect at

x = ln(3)
ln(5) ≈ 0.6826.

6. At first, it’s unclear how to proceed with ex−e−x
2 = 5, besides clearing the denominator to

obtain ex− e−x = 10. Of course, if we rewrite e−x = 1
ex , we see we have another denominator

lurking in the problem: ex − 1
ex = 10. Clearing this denominator gives us e2x − 1 = 10ex,

and once again, we have an equation with three terms where the exponent on one term is
exactly twice that of another - a ‘quadratic in disguise.’ If we let u = ex, then u2 = e2x so the
equation e2x − 1 = 10ex can be viewed as u2 − 1 = 10u. Solving u2 − 10u− 1 = 0, we obtain
by the quadratic formula u = 5±

√
26. From this, we have ex = 5±

√
26. Since 5−

√
26 < 0,

we get no real solution to ex = 5−
√

26, but for ex = 5 +
√

26, we take natural logs to obtain
x = ln

(
5 +
√

26
)
. If we graph f(x) = ex−e−x

2 and g(x) = 5, we see that the graphs intersect

at x = ln
(
5 +
√

26
)
≈ 2.312
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y = f(x) = 25x and y = f(x) = ex−e−x
2 and

y = g(x) = 5x + 6 y = g(x) = 5

The authors would be remiss not to mention that Example 6.3.1 still holds great educational
value. Much can be learned about logarithms and exponentials by verifying the solutions obtained
in Example 6.3.1 analytically. For example, to verify our solution to 2000 = 1000 · 3−0.1t, we
substitute t = −10 ln(2)

ln(3) and obtain

2000
?
= 1000 · 3−0.1

(
− 10 ln(2)

ln(3)

)
2000

?
= 1000 · 3

ln(2)
ln(3)

2000
?
= 1000 · 3log3(2) Change of Base

2000
?
= 1000 · 2 Inverse Property

2000
X
= 2000

The other solutions can be verified by using a combination of log and inverse properties. Some fall
out quite quickly, while others are more involved. We leave them to the reader.

Since exponential functions are continuous on their domains, the Intermediate Value Theorem 3.1
applies. As with the algebraic functions in Section 5.3, this allows us to solve inequalities using
sign diagrams as demonstrated below.

Example 6.3.2. Solve the following inequalities. Check your answer graphically using a calculator.

1. 2x
2−3x − 16 ≥ 0 2.

ex

ex − 4
≤ 3 3. xe2x < 4x

Solution.

1. Since we already have 0 on one side of the inequality, we set r(x) = 2x
2−3x− 16. The domain

of r is all real numbers, so in order to construct our sign diagram, we seed to find the zeros of
r. Setting r(x) = 0 gives 2x

2−3x− 16 = 0 or 2x
2−3x = 16. Since 16 = 24 we have 2x

2−3x = 24,
so by the one-to-one property of exponential functions, x2 − 3x = 4. Solving x2 − 3x− 4 = 0
gives x = 4 and x = −1. From the sign diagram, we see r(x) ≥ 0 on (−∞,−1]∪ [4,∞), which
corresponds to where the graph of y = r(x) = 2x

2−3x − 16, is on or above the x-axis.
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(+)

−1

0 (−)

4

0 (+)

y = r(x) = 2x
2−3x − 16

2. The first step we need to take to solve ex

ex−4 ≤ 3 is to get 0 on one side of the inequality. To
that end, we subtract 3 from both sides and get a common denominator

ex

ex − 4
≤ 3

ex

ex − 4
− 3 ≤ 0

ex

ex − 4
− 3 (ex − 4)

ex − 4
≤ 0 Common denomintors.

12− 2ex

ex − 4
≤ 0

We set r(x) = 12−2ex

ex−4 and we note that r is undefined when its denominator ex − 4 = 0, or
when ex = 4. Solving this gives x = ln(4), so the domain of r is (−∞, ln(4)) ∪ (ln(4),∞). To
find the zeros of r, we solve r(x) = 0 and obtain 12− 2ex = 0. Solving for ex, we find ex = 6,
or x = ln(6). When we build our sign diagram, finding test values may be a little tricky since
we need to check values around ln(4) and ln(6). Recall that the function ln(x) is increasing4

which means ln(3) < ln(4) < ln(5) < ln(6) < ln(7). While the prospect of determining the
sign of r (ln(3)) may be very unsettling, remember that eln(3) = 3, so

r (ln(3)) =
12− 2eln(3)

eln(3) − 4
=

12− 2(3)

3− 4
= −6

We determine the signs of r (ln(5)) and r (ln(7)) similarly.5 From the sign diagram, we
find our answer to be (−∞, ln(4)) ∪ [ln(6),∞). Using the calculator, we see the graph of
f(x) = ex

ex−4 is below the graph of g(x) = 3 on (−∞, ln(4)) ∪ (ln(6),∞), and they intersect
at x = ln(6) ≈ 1.792.

4This is because the base of ln(x) is e > 1. If the base b were in the interval 0 < b < 1, then logb(x) would
decreasing.

5We could, of course, use the calculator, but what fun would that be?
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(−)

ln(4)

‽ (+)

ln(6)

0 (−)

y = f(x) = ex

ex−4

y = g(x) = 3

3. As before, we start solving xe2x < 4x by getting 0 on one side of the inequality, xe2x−4x < 0.
We set r(x) = xe2x − 4x and since there are no denominators, even-indexed radicals, or logs,
the domain of r is all real numbers. Setting r(x) = 0 produces xe2x − 4x = 0. With x both
in and out of the exponent, this could cause some difficulty. However, before panic sets in,
we factor out the x to obtain x

(
e2x − 4

)
= 0 which gives x = 0 or e2x − 4 = 0. To solve the

latter, we isolate the exponential and take logs to get 2x = ln(4), or x = ln(4)
2 = ln(2). (Can

you explain the last equality using properties of logs?) As in the previous example, we need
to be careful about choosing test values. Since ln(1) = 0, we choose ln

(
1
2

)
, ln

(
3
2

)
and ln(3).

Evaluating,6 we have r(ln
(

1
2

)
) = ln

(
1
2

)
e2 ln( 1

2)−4 ln
(

1
2

)
. Applying the Power Rule to the log

in the exponent, we obtain ln
(

1
2

)
eln( 1

2)
2

−4 ln
(

1
2

)
= ln

(
1
2

)
eln( 1

4)−4 ln
(

1
2

)
. Using the inverse

properties of logs, this reduces to 1
4 ln

(
1
2

)
− 4 ln

(
1
2

)
= −15

4 ln
(

1
2

)
. Since 1

2 < 1, ln
(

1
2

)
< 0

and we get r(ln
(

1
2

)
) is (+). Continuing in this manner, we find r(x) < 0 on (0, ln(2)). The

calculator confirms that the graph of f(x) = xe2x is below the graph of g(x) = 4x on this
intervals.7

(+)

0

0 (−)

ln(2)

0 (+)

y = f(x) = xe2x and

y = g(x) = 4x

6A calculator can be used at this point. As usual, we proceed without apologies, with the analytical method.
7Note: ln(2) ≈ 0.693.
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Example 6.3.3. Recall from Example 6.1.2 that the temperature of coffee T (in degrees Fahrenheit)
t minutes after it is served can be modeled by T (t) = 70+90e−0.1t. When will the coffee be warmer
than 100◦F?

Solution. We need to find when T (t) > 100, or in other words, we need to solve the inequality
70 + 90e−0.1t > 100. Getting 0 on one side of the inequality, we have 90e−0.1t − 30 > 0, and
we set r(t) = 90e−0.1t − 30. The domain of r is artificially restricted due to the context of the
problem to [0,∞), so we proceed to find the zeros of r. Solving 90e−0.1t − 30 = 0 results in
e−0.1t = 1

3 so that t = −10 ln
(

1
3

)
which, after a quick application of the Power Rule leaves us with

t = 10 ln(3). If we wish to avoid using the calculator to choose test values, we note that since 1 < 3,
0 = ln(1) < ln(3) so that 10 ln(3) > 0. So we choose t = 0 as a test value in [0, 10 ln(3)). Since
3 < 4, 10 ln(3) < 10 ln(4), so the latter is our choice of a test value for the interval (10 ln(3),∞).
Our sign diagram is below, and next to it is our graph of t = T (t) from Example 6.1.2 with the
horizontal line y = 100.

0

(+)

10 ln(3)

0 (−)

H.A. y = 70

y = 100

t

y

2 4 6 8 10 12 14 16 18 20

20

40

60

80

120

140

160

180

y = T (t)

In order to interpret what this means in the context of the real world, we need a reasonable
approximation of the number 10 ln(3) ≈ 10.986. This means it takes approximately 11 minutes for
the coffee to cool to 100◦F. Until then, the coffee is warmer than that.8

We close this section by finding the inverse of a function which is a composition of a rational
function with an exponential function.

Example 6.3.4. The function f(x) =
5ex

ex + 1
is one-to-one. Find a formula for f−1(x) and check

your answer graphically using your calculator.

Solution. We start by writing y = f(x), and interchange the roles of x and y. To solve for y, we
first clear denominators and then isolate the exponential function.

8Critics may point out that since we needed to use the calculator to interpret our answer anyway, why not use it
earlier to simplify the computations? It is a fair question which we answer unfairly: it’s our book.
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y =
5ex

ex + 1

x =
5ey

ey + 1
Switch x and y

x (ey + 1) = 5ey

xey + x = 5ey

x = 5ey − xey

x = ey(5− x)

ey =
x

5− x

ln (ey) = ln

(
x

5− x

)
y = ln

(
x

5− x

)
We claim f−1(x) = ln

(
x

5−x

)
. To verify this analytically, we would need to verify the compositions(

f−1 ◦ f
)

(x) = x for all x in the domain of f and that
(
f ◦ f−1

)
(x) = x for all x in the domain

of f−1. We leave this to the reader. To verify our solution graphically, we graph y = f(x) = 5ex

ex+1

and y = g(x) = ln
(

x
5−x

)
on the same set of axes and observe the symmetry about the line y = x.

Note the domain of f is the range of g and vice-versa.

y = f(x) = 5ex

ex+1 and y = g(x) = ln
(

x
5−x

)
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6.3.1 Exercises

1. Solve the following equations analytically.

(a) 3(x−1) = 27

(b) 3(x−1) = 29

(c) 3(x−1) = 2x

(d) 3(x−1) =
(

1
2

)(x+5)

(e) 8x = 1
128

(f) 37x = 814−2x

(g) 9 · 37x =
(

1
9

)2x
(h) 7e2x = 28e−6x

(i) 73+7x = 34−2x

(j)
(
1 + 0.06

12

)12t
= 3

(k) e−5730k = 1
2

(l) 2(x3−x) = 1

(m) e2x = 2ex

(n) 70 + 90e−0.1t = 75

(o) 150
1+29e−0.8t = 75

(p) 25
(

4
5

)x
= 10

2. Solve the following inequalities analytically.

(a) ex > 53

(b) 1000
(
1 + 0.06

12

)12t ≥ 3000

(c) 2(x3−x) < 1

(d) 25
(

4
5

)x ≥ 10

(e) 150
1+29e−0.8t ≤ 130

(f) 70 + 90e−0.1t ≤ 75

3. Use your calculator to help you solve the following equations and inequalities.

(a) ex < x3 − x
(b) 2x = x2

(c) e
√
x = x+ 1

(d) e−x − xe−x ≥ 0

(e) 3(x−1) < 2x

(f) ex = ln(x) + 5

4. Since f(x) = ln(x) is a strictly increasing function, if 0 < a < b then ln(a) < ln(b). Use this
fact to solve the inequality e(3x−1) > 6 without a sign diagram.

5. Compute the inverse of f(x) =
ex − e−x

2
. State the domain and range of both f and f−1.

6. In Example 6.3.4, we found that the inverse of f(x) =
5ex

ex + 1
was f−1(x) = ln

(
x

5− x

)
but

we left a few loose ends for you to tie up.

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and that

(
f ◦ f−1

)
(x) = x for

all x in the domain of f−1.

(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) =
5x

x+ 1
and h(x) = ex. Show that f = g ◦ h and that (g ◦ h)−1 = h−1 ◦ g−1. 9

7. With the help of your classmates, solve the inequality ex > xn for a variety of natural
numbers n. What might you conjecture about the “speed” at which f(x) = ex grows versus
any polynomial?

9We know this is true in general by Exercise 8 in Section 5.2, but it’s nice to see a specific example of the property.
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6.3.2 Answers

1. (a) x = 4

(b) x =
ln(29) + ln(3)

ln(3)

(c) x =
ln(3)

ln(3)− ln(2)

(d) x =
ln(3) + 5 ln

(
1
2

)
ln(3)− ln

(
1
2

)
(e) x = −7

3

(f) x = 16
15

(g) x = − 2
11

(h) x = −1
8 ln

(
1
4

)
= 1

4 ln(2)

(i) x =
4 ln(3)− 3 ln(7)

7 ln(7) + 2 ln(3)

(j) t =
ln(3)

12 ln(1.005)

(k) k =
ln
(

1
2

)
−5730

(l) x = −1, 0, 1

(m) x = ln(2)

(n) t = 10 ln(18)

(o) t =
ln
(

1
29

)
−0.8

(p) x =
ln
(

2
5

)
ln
(

4
5

)

2. (a) (ln(53),∞)

(b)

[
ln(3)

12 ln(1.005)
,∞
)

(c) (−∞,−1) ∪ (0, 1)

(d)

(
−∞,

ln
(

2
5

)
ln
(

4
5

)]
(e)

(
−∞,

ln
(

2
377

)
−0.8

]
=
(
−∞,−5

4 ln
(

2
377

)]
(f)

[
ln
(

1
18

)
−0.1

,∞

)
= [10 ln(18),∞)

3. (a) (2.3217, 4.3717)

(b) x ≈ −0.76666, x = 2, x = 4

(c) x = 0

(d) (−∞, 1]

(e) (−∞, 2.7095)

(f) x ≈ 0.01866, x ≈ 1.7115

4. x > 1
3(ln(6) + 1)

5. f−1 = ln
(
x+
√
x2 + 1

)
. Both f and f−1 have domain (−∞,∞) and range (−∞,∞).
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6.4 Logarithmic Equations and Inequalities

In Section 6.3 we solved equations and inequalities involving exponential functions using one of
two basic strategies. We now turn our attention to equations and inequalities involving logarithmic
functions, and not surprisingly, there are two basic strategies to choose from. For example, suppose
we wish to solve log2(x) = log2(5). Theorem 6.4 tells us that the only solution to this equation
is x = 5. Now suppose we wish to solve log2(x) = 3. If we want to use Theorem 6.4, we need to
rewrite 3 as a logarithm base 2. We can use Theorem 6.3 to do just that: 3 = log2

(
23
)

= log2(8).
Our equation then becomes log2(x) = log2(8) so that x = 8. However, we could have arrived at the
same answer, in fewer steps, by using Theorem 6.3 to rewrite the equation log2(x) = 3 as 23 = x,
or x = 8. We summarize the two common ways to solve log equations below.

Steps for Solving an Equation involving Logarithmic Fuctions

1. Isolate the logarithmic function.

2. (a) If convenient, express both sides as logs with the same base and equate the arguments
of the log functions.

(b) Otherwise, rewrite the log equation as an exponential equation.

Example 6.4.1. Solve the following equations. Check your solutions graphically using a calculator.

1. log117(1− 3x) = log117

(
x2 − 3

)
2. 2− ln(x− 3) = 1

3. log6(x+ 4) + log6(3− x) = 1

4. log7(1− 2x) = 1− log7(3− x)

5. log2(x+ 3) = log2(6− x) + 3

6. 1 + 2 log4(x+ 1) = 2 log2(x)

Solution.

1. Since we have the same base on both sides of the equation log117(1 − 3x) = log117

(
x2 − 3

)
,

we equate what’s inside the logs to get 1 − 3x = x2 − 3. Solving x2 + 3x − 4 = 0 gives
x = −4 and x = 1. To check these answers using the calculator, we make use of the change

of base formula and graph f(x) = ln(1−3x)
ln(117) and g(x) =

ln(x2−3)
ln(117) and we see they intersect only

at x = −4. To see what happened to the solution x = 1, we substitute it into our original
equation to obtain log117(−2) = log117(−2). While these expressions look identical, neither
is a real number,1 which means x = 1 is not in the domain of the original equation, and is
not a solution.

2. Our first objective in solving 2−ln(x−3) = 1 is to isolate the logarithm. We get ln(x−3) = 1,
which, as an exponential equation, is e1 = x − 3. We get our solution x = e + 3. On the
calculator, we see the graph of f(x) = 2 − ln(x − 3) intersects the graph of g(x) = 1 at
x = e+ 3 ≈ 5.718.

1They do, however, represent the same family of complex numbers. We stop ourselves at this point and refer the
reader to a good course in Complex Variables.
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y = f(x) = log117(1− 3x) and y = f(x) = 2− ln(x− 3) and
y = g(x) = log117

(
x2 − 3

)
y = g(x) = 1

3. We can start solving log6(x+4)+log6(3−x) = 1 by using the Product Rule for logarithms to
rewrite the equation as log6 [(x+ 4)(3− x)] = 1. Rewriting this as an exponential equation,
we get 61 = (x + 4)(3 − x). This reduces to x2 + x − 6 = 0, which gives x = −3 and x = 2.

Graphing y = f(x) = ln(x+4)
ln(6) + ln(3−x)

ln(6) and y = g(x) = 1, we see they intersect twice, at
x = −3 and x = 2.

y = f(x) = log6(x+ 4) + log6(3− x) and y = g(x) = 1

4. Taking a cue from the previous problem, we begin solving log7(1− 2x) = 1− log7(3− x) by
first collecting the logarithms on the same side, log7(1−2x)+ log7(3−x) = 1, and then using
the Product Rule to get log7[(1− 2x)(3− x)] = 1. Rewriting this as an exponential equation
gives 71 = (1−2x)(3−x) which gives the quadratic equation 2x2−7x−4 = 0. Solving, we find

x = −1
2 and x = 4. Graphing, we find y = f(x) = ln(1−2x)

ln(7) and y = g(x) = 1− ln(3−x)
ln(7) intersect

only at x = −1
2 . Checking x = 4 in the original equation produces log7(−7) = 1− log7(−1),

which is a clear domain violation.

5. Starting with log2(x + 3) = log2(6 − x) + 3, we gather the logarithms to one side and get

log2(x + 3) − log2(6 − x) = 3, and then use the Quotient Rule to obtain log2

(
x+3
6−x

)
= 3.

Rewriting this as an exponential equation gives 23 = x+3
6−x . This reduces to the linear equation

8(6−x) = x+3, which gives us x = 5. When we graph f(x) = ln(x+3)
ln(2) and g(x) = ln(6−x)

ln(2) +3,
we find they intersect at x = 5.
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y = f(x) = log7(1− 2x) and y = f(x) = log2(x+ 3) and
y = g(x) = 1− log7(3− x) y = g(x) = log2(6− x) + 3

6. Starting with 1 + 2 log4(x+ 1) = 2 log2(x), we gather the logs to one side to get the equation
1 = 2 log2(x) − 2 log4(x + 1). Before we can combine the logarithms, however, we need a

common base. Since 4 is a power of 2, we use change of base to convert log4(x+1) = log2(x+1)
log2(4) =

1
2 log2(x + 1). Hence, our original equation becomes 1 = 2 log2(x) − 2

(
1
2 log2(x+ 1)

)
or

1 = 2 log2(x)− log2(x+ 1). Using the Power and Quotient Rules, we obtain 1 = log2

(
x2

x+1

)
.

Rewriting this in exponential form, we get x2

x+1 = 2 or x2 − 2x− 2 = 0. Using the quadratic

formula, we get x = 1 ±
√

3. Graphing f(x) = 1 + 2 ln(x+1)
ln(4) and g(x) = 2 ln(x)

ln(2) , we see the

graphs intersect only at x = 1 +
√

3 ≈ 2.732. The solution x = 1 −
√

3 < 0, which means if
substituted into the original equation, the term 2 log2

(
1−
√

3
)

is undefined.

y = f(x) = 1 + 2 log4(x+ 1) and y = g(x) = 2 log2(x)

If nothing else, Example 6.4.1 demonstrates the importance of checking for extraneous solutions2

when solving equations involving logarithms. Even though we checked our answers graphically,
extraneous solutions are easy to spot - any supposed solution which causes a negative number
inside a logarithm needs to be discarded. As with the equations in Example 6.3.1, much can be
learned from checking all of the answers in Example 6.4.1 analytically. We leave this to the reader
and turn our attention to inequalities involving logarithmic functions. Since logarithmic functions
are continuous on their domains, we can use sign diagrams.

Example 6.4.2. Solve the following inequalities. Check your answer graphically using a calculator.

2Recall that an extraneous solution is an answer obtained analytically which does not satisfy the original equation.
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1.
1

ln(x) + 1
≤ 1 2. (log2(x))2 < 2 log2(x) + 3 3. x log(x+ 1) ≥ x

Solution.

1. We start solving 1
ln(x)+1 ≤ 1 by getting 0 on one side of the inequality: 1

ln(x)+1 − 1 ≤ 0.

Getting a common denominator yields 1
ln(x)+1 −

ln(x)+1
ln(x)+1 ≤ 0 which reduces to − ln(x)

ln(x)+1 ≤ 0,

or ln(x)
ln(x)+1 ≥ 0. We define r(x) = ln(x)

ln(x)+1 and set about finding the domain and the zeros

of r. Due to the appearance of the term ln(x), we require x > 0. In order to keep the
denominator away from zero, we solve ln(x) + 1 = 0 so ln(x) = −1, so x = e−1 = 1

e . Hence,

the domain of r is
(
0, 1

e

)
∪
(

1
e ,∞

)
. To find the zeros of r, we set r(x) = ln(x)

ln(x)+1 = 0 so that

ln(x) = 0, and we find x = e0 = 1. In order to determine test values for r without resorting
to the calculator, we need to find numbers between 0, 1

e , and 1 which have a base of e. Since
e ≈ 2.718 > 1, 0 < 1

e2
< 1

e <
1√
e
< 1 < e. To determine the sign of r

(
1
e2

)
, we use the fact that

ln
(

1
e2

)
= ln

(
e−2
)

= −2, and find r
(

1
e2

)
= −2
−2+1 = 2, which is (+). The rest of the test values

are determined similarly. From our sign diagram, we find the solution to be
(
0, 1

e

)
∪ [1,∞).

Graphing f(x) = 1
ln(x)+1 and g(x) = 1, we see the the graph of f is below the graph of g on

the solution intervals, and that the graphs intersect at x = 1.

0

(+)

1
e

‽ (−)

1

0 (+)

y = f(x) = 1
ln(x)+1 and y = g(x) = 1

2. Moving all of the nonzero terms of (log2(x))2 < 2 log2(x) + 3 to one side of the inequality,
we have (log2(x))2 − 2 log2(x) − 3 < 0. Defining r(x) = (log2(x))2 − 2 log2(x) − 3, we get
the domain of r is (0,∞), due to the presence of the logarithm. To find the zeros of r, we
set r(x) = (log2(x))2 − 2 log2(x) − 3 = 0 which results in a ‘quadratic in disguise.’ We set
u = log2(x) so our equation becomes u2− 2u− 3 = 0 which gives us u = −1 and u = 3. Since
u = log2(x), we get log2(x) = −1, which gives us x = 2−1 = 1

2 , and log2(x) = 3, which yields
x = 23 = 8. We use test values which are powers of 2: 0 < 1

4 <
1
2 < 1 < 8 < 16, and from our

sign diagram, we see r(x) < 0 on
(

1
2 , 8
)
. Geometrically, we see the graph of f(x) =

(
ln(x)
ln(2)

)2

is below the graph of y = g(x) = 2 ln(x)
ln(2) + 3 on the solution interval.
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0

(+)

1
2

0 (−)

8

0 (+)

y = f(x) = (log2(x))2 and y = g(x) = 2 log2(x) + 3

3. We begin to solve x log(x+1) ≥ x by subtracting x from both sides to get x log(x+1)−x ≥ 0.
We define r(x) = x log(x+1)−x and due to the presence of the logarithm, we require x+1 > 0,
or x > −1. To find the zeros of r, we set r(x) = x log(x + 1) − x = 0. Factoring, we get
x (log(x+ 1)− 1) = 0, which gives x = 0 or log(x+1)−1 = 0. The latter gives log(x+1) = 1,
or x + 1 = 101, which admits x = 9. We select test values x so that x + 1 is a power of 10,
and we obtain −1 < −0.9 < 0 <

√
10 − 1 < 9 < 99. Our sign diagram gives the solution to

be (−1, 0] ∪ [9,∞). The calculator indicates the graph of y = f(x) = x log(x + 1) is above
y = g(x) = x on the solution intervals, and the graphs intersect at x = 0 and x = 9.

−1

(+)

0

0 (−)

9

0 (+)

y = f(x) = x log(x+ 1) and y = g(x) = x

Near x = 0 Near x = 9

Our next example revisits the concept of pH as first introduced in the exercises in Section 6.1.
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Example 6.4.3. In order to successfully breed Ippizuti fish the pH of a freshwater tank must be
at least 7.8 but can be no more than 8.5. Determine the corresponding range of hydrogen ion
concentration.

Solution. Recall from Exercise 6c in Section 6.1 that pH = − log[H+] where [H+] is the hydrogen
ion concentration in moles per liter. We require 7.8 ≤ − log[H+] ≤ 8.5 or −7.8 ≥ log[H+] ≥ −8.5.
To solve this compound inequality we solve −7.8 ≥ log[H+] and log[H+] ≥ −8.5 and take the
intersection of the solution sets.3 The former inequality yields 0 < [H+] ≤ 10−7.8 and the latter
yields [H+] ≥ 10−8.5. Taking the intersection gives us our final answer 10−8.5 ≤ [H+] ≤ 10−7.8.
(Your Chemistry professor may want the answer written as 3.16 × 10−9 ≤ [H+] ≤ 1.58 × 10−8.)
After carefully adjusting the viewing window on the graphing calculator we see that the graph of
f(x) = − log(x) lies between the lines y = 7.8 and y = 8.5 on the interval [3.16×10−9, 1.58×10−8].

The graphs of y = f(x) = − log(x), y = 7.8 and y = 8.5

We close this section by finding an inverse of a one-to-one function which involves logarithms.

Example 6.4.4. The function f(x) =
log(x)

1− log(x)
is one-to-one. Find a formula for f−1(x) and

check your answer graphically using your calculator.
Solution. We first write y = f(x) then interchange the x and y and solve for y.

y = f(x)

y =
log(x)

1− log(x)

x =
log(y)

1− log(y)
Interchange x and y.

x (1− log(y)) = log(y)
x− x log(y) = log(y)

x = x log(y) + log(y)
x = (x+ 1) log(y)

x

x+ 1
= log(y)

y = 10
x
x+1 Rewrite as an exponential equation.

3Refer to page 158 for a discussion of what this means.
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We have f−1(x) = 10
x
x+1 . Graphing f and f−1 on the same viewing window yields

y = f(x) =
log(x)

1− log(x)
and y = g(x) = 10

x
x+1
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6.4.1 Exercises

1. Solve the following equations analytically.

(a) log 1
2
x = −3

(b) ln(x2) = (ln(x))2

(c) log3(x− 4) + log3(x+ 4) = 2

(d) log5(2x+ 1) + log5(x+ 2) = 1

(e) log2(x3) = log2(x)

(f) log169(3x+ 7)− log169(5x− 9) =
1

2

(g) log
( x

10−3

)
= 4.7

(h) − log(x) = 5.4

(i) 10 log
( x

10−12

)
= 150

(j) log3(x) = log 1
3
(x) + 8

(k) log125

(
3x− 2

2x+ 3

)
=

1

3

(l) ln(x+ 1)− ln(x) = 3

(m) ln(ln(x)) = 3

(n) 2 log7(x) = log7(2) + log7(x+ 12)

(o) log(x)− log(2) = log(x+ 8)− log(x+ 2)

2. Solve the following inequalities analytically.

(a) x ln(x)− x > 0

(b) 5.6 ≤ log
( x

10−3

)
≤ 7.1

(c) 10 log
( x

10−12

)
≥ 90

(d) 2.3 < − log(x) < 5.4

(e)
1− ln(x)

x2
< 0

(f) ln(x2) ≤ (ln(x))2

3. Use your calculator to help you solve the following equations and inequalities.

(a) ln(x) = e−x

(b) ln(x2 + 1) ≥ 5

(c) ln(x) = 4
√
x

(d) ln(−2x3 − x2 + 13x− 6) < 0

4. Since f(x) = ex is a strictly increasing function, if a < b then ea < eb. Use this fact to solve
the inequality ln(2x+ 1) < 3 without a sign diagram. Also, compare this exercise to question
4 in Section 6.3.

5. Solve ln(3− y)− ln(y) = 2x+ ln(5) for y.

6. In Example 6.4.4 we found the inverse of f(x) =
log(x)

1− log(x)
to be f−1(x) = 10

x
x+1 .

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and that

(
f ◦ f−1

)
(x) = x for

all x in the domain of f−1.

(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) =
x

1− x
and h(x) = log(x). Show that f = g ◦ h and (g ◦ h)−1 = h−1 ◦ g−1.

(We know this is true in general by Exercise 8 in Section 5.2, but it’s nice to see a specific
example of the property.)
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7. Let f(x) =
1

2
ln

(
1 + x

1− x

)
. Compute f−1(x) and find its domain and range.

8. Explain the equation in Exercise 1g and the inequality in Exercise 2b above in terms of the
Richter scale for earthquake magnitude. (See Exercise 6a in Section 6.1.)

9. Explain the equation in Exercise 1i and the inequality in Exercise 2c above in terms of sound
intensity level as measured in decibels. (See Exercise 6b in Section 6.1.)

10. Explain the equation in Exercise 1h and the inequality in Exercise 2d above in terms of the
pH of a solution. (See Exercise 6c in Section 6.1.)

11. With the help of your classmates, solve the inequality n
√
x > ln(x) for a variety of natural

numbers n. What might you conjecture about the “speed” at which f(x) = ln(x) grows

versus any principal nth root function?
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6.4.2 Answers

1. (a) x = 8

(b) x = 1, x = e2

(c) x = 5

(d) x = 1
2

(e) x = 1

(f) x = 2

(g) x = 101.7

(h) x = 10−5.4

(i) x = 103

(j) x = 81

(k) x = −17
7

(l) x = 1
e3−1

(m) x = ee
3

(n) x = 6

(o) x = 4

2. (a) (e,∞)

(b)
[
102.6, 104.1

]
(c)

[
10−3,∞

)
(d)

(
10−5.4, 10−2.3

)
(e) (e,∞)

(f) (0, 1] ∪ [e2,∞)

3. (a) x ≈ 1.3098

(b) (−∞,−12.1414) ∪ (12.1414,∞)

(c) x ≈ 4.177, x ≈ 5503.665

(d) (−3.0281,−3)∪(0.5, 0.5991)∪(1.9299, 2)

4. −1

2
< x <

e3 − 1

2

5. y =
3

5e2x + 1

7. f−1(x) =
e2x − 1

e2x + 1
=
ex − e−x

ex + e−x
. (To see why we rewrite this in this form, see Exercise 7e in

Section 11.10.) The domain of f−1 is (−∞,∞) and its range is the same as the domain of f ,
namely (−1, 1).
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6.5 Applications of Exponential and Logarithmic Functions

As we mentioned in Section 6.1, exponential and logarithmic functions are used to model a wide
variety of behaviors in the real world. In the examples that follow, note that while the applications
are drawn from many different disciplines, the mathematics remains essentially the same. Due to
the applied nature of the problems we will examine in this section, the calculator is often used to
express our answers as decimal approximations.

6.5.1 Applications of Exponential Functions

Perhaps the most well-known application of exponential functions comes from the financial world.
Suppose you have $100 to invest at your local bank and they are offering a whopping 5 % annual
percentage interest rate. This means that after one year, the bank will pay you 5% of that $100,
or $100(0.05) = $5 in interest, so you now have $105.1 This is in accordance with the formula
for simple interest which you have undoubtedly run across at some point in your mathematical
upbringing.

Equation 6.1. Simple Interest The amount of interest I accrued at an annual rate r on an
investmenta P after t years is

I = Prt

The amount A in the account after t years is given by

A = P + I = P + Prt = P (1 + rt)

aCalled the principal

Suppose, however, that six months into the year, you hear of a better deal at a rival bank.2

Naturally, you withdraw your money and try to invest it at the higher rate there. Since six months
is one half of a year, that initial $100 yields $100(0.05)

(
1
2

)
= $2.50 in interest. You take your

$102.50 off to the competitor and find out that those restrictions which may apply actually do
apply to you, and you return to your bank which happily accepts your $102.50 for the remaining
six months of the year. To your surprise and delight, at the end of the year your statement reads
$105.06, not $105 as you had expected.3 Where did those extra six cents come from? For the first
six months of the year, interest was earned on the original principal of $100, but for the second
six months, interest was earned on $102.50, that is, you earned interest on your interest. This is
the basic concept behind compound interest. In the previous discussion, we would say that the
interest was compounded twice, or semiannually.4 If more money can be earned by earning interest
on interest already earned, a natural question to ask is what happens if the interest is compounded
more often, say 4 times a year, which is every three months, or ‘quarterly.’ In this case, the
money is in the account for three months, or 1

4 of a year, at a time. After the first quarter, we

1How generous of them!
2Some restrictions may apply.
3Actually, the final balance should be $105.0625.
4Using this convention, simple interest after one year is the same as compounding the interest only once.
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have A = P (1 + rt) = $100
(
1 + 0.05 · 1

4

)
= $101.25. We now invest the $101.25 for the next three

months and find that at the end of the second quarter, we haveA = $101.25
(
1 + 0.05 · 1

4

)
≈ $102.51.

Continuing in this manner, the balance at the end of the third quarter is $103.79, and, at last, we
obtain $105.08. The extra two cents hardly seems worth it, but we see that we do in fact get more
money the more often we compound. In order to develop a formula for this phenomenon, we need
to do some abstract calculations. Suppose we wish to invest our principal P at an annual rate r and
compound the interest n times per year. This means the money sits in the account 1

n

th
of a year

between compoundings. Let Ak denote the amount in the account after the kth compounding. Then
A1 = P

(
1 + r

(
1
n

))
which simplifies to A1 = P

(
1 + r

n

)
. After the second compounding, we use A1

as our new principal and get A2 = A1

(
1 + r

n

)
=
[
P
(
1 + r

n

)] (
1 + r

n

)
= P

(
1 + r

n

)2
. Continuing in

this fashion, we get A3 = P
(
1 + r

n

)3
, A4 = P

(
1 + r

n

)4
, and so on, so that Ak = P

(
1 + r

n

)k
. Since

we compound the interest n times per year, after t years, we have nt compoundings. We have just
derived the general formula for compound interest below.

Equation 6.2. Compounded Interest: If an initial principal P is invested at an annual rate
r and the interest is compounded n times per year, the amount A in the account after t years is

A(t) = P
(

1 +
r

n

)nt
If we take P = 100, r = 0.05, and n = 4, Equation 6.2 becomes A = 100

(
1 + 0.05

4

)4t
which reduces

to A = 100(1.0125)4t. This equation defines the amount A as an exponential function of time t,

A(t). To check this against our previous calculations, we find A
(

1
4

)
= 100(1.0125)4( 1

4) = 101.25,
A
(

1
2

)
≈ $102.51, A

(
3
4

)
≈ $103.79, and A(1) ≈ $105.08.

Example 6.5.1. Suppose $2000 is invested in an account which offers 7.125% compounded monthly.

1. Express the amount A in the account as a function of the term of the investment t in years.

2. How much is in the account after 5 years?

3. How long will it take for the initial investment to double?

4. Find and interpret the average rate of change5 of the amount in the account from the end of
the fourth year to the end of the fifth year, and from the end of the thirty-fourth year to the
end of the thirty-fifth year.

Solution.

1. Substituting P = 2000, r = 0.07125, and n = 12 (monthly) into Equation 6.2 yields A =

2000
(
1 + 0.07125

12

)12t
. Using function notation, we get A(t) = 2000(1.0059375)12t.

2. Since t represents the length of the investment, we substitute t = 5 into A(t) to find A(5) =
2000(1.0059375)12(5) ≈ 2852.92. After 5 years, we have approximately $2852.92.

5See Definition 2.3 in Section 2.1.
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3. Our initial investment is $2000, so to find the time it takes this to double, we need to find t
when A(t) = 4000. We get 2000(1.0059375)12t = 4000, or (1.0059375)12t = 2. Taking natural

logs as in Section 6.3, we get t = ln(2)
12 ln(1.0059375) ≈ 9.75. Hence, it takes approximately 9 years

9 months for the investment to double.

4. To find the average rate of change of A from the end of the fourth year to the end of the
fifth year, we compute A(5)−A(4)

5−4 ≈ 195.63. Similarly, the average rate of change of A from

the end of the thirty-fourth year to the end of the thirty-fifth year is A(35)−A(34)
35−34 ≈ 1648.21.

This means that the value of the investment is increasing at a rate of approximately $195.63
per year between the end of the fourth and fifth years, while that rate jumps to $1648.21 per
year between the end of the thirty-fourth and thirty-fifth years. So, not only is it true that
the longer you wait, the more money you have, but also the longer you wait, the faster the
money increases.6

We have observed that the more times you compound the interest per year, the more money you
will earn in a year. Let’s push this notion to the limit.7 Consider an investment of $1 invested
at 100% interest for 1 year compounded n times a year. Equation 6.2 tells us that the amount of
money in the account after 1 year is A =

(
1 + 1

n

)n
. Below is a table of values relating n and A.

n A

1 2

2 2.25

4 ≈ 2.4414

12 ≈ 2.6130

360 ≈ 2.7145

1000 ≈ 2.7169

10000 ≈ 2.7181

100000 ≈ 2.7182

As promised, the more compoundings per year, the more money there is in the account, but we
also observe that the increase in money is greatly diminishing. We are witnessing a mathematical
‘tug of war’. While we are compounding more times per year, and hence getting interest on our
interest more often, the amount of time between compoundings is getting smaller and smaller, so
there is less time to build up additional interest. With Calculus, we can show8 that as n → ∞,
A =

(
1 + 1

n

)n → e, where e is the natural base first presented in Section 6.1. Taking the number
of compoundings per year to infinity results in what is called continuously compounded interest.

Theorem 6.8. If you invest $1 at 100% interest compounded continuously, then you will have $e
at the end of one year.

6In fact, the rate of increase of the amount in the account is exponential as well. This is the quality that really
defines exponential functions and we refer the reader to a course in Calculus.

7Once you’ve had a semester of Calculus, you’ll be able to fully appreciate this very lame pun.
8Or define, depending on your point of view.
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Using this definition of e and a little Calculus, we can take Equation 6.2 and produce a formula for
continuously compounded interest.

Equation 6.3. Continuously Compounded Interest: If an initial principal P is invested at
an annual rate r and the interest is compounded continuously, the amount A in the account after
t years is

A(t) = Pert

If we take the scenario of Example 6.5.1 and compare monthly compounding to continuous com-
pounding over 35 years, we find that monthly compounding yields A(35) = 2000(1.0059375)12(35)

which is about $24,035.28, whereas continuously compounding gives A(35) = 2000e0.07125(35) which
is about $24,213.18 - a difference of less than 1%.

Equations 6.2 and 6.3 both use exponential functions to describe the growth of an investment.
Curiously enough, the same principles which govern compound interest are also used to model
short term growth of populations. In Biology, The Law of Uninhibited Growth states as
its premise that the instantaneous rate at which a population increases at any time is directly
proportional to the population at that time.9 In other words, the more organisms there are at a
given moment, the faster they reproduce. Formulating the law as stated results in a differential
equation, which requires Calculus to solve. Its solution is stated below.

Equation 6.4. Uninhibited Growth: If a population increases according to The Law of Un-
inhibited Growth, the number of organisms N at time t is given by the formula

N(t) = N0e
kt,

where N(0) = N0 (read ‘N nought’) is the initial number of organisms and k > 0 is the constant
of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = kN(t)

It is worth taking some time to compare Equations 6.3 and 6.4. In Equation 6.3, we use P to denote
the initial investment; in Equation 6.4, we use N0 to denote the initial population. In Equation
6.3, r denotes the annual interest rate, and so it shouldn’t be too surprising that the k in Equation
6.4 corresponds to a growth rate as well. While Equations 6.3 and 6.4 look entirely different, they
both represent the same mathematical concept.

Example 6.5.2. In order to perform arthrosclerosis research, epithelial cells are harvested from
discarded umbilical tissue and grown in the laboratory. A technician observes that a culture of
twelve thousand cells grows to five million cells in one week. Assuming that the cells follow The
Law of Uninhibited Growth, find a formula for the number of cells, N , in thousands, after t days.

Solution. We begin with N(t) = N0e
kt. Since N is to give the number of cells in thousands,

we have N0 = 12, so N(t) = 12ekt. In order to complete the formula, we need to determine the
growth rate k. We know that after one week, the number of cells has grown to five million. Since t

9The average rate of change of a function over an interval was first introduced in Section 2.1. Instantaneous rates
of change are the business of Calculus, as is mentioned on Page 121.
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measures days and the units of N are in thousands, this translates mathematically to N(7) = 5000.

We get the equation 12e7k = 5000 which gives k = 1
7 ln

(
1250

3

)
. Hence, N(t) = 12e

t
7

ln( 1250
3 ). Of

course, in practice, we would approximate k to some desired accuracy, say k ≈ 0.8618, which we
can interpret as an 86.18% daily growth rate for the cells.

Whereas Equations 6.3 and 6.4 model the growth of quantities, we can use equations like them to
describe the decline of quantities. One example we’ve seen already is Example 6.1.1 in Section 6.1.
There, the value of a car declined from its purchase price of $25,000 to nothing at all. Another real
world phenomenon which follows suit is radioactive decay. There are elements which are unstable
and emit energy spontaneously. In doing so, the amount of the element itself diminishes. The
assumption behind this model is that the rate of decay of an element at a particular time is directly
proportional to the amount of the element present at that time. In other words, the more of the
element there is, the faster the element decays. This is precisely the same kind of hypothesis which
drives The Law of Uninhibited Growth, and as such, the equation governing radioactive decay is
hauntingly similar to Equation 6.4 with the exception that the rate constant k is negative.

Equation 6.5. Radioactive Decay The amount of a radioactive element A at time t is given
by the formula

A(t) = A0e
kt,

where A(0) = A0 is the initial amount of the element and k < 0 is the constant of proportionality
which satisfies the equation

(instantaneous rate of change of A(t) at time t) = k A(t)

Example 6.5.3. Iodine-131 is a commonly used radioactive isotope used to help detect how well
the thyroid is functioning. Suppose the decay of Iodine-131 follows the model given in Equation 6.5,
and that the half-life10 of Iodine-131 is approximately 8 days. If 5 grams of Iodine-131 is present
initially, find a function which gives the amount of Iodine-131, A, in grams, t days later.

Solution. Since we start with 5 grams initially, Equation 6.5 givesA(t) = 5ekt. Since the half-life is
8 days, it takes 8 days for half of the Iodine-131 to decay, leaving half of it behind. Hence, A(8) = 2.5

which means 5e8k = 2.5. Solving, we get k = 1
8 ln

(
1
2

)
= − ln(2)

8 ≈ −0.08664, which we can interpret

as a loss of material at a rate of 8.664% daily. Hence, A(t) = 5e−
t ln(2)

8 ≈ 5e−0.08664t.

We now turn our attention to some more mathematically sophisticated models. One such model
is Newton’s Law of Cooling, which we first encountered in Example 6.1.2 of Section 6.1. In that
example we had a cup of coffee cooling from 160◦F to room temperature 70◦F according to the
formula T (t) = 70 + 90e−0.1t, where t was measured in minutes. In this situation, we know the
physical limit of the temperature of the coffee is room temperature,11 and the differential equation
which gives rise to our formula for T (t) takes this into account. Whereas the radioactive decay

10The time it takes for half of the substance to decay.
11The Second Law of Thermodynamics states that heat can spontaneously flow from a hotter object to a colder

one, but not the other way around. Thus, the coffee could not continue to release heat into the air so as to cool below
room temperature.
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model had a rate of decay at time t directly proportional to the amount of the element which
remained at time t, Newton’s Law of Cooling states that the rate of cooling of the coffee at a given
time t is directly proportional to how much of a temperature gap exists between the coffee at time
t and room temperature, not the temperature of the coffee itself. In other words, the coffee cools
faster when it is first served, and as its temperature nears room temperature, the coffee cools ever
more slowly. Of course, if we take an item from the refrigerator and let it sit out in the kitchen,
the object’s temperature will rise to room temperature, and since the physics behind warming and
cooling is the same, we combine both cases in the equation below.

Equation 6.6. Newton’s Law of Cooling (Warming): The temperature T of an object at
time t is given by the formula

T (t) = Ta + (T0 − Ta) e−kt,

where T (0) = T0 is the initial temperature of the object, Ta is the ambient temperaturea and
k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of T (t) at time t) = k (T (t)− Ta)
aThat is, the temperature of the surroundings.

If we re-examine the situation in Example 6.1.2 with T0 = 160, Ta = 70, and k = 0.1, we get,
according to Equation 6.6, T (t) = 70+(160−70)e−0.1t which reduces to the original formula given.
The rate constant k = 0.1 indicates the coffee is cooling at a rate equal to 10% of the difference
between the temperature of the coffee and its surroundings. Note in Equation 6.6 that the constant
k is positive for both the cooling and warming scenarios. What determines if the function T (t)
is increasing or decreasing is if T0 (the initial temperature of the object) is greater than Ta (the
ambient temperature) or vice-versa, as we see in our next example.

Example 6.5.4. A 40◦F roast is cooked in a 350◦F oven. After 2 hours, the temperature of the
roast is 125◦F.

1. Assuming the temperature of the roast follows Newton’s Law of Warming, find a formula for
the temperature of the roast T as a function of its time in the oven, t, in hours.

2. The roast is done when the internal temperature reaches 165◦F. When will the roast be done?

Solution.

1. The initial temperature of the roast is 40◦F, so T0 = 40. The environment in which we
are placing the roast is the 350◦F oven, so Ta = 350. Newton’s Law of Warming tells us
T (t) = 350 + (40− 350)e−kt, or T (t) = 350− 310e−kt. To determine k, we use the fact that
after 2 hours, the roast is 125◦F, which means T (2) = 125. This gives rise to the equation
350− 310e−2k = 125 which yields k = −1

2 ln
(

45
62

)
≈ 0.1602. The temperature function is

T (t) = 350− 310e
t
2

ln( 45
62) ≈ 350− 310e−0.1602t.
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2. To determine when the roast is done, we set T (t) = 165. This gives 350− 310e−0.1602t = 165
whose solution is t = − 1

0.1602 ln
(

37
62

)
≈ 3.22. It takes roughly 3 hours and 15 minutes to cook

the roast completely.

If we had taken the time to graph y = T (t) in Example 6.5.4, we would have found the horizontal
asymptote to be y = 350, which corresponds to the temperature of the oven. We can also arrive
at this conclusion by applying a bit of ‘number sense’. As t → ∞, −0.1602t ≈ very big (−) so
that e−0.1602t ≈ very small (+). The larger the value of t, the smaller e−0.1602t becomes so that
T (t) ≈ 350 − very small (+), which indicates the graph of y = T (t) is approaching its horizontal
asymptote y = 350 from below. Physically, this means the roast will eventually warm up to 350◦F.12

The function T is sometimes called a limited growth model, since the function T remains bounded
as t → ∞. If we apply the principles behind Newton’s Law of Cooling to a biological example, it
says the growth rate of a population is directly proportional to how much room the population has
to grow. In other words, the more room for expansion, the faster the growth rate. The logistic
growth model combines The Law of Uninhibited Growth with limited growth and states that the
rate of growth of a population varies jointly with the population itself as well as the room the
population has to grow.

Equation 6.7. Logistic Growth: If a population behaves according to the assumptions of
logistic growth, the number of organisms N at time t is given by the equation

N(t) =
L

1 + Ce−kLt
,

where N(0) = N0 is the initial population, L is the limiting populationa, C is a measure of how
much room there is to grow given by

C =
L

N0

− 1.

and k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = kN(t) (L−N(t))

aThat is, as t→∞, N(t)→ L

The logistic function is used not only to model the growth of organisms, but is also often used to
model the spread of disease and rumors.13

Example 6.5.5. The number of people N , in hundreds, at a local community college who have
heard the rumor ‘Carl is afraid of Virginia Woolf’ can be modeled using the logistic equation

N(t) =
84

1 + 2799e−t
,

where t ≥ 0 is the number of days after April 1, 2009.

12at which point it would be more toast than roast.
13Which can be just as damaging as diseases.
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1. Find and interpret N(0).

2. Find and interpret the end behavior of N(t).

3. How long until 4200 people have heard the rumor?

4. Check your answers to 2 and 3 using your calculator.

Solution.

1. We find N(0) = 84
1+2799e0

= 84
2800 = 3

100 . Since N(t) measures the number of people who have
heard the rumor in hundreds, N(0) corresponds to 3 people. Since t = 0 corresponds to April
1, 2009, we may conclude that on that day, 3 people have heard the rumor.14

2. We could simply note that N(t) is written in the form of Equation 6.7, and identify L = 84.
However, to see why the answer is 84, we proceed analytically. Since the domain of N is
restricted to t ≥ 0, the only end behavior of significance is t → ∞. As we’ve seen before,15

as t → ∞, have 1997e−t → 0+ and so N(t) ≈ 84

1+very small (+)
≈ 84. Hence, as t → ∞,

N(t)→ 84. This means that as time goes by, the number of people who will have heard the
rumor approaches 8400.

3. To find how long it takes until 4200 people have heard the rumor, we set N(t) = 42. Solving
84

1+2799e−t = 42 gives t = ln(2799) ≈ 7.937. It takes around 8 days until 4200 people have
heard the rumor.

4. We graph y = N(x) using the calculator and see that the line y = 84 is the horizontal
asymptote of the graph, confirming our answer to part 2, and the graph intersects the line
y = 42 at x = ln(2799) ≈ 7.937, which confirms our answer to part 3.

y = f(x) = 84
1+2799e−x and y = f(x) = 84

1+2799e−x and

y = 84 y = 42

14Or, more likely, three people started the rumor. I’d wager Jeff, Jamie, and Jason started it. So much for telling
your best friends something in confidence!

15See, for example, Example 6.1.2.
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If we take the time to analyze the graph of y = N(x) above, we can see graphically how logistic
growth combines features of uninhibited and limited growth. The curve seems to rise steeply, then
at some point, begins to level off. The point at which this happens is called an inflection point
or is sometimes called the ‘point of diminishing returns’. At this point, even though the function is
still increasing, the rate at which it does so begins to decline. It turns out the point of diminishing
returns always occurs at half the limiting population. (In our case, when y = 42.) While these
concepts are more precisely quantified using Calculus, below are two views of the graph of y = N(x),
one on the interval [0, 8], the other on [8, 15]. The former looks strikingly like uninhibited growth;
the latter like limited growth.

y = f(x) = 84
1+2799e−x for y = f(x) = 84

1+2799e−x for

0 ≤ x ≤ 8 8 ≤ x ≤ 16

6.5.2 Applications of Logarithms

Just as many physical phenomena can be modeled by exponential functions, the same is true of
logarithmic functions. In Exercises 6a, 6b and 6c of Section 6.1, we showed that logarithms are
useful in measuring the intensities of earthquakes (the Richter scale), sound (decibels) and acids and
bases (pH). We now present yet a different use of the a basic logarithm function, password strength.

Example 6.5.6. The information entropy H, in bits, of a randomly generated password consisting
of L characters is given by H = L log2(N), where N is the number of possible symbols for each
character in the password. In general, the higher the entropy, the stronger the password.

1. If a 7 character case-sensitive16 password is comprised of letters and numbers only, find the
associated information entropy.

2. How many possible symbol options per character is required to produce a 7 character password
with an information entropy of 50 bits?

Solution.

1. There are 26 letters in the alphabet, 52 if upper and lower case letters are counted as different.
There are 10 digits (0 through 9) for a total of N = 62 symbols. Since the password is to be

7 characters long, L = 7. Thus, H = 7 log2(62) = 7 ln(62)
ln(2) ≈ 41.68.

16That is, upper and lower case letters are treated as different characters.

http://en.wikipedia.org/wiki/Password_strength
http://en.wikipedia.org/wiki/Information_entropy
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2. We have L = 7 and H = 50 and we need to find N . Solving the equation 50 = 7 log2(N)
gives N = 250/7 ≈ 141.323, so we would need 142 different symbols to choose from.17

Chemical systems known as buffer solutions have the ability to adjust to small changes in acidity to
maintain a range of pH values. Buffer solutions have a wide variety of applications from maintaining
a healthy fish tank to regulating the pH levels in blood. Our next example shows how the pH in
a buffer solution is a little more complicated than the pH we first encountered in Exercise 6c in
Section 6.1.

Example 6.5.7. Blood is a buffer solution. When carbon dioxide is absorbed into the bloodstream
it produces carbonic acid and lowers the pH. The body compensates by producing bicarbonate, a
weak base to partially neutralize the acid. The equation18 which models blood pH in this situation
is pH = 6.1+log

(
800
x

)
, where x is the partial pressure of carbon dioxide in arterial blood, measured

in torr. Find the partial pressure of carbon dioxide in arterial blood if the pH is 7.4.

Solution. We set pH = 7.4 and get 7.4 = 6.1 + log
(

800
x

)
, or log

(
800
x

)
= 1.3. Solving, we find

x = 800
101.3 ≈ 40.09. Hence, the partial pressure of carbon dioxide in the blood is about 40 torr.

Another place logarithms are used is in data analysis. Suppose, for instance, we wish to model
the spread of influenza A (H1N1), the so-called ‘Swine Flu’. Below is data taken from the World
Health Organization (WHO) where t represents the number of days since April 28, 2009, and N
represents the number of confirmed cases of H1N1 virus worldwide.

t 1 2 3 4 5 6 7 8 9 10 11 12 13

N 148 257 367 658 898 1085 1490 1893 2371 2500 3440 4379 4694

t 14 15 16 17 18 19 20

N 5251 5728 6497 7520 8451 8480 8829

Making a scatter plot of the data treating t as the independent variable and N as the dependent
variable gives

Which models are suggested by the shape of the data? Thinking back Section 2.5, we try a
Quadratic Regression, with pretty good results.

17Since there are only 94 distinct ASCII keyboard characters, to achieve this strength, the number of characters in
the password should be increased.

18Derived from the Henderson-Hasselbalch Equation. See Exercise 8 in Section 6.2. Hasselbalch himself was
studying carbon dioxide dissolving in blood - a process called metabolic acidosis.

http://en.wikipedia.org/wiki/Buffer_solutions
http://www.who.int/csr/disease/swineflu/updates/en/index.html
http://en.wikipedia.org/wiki/Henderson-Hasselbalch_equation
http://en.wikipedia.org/wiki/Metabolic_acidosis
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However, is there any scientific reason for the data to be quadratic? Are there other models which
fit the data equally well, or better? Scientists often use logarithms in an attempt to ‘linearize’ data
sets - in other words, transform the data sets to produce ones which result in straight lines. To see
how this could work, suppose we guessed the relationship between N and t was some kind of power
function, not necessarily quadratic, say N = BtA. To try to determine the A and B, we can take
the natural log of both sides and get ln(N) = ln

(
BtA

)
. Using properties of logs to expand the right

hand side of this equation, we get ln(N) = A ln(t)+ ln(B). If we set X = ln(t) and Y = ln(N), this
equation becomes Y = AX + ln(B). In other words, we have a line with slope A and Y -intercept
ln(B). So, instead of plotting N versus t, we plot ln(N) versus ln(t).

ln(t) 0 0.693 1.099 1.386 1.609 1.792 1.946 2.079 2.197 2.302 2.398 2.485 2.565

ln(N) 4.997 5.549 5.905 6.489 6.800 6.989 7.306 7.546 7.771 7.824 8.143 8.385 8.454

ln(t) 2.639 2.708 2.773 2.833 2.890 2.944 2.996

ln(N) 8.566 8.653 8.779 8.925 9.042 9.045 9.086

Running a linear regression on the data gives

The slope of the regression line is a ≈ 1.512 which corresponds to our exponent A. The y-intercept
b ≈ 4.513 corresponds to ln(B), so that B ≈ 91.201. In other words, we get the model N =
91.201t1.512, something from Section 5.3. Of course, the calculator has a built-in ‘Power Regression’
feature. If we apply this to our original data set, we get the same model we arrived at before.19

19Critics may question why the authors of the book have chosen to even discuss linearization of data when the
calculator has a Power Regression built-in and ready to go. Our response: talk to your science faculty.
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This is all well and good, but the quadratic model appears to fit the data better, and we’ve yet to
mention any scientific principle which would lead us to believe the actual spread of the flu follows
any kind of power function at all. If we are to attack this data from a scientific perspective, it does
seem to make sense that, at least in the early stages of the outbreak, the more people who have
the flu, the faster it will spread, which leads us to proposing an uninhibited growth model. If we
assume N = BeAt then, taking logs as before, we get ln(N) = At + ln(B). If we set X = t and
Y = ln(N), then, once again, we get Y = AX + ln(B), a line with slope A and Y -intercept ln(B).
Plotting ln(N) versus t and gives the following linear regression.

We see the slope is a ≈ 0.202 and which corresponds to A in our model, and the y-intercept is
b ≈ 5.596 which corresponds to ln(B). We get B ≈ 269.414, so that our model is N = 269.414e0.202t.
Of course, the calculator has a built-in ‘Exponential Regression’ feature which produces what
appears to be a different model N = 269.414(1.22333419)t. Using properties of exponents, we write

e0.202t =
(
e0.202

)t ≈ (1.223848)t, which, had we carried more decimal places, would have matched
the base of the calculator model exactly.

The exponential model didn’t fit the data as well as the quadratic or power function model, but
it stands to reason that, perhaps, the spread of the flu is not unlike that of the spread of a rumor
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and that a logistic model can be used to model the data. The calculator does have a ‘Logistic
Regression’ feature, and using it produces the model N = 10739.147

1+42.416e0.268t .

This appears to be an excellent fit, but there is no friendly coefficient of determination, R2, by
which to judge this numerically. There are good reasons for this, but they are far beyond the scope
of the text. Which of the models, quadratic, power, exponential, or logistic is the ‘best model’?
If by ‘best’ we mean ‘fits closest to the data,’ then the quadratic and logistic models are arguably
the winners with the power function model a close second. However, if we think about the science
behind the spread of the flu, the logistic model gets an edge. For one thing, it takes into account
that only a finite number of people will ever get the flu (according to our model, 10,739), whereas
the quadratic model predicts no limit to the number of cases. As we have stated several times
before in the text, mathematical models, regardless of their sophistication, are just that: models,
and they all have their limitations.20

20Speaking of limitations, as of June 3, 2009, there were 19,273 confirmed cases of influenza A (H1N1). This is
well above our prediction of 10,739. Each time a new report is issued, the data set increases and the model must be
recalculated. We leave this recalculation to the reader.
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6.5.3 Exercises

1. On May, 31, 2009, the Annual Percentage Rate listed at Jeff’s bank for regular savings
accounts was 0.25% compounded monthly. Use Equation 6.2 to answer the following.

(a) If P = 2000 what is A(8)?

(b) Solve the equation A(t) = 4000 for t.

(c) What principal P should be invested so that the account balance is $2000 is three years?

2. Jeff’s bank also offers a 36-month Certificate of Deposit (CD) with an APR of 2.25%.

(a) If P = 2000 what is A(8)?

(b) Solve the equation A(t) = 4000 for t.

(c) What principal P should be invested so that the account balance is $2000 is three years?

(d) The Annual Percentage Yield is the simple interest rate that returns the same amount of
interest after one year as the compound interest does. With the help of your classmates,
compute the APY for this investment.

3. A finance company offers a promotion on $5000 loans. The borrower does not have to make
any payments for the first three years, however interest will continue to be charged to the
loan at 29.9% compounded continuously. What amount will be due at the end of the three
year period, assuming no payments are made? If the promotion is extended an additional six
years, and no payments are made, what amount would be due?

4. Use Equation 6.2 to show that the time it takes for an investment to double in value does
not depend on the principal P , but rather, depends only on the APR and the number of
compoundings per year. Let n = 12 and with the help of your classmates compute the
doubling time for a variety of rates r. Then look up the Rule of 72 and compare your answers
to what that rule says. If you’re really interested21 in financial mathematics, you could also
compare and contrast the Rule of 72 with the Rule of 70 and the Rule of 69.

5. The half-life of the radioactive isotope Carbon-14 is about 5730 years.

(a) Use Equation 6.5 to express the amount of Carbon-14 left from an initial N milligrams
as a function of time t in years.

(b) What percentage of the original amount of Carbon-14 is left after 20,000 years?

(c) If an old wooden tool is found in a cave and the amount of Carbon-14 present in it is
estimated to be only 42% of the original amount, approximately how old is the tool?

(d) Radiocarbon dating is not as easy as these exercises might lead you to believe. With
the help of your classmates, research radiocarbon dating and discuss why our model is
somewhat over-simplified.

21Awesome pun!
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6. Carbon-14 cannot be used to date inorganic material such as rocks, but there are many other
methods of radiometric dating which estimate the age of rocks. One of them, Rubidium-
Strontium dating, uses Rubidium-87 which decays to Strontium-87 with a half-life of 50
billion years. Use Equation 6.5 to express the amount of Rubidium-87 left from an initial 2.3
micrograms as a function of time t in billions of years. Research this and other radiometric
techniques and discuss the margins of error for various methods with your classmates.

7. Use Equation 6.5 to show that k = − ln(2)

h
where h is the half-life of the radioactive isotope.

8. In Example 6.1.1 in Section 6.1, the exponential function V (x) = 25
(

4
5

)x
was used to model

the value of a car over time. Use the properties of logs and/or exponents to rewrite the model
in the form V (t) = 25ekt.

9. A pork roast was taken out of a hardwood smoker when its internal temperature had reached
180◦F and it was allowed to rest in a 75◦F house for 20 minutes after which its internal
temperature had dropped to 170◦F.22 Assuming that the temperature of the roast follows
Newton’s Law of Cooling (Equation 6.6),

(a) Express the temperature T as a function of time t.

(b) Find the time at which the roast would have dropped to 140◦F had it not been carved
and eaten.

10. In reference to Exercise 12 in Section 5.3, if Fritzy the Fox’s speed is the same as Chewbacca
the Bunny’s speed, Fritzy’s pursuit curve is given by

y(x) =
1

4
x2 − 1

4
ln(x)− 1

4

Use your calculator to graph this path for x > 0. Describe the behavior of y as x→ 0+ and
interpret this physically.

11. The current i measured in amps in a certain electronic circuit with a constant impressed
voltage of 120 volts is given by i(t) = 2 − 2e−10t where t ≥ 0 is the number of seconds after
the circuit is switched on. Determine the value of i as t → ∞. (This is called the steady
state current.)

12. If the voltage in the circuit in Exercise 11 above is switched off after 30 seconds, the current
is given by the piecewise-defined function

i(t) =

{
2− 2e−10t if 0 ≤ t < 30(

2− 2e−300
)
e−10t+300 if t ≥ 30

22This roast was enjoyed by Jeff and his family on June 10, 2009. This is real data, folks!
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With the help of your calculator, graph y = i(t) and discuss with your classmates the physical
significance of the two parts of the graph 0 ≤ t < 30 and t ≥ 30.

13. In Exercise 7 in Section 2.3, we stated that the cable of a suspension bridge formed a parabola
but that a free hanging cable did not. A free hanging cable forms a catenary and its basic

shape is given by y =
ex + e−x

2
. Use your calculator to graph this function. What are its

domain and range? What is its end behavior? Is it invertible? How do you think it is related
to the function given in Exercise 5 in Section 6.3 and the one given in the answer to Exercise 7
in Section 6.4? When flipped upside down, the catenary makes an arch. In fact, the Gateway

Arch in St. Louis, Missouri has the shape y = 757.7− 127.7

(
e

x
127.7 + e−

x
127.7

2

)
where x and

y are measured in feet and −315 ≤ x ≤ 315. What is the highest point on the arch?

14. In Exercise 4a in Section 2.5, we examined the data set given below which showed how two
cats and their surviving offspring can produce over 80 million cats in just ten years. It is
virtually impossible to see this data plotted on your calculator, so plot x versus ln(x) as was
done on page 389. Find a linear model for this new data and comment on its goodness of fit.
Find an exponential model for the original data and comment on its goodness of fit.

Year x 1 2 3 4 5 6 7 8 9 10
Number of
Cats N(x) 12 66 382 2201 12680 73041 420715 2423316 13968290 80399780

15. According to this website, the number of active users of Facebook has grown significantly
since its initial launch from a Harvard dorm room in February 2004. The chart below has
the approximate number U(x) of active users, in millions, x months after February 2004. For
example, the first entry (10, 1) means that there were 1 million active users in December 2004
and the last entry (62, 200) means that there were 200 million active users in April 2009.

Month x 10 22 34 38 44 54 59 60 62

Active Users in
Millions U(x) 1 5.5 12 20 50 100 150 175 200

With the help of your classmates, find a model for this data.

16. Each Monday during the registration period before the Fall Semester at LCCC, the Enrollment
Planning Council gets a report prepared by the data analysts in Institutional Effectiveness and
Planning.23 While the ongoing enrollment data is analyzed in many different ways, we shall
focus only on the overall headcount. Below is a chart of the enrollment data for Fall Semester
2008. It starts 21 weeks before “Opening Day” and ends on “Day 15” of the semester, but
we have relabeled the top row to be x = 1 through x = 24 so that the math is easier. (Thus,
x = 22 is Opening Day.)

23The authors thank Dr. Wendy Marley and her staff for this data and Dr. Marcia Ballinger for the permission to
use it in this problem.

http://www.facebook.com/press/info.php?timeline
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Week x 1 2 3 4 5 6 7 8

Total
Headcount 1194 1564 2001 2475 2802 3141 3527 3790

Week x 9 10 11 12 13 14 15 16

Total
Headcount 4065 4371 4611 4945 5300 5657 6056 6478

Week x 17 18 19 20 21 22 23 24

Total
Headcount 7161 7772 8505 9256 10201 10743 11102 11181

With the help of your classmates, find a model for this data. Unlike most of the phenomena
we have studied in this section, there is no single differential equation which governs the
enrollment growth. Thus there is no scientific reason to rely on a logistic function even
though the data plot may lead us to that model. What are some factors which influence
enrollment at a community college and how can you take those into account mathematically?

17. As of the writing of this set of exercises, the Enrollment Planning Report for Fall Semester
2009 has only 10 data points for the first 10 weeks of the registration period. Those numbers
are given below.

Week x 1 2 3 4 5 6 7 8 9 10

Total
Headcount 1380 2000 2639 3153 3499 3831 4283 4742 5123 5398

With the help of your classmates, find a model for this data and make a prediction for
the Opening Day enrollment as well as the Day 15 enrollment. (WARNING: This year’s
registration period is one week shorter than it was in 2008 so Opening Day would be x = 21
and Day 15 is x = 23.)
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6.5.4 Answers

1. (a) A(8) = 2000
(
1 + 0.0025

12

)12·8 ≈ $2040.40

(b) t =
ln(2)

12 ln
(
1 + 0.0025

12

) ≈ 277.29 years

(c) P =
2000(

1 + 0.0025
12

)36 ≈ $1985.06

2. (a) A(8) = 2000
(
1 + 0.0225

12

)12·8 ≈ $2394.03

(b) t =
ln(2)

12 ln
(
1 + 0.0225

12

) ≈ 30.83 years

(c) P =
2000(

1 + 0.0225
12

)36 ≈ $1869.57

(d)
(
1 + 0.0225

12

)12 ≈ 1.0227 so the APY is 2.27%

3. A(3) = 5000e0.299·3 ≈ $12, 226.18, A(6) = 5000e0.299·6 ≈ $30, 067.29

5. (a) A(t) = Ne
−
(

ln(2)
5730

)
t ≈ Ne−0.00012097t

(b) A(20000) ≈ 0.088978 ·N so about 8.9% remains

(c) t ≈ ln(.42)

−0.00012097
≈ 7171 years old

6. A(t) = 2.3e−0.0138629t

8. V (t) = 25eln( 4
5)t ≈ 25e−0.22314355t

9. (a) T (t) = 75 + 105e−0.005005t

(b) The roast would have cooled to 140◦F in about 95 minutes.

10. From the graph, it appears that as x→ 0+, y →∞. This is due to the presence of the ln(x)
term in the function. This means Fritzy will never catch Chewbacca, which makes sense since
Chewbacca has a head start and Fritzy only runs as fast as he does.

y(x) = 1
4x

2 − 1
4 ln(x)− 1

4



396 Exponential and Logarithmic Functions

11. The steady state current is 2 amps.

14. The linear regression on the data below is y = 1.74899x+ 0.70739 with r2 ≈ 0.999995. This
is an excellent fit.
x 1 2 3 4 5 6 7 8 9 10
ln(N(x)) 2.4849 4.1897 5.9454 7.6967 9.4478 11.1988 12.9497 14.7006 16.4523 18.2025

N(x) = 2.02869(5.74879)x = 2.02869e1.74899x with r2 ≈ 0.999995. This is also an excellent fit
and corresponds to our linearized model because ln(2.02869) ≈ 0.70739.



Chapter 7

Hooked on Conics

7.1 Introduction to Conics

In this chapter, we study the Conic Sections - literally ‘sections of a cone.’ Imagine a double-
napped cone as seen below being ‘sliced’ by a plane.

If we slice the cone with a horizontal plane the resulting curve is a circle.
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Tilting the plane ever so slightly produces an ellipse.

If the plane cuts parallel to the cone, we get a parabola.

If we slice the cone with a vertical plane, we get a hyperbola.

For a wonderful animation describing the conics as intersections of planes and cones, see Dr. Louis
Talman’s Mathematics Animated Website.

http://clem.mscd.edu/~talmanl/HTML/ConicSections.html
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If the slicing plane contains the vertex of the cone, we get the so-called ‘degenerate’ conics: a point,
a line, or two intersecting lines.

We will focus the discussion on the non-degenerate cases: circles, parabolas, ellipses, and hyperbo-
las, in that order. To determine equations which describe these curves, we will make use of their
definitions in terms of distances.
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7.2 Circles

Recall from geometry that a circle can be determined by fixing a point (called the center) and a
positive number (called the radius) as follows.

Definition 7.1. A circle with center (h, k) and radius r > 0 is the set of all points (x, y) in the
plane whose distance to (h, k) is r.

(h, k)

r

(x, y)

From the picture, we see that a point (x, y) is on the circle if and only if its distance to (h, k) is r.
We express this relationship algebraically using the Distance Formula, Equation 1.1, as

r =
√

(x− h)2 + (y − k)2

By squaring both sides of this equation, we get an equivalent equation (since r > 0) which gives us
the standard equation of a circle.

Equation 7.1. The Standard Equation of a Circle: The equation of a circle with center
(h, k) and radius r > 0 is (x− h)2 + (y − k)2 = r2.

Example 7.2.1. Write the standard equation of the circle with center (−2, 3) and radius 5.

Solution. Here, (h, k) = (−2, 3) and r = 5, so we get

(x− (−2))2 + (y − 3)2 = (5)2

(x+ 2)2 + (y − 3)2 = 25

Example 7.2.2. Graph (x+ 2)2 + (y − 1)2 = 4. Find the center and radius.

Solution. From the standard form of a circle, Equation 7.1, we have that x+2 is x−h, so h = −2
and y − 1 is y − k so k = 1. This tells us that our center is (−2, 1). Furthermore, r2 = 4, so r = 2.
Thus we have a circle centered at (−2, 1) with a radius of 2. Graphing gives us
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x

y

−4 −3 −2 −1 1
−1

1

2

3

4

If we were to expand the equation in the previous example and gather up like terms, instead of the
easily recognizable (x+ 2)2 + (y − 1)2 = 4, we’d be contending with x2 + 4x+ y2 − 2y + 1 = 0. If
we’re given such an equation, we can complete the square in each of the variables to see if it fits
the form given in Equation 7.1 by following the steps given below.

To Write the Equation of a Circle in Standard Form

1. Group the same variables together on one side of the equation and position the constant on
the other side.

2. Complete the square on both variables as needed.

3. Divide both sides by the coefficient of the squares. (For circles, they will be the same.)

Example 7.2.3. Complete the square to find the center and radius of 3x2− 6x+ 3y2 + 4y− 4 = 0.

Solution.

3x2 − 6x+ 3y2 + 4y − 4 = 0

3x2 − 6x+ 3y2 + 4y = 4 add 4 to both sides

3
(
x2 − 2x

)
+ 3

(
y2 +

4

3
y

)
= 4 factor out leading coefficients

3
(
x2 − 2x+ 1

)
+ 3

(
y2 +

4

3
y +

4

9

)
= 4 + 3(1) + 3

(
4

9

)
complete the square in x, y

3(x− 1)2 + 3

(
y +

2

3

)2

=
25

3
factor

(x− 1)2 +

(
y +

2

3

)2

=
25

9
divide both sides by 3

From Equation 7.1, we identify x− 1 as x− h, so h = 1, and y+ 2
3 as y− k, so k = −2

3 . Hence, the
center is (h, k) =

(
1,−2

3

)
. Furthermore, we see that r2 = 25

9 so the radius is r = 5
3 .

It is possible to obtain equations like (x− 3)2 + (y+ 1)2 = 0 or (x− 3)2 + (y+ 1)2 = −1, neither of
which describes a circle. (Do you see why not?) The reader is encouraged to think about what, if
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any, points lie on the graphs of these two equations. The next example uses the Midpoint Formula,
Equation 1.2, in conjunction with the ideas presented so far in this section.

Example 7.2.4. Write the standard equation of the circle which has (−1, 3) and (2, 4) as the
endpoints of a diameter.

Solution. We recall that a diameter of a circle is a line segment containing the center and two
points on the circle. Plotting the given data yields

x

y

(h, k)

r

−2 −1 1 2 3

1

2

3

4

Since the given points are endpoints of a diameter, we know their midpoint (h, k) is the center of
the circle. Equation 1.2 gives us

(h, k) =

(
x1 + x2

2
,
y1 + y2

2

)
=

(
−1 + 2

2
,
3 + 4

2

)
=

(
1

2
,
7

2

)
The diameter of the circle is the distance between the given points, so we know that half of the
distance is the radius. Thus,

r =
1

2

√
(x2 − x1)

2 + (y2 − y1)
2

=
1

2

√
(2− (−1))2 + (4− 3)2

=
1

2

√
32 + 12

=

√
10

2

Finally, since

(√
10

2

)2

=
10

4
, our answer becomes

(
x− 1

2

)2

+

(
y − 7

2

)2

=
10

4
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We close this section with the most important1 circle in all of mathematics: the Unit Circle.

Definition 7.2. The Unit Circle is the circle centered at (0, 0) with a radius of 1. The standard
equation of the Unit Circle is x2 + y2 = 1.

Example 7.2.5. Find the points on the unit circle with y-coordinate

√
3

2
.

Solution. We replace y with

√
3

2
in the equation x2 + y2 = 1 to get

x2 + y2 = 1

x2 +

(√
3

2

)2

= 1

3

4
+ x2 = 1

x2 =
1

4

x = ±
√

1

4

x = ±1

2

Our final answers are

(
1

2
,

√
3

2

)
and

(
−1

2
,

√
3

2

)
.

1While this may seem like an opinion, it is indeed a fact.



404 Hooked on Conics

7.2.1 Exercises

1. Find the standard equation of the circle given the center and radius and sketch its graph.

(a) Center (−1,−5), radius 10

(b) Center (4,−2), radius 3

(c) Center
(
−3, 7

13

)
, radius 1

2

(d) Center (π, e2), radius 3
√

91

(e) Center (5,−9), radius ln(8)

(f) Center
(
−e,
√

2
)
, radius π

2. Complete the square in order to put the equation into standard form. Identify the center and
the radius or explain why the equation does not represent a circle.

(a) x2 − 4x+ y2 + 10y = −25

(b) −2x2 − 36x− 2y2 − 112 = 0

(c) x2 + y2 + 8x− 10y − 1 = 0

(d) x2 + y2 + 5x− y − 1 = 0

(e) 4x2 + 4y2 − 24y + 36 = 0

(f) x2 + x+ y2 − 6
5y = 1

3. Find the standard equation of the circle which satisfies the following criteria:

(a) center (3, 5), passes through (−1,−2)

(b) center (3, 6), passes through (−1, 4)

(c) endpoints of a diameter: (3, 6) and (−1, 4)

(d) endpoints of a diameter:
(

1
2 , 4
)
,
(

3
2 ,−1

)
4. Verify the following points lie on the Unit Circle: (±1, 0), (0,±1),

(
±
√

2
2 ,±

√
2

2

)
,
(
±1

2 ,±
√

3
2

)
and

(
±
√

3
2 ,±

1
2

)
5. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot

tall platform making its overall height is 136 feet.2 Find an equation for the wheel assuming
that its center lies on the y-axis.

6. Find an equation for the function represented graphically by the top half of the Unit Circle.
Explain how the transformations is Section 1.8 can be used to produce a function whose graph
is either the top or bottom of an arbitrary circle.

7. Circles and semi-circles have been used many times throughout the book to illustrate specific
concepts. With the help of your classmates, find the Examples or Exercises in which a circle
or semi-circle was used to discuss the following.

(a) Symmetry (or lack thereof)

(b) The Vertical Line Test

(c) Local and absolute extrema

(d) Transformations

(e) Unusual steepness

8. Find a one-to-one function whose graph is half of a circle. (Hint: Think piecewise.)

2Source: Cedar Point’s webpage.

http://www.cedarpoint.com/public/park/rides/tranquil/giant_wheel.cfm
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7.2.2 Answers

1. (a) (x+ 1)2 + (y + 5)2 = 100

x

y

−5

−11 −1 9

−15

5

(b) (x− 4)2 + (y + 2)2 = 9

x

y

1 4 7

−5

−2

1

(c) (x+ 3)2 +
(
y − 7

13

)2
= 1

4

x

y

− 7
2
−3 − 5

2

1
26

7
13

27
26

(d) (x− π)2 +
(
y − e2

)2
= 91

2
3

x

y

π − 3√91
π

π + 3√91

e2 − 3√91

e2

e2 + 3√91

(e) (x− 5)2 + (y + 9)2 = (ln(8))2

x
y

5− ln(8) 5 5 + ln(8)

−9− ln(8)

−9

−9 + ln(8)

(f) (x+ e)2 +
(
y −
√

2
)2

= π2

x

y

−e− π −e −e + π

√
2− π

√
2

√
2 + π
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2. (a) (x− 2)2 + (y + 5)2 = 4
Center (2,−5), radius r = 2

(b) (x+ 9)2 + y2 = 25
Center (−9, 0), radius r = 5

(c) (x+ 4)2 + (y − 5)2 = 42
Center (−4, 5), radius r =

√
42

(d)
(
x+ 5

2

)2
+
(
y − 1

2

)2
= 30

4

Center
(
−5

2 ,
1
2

)
, radius r =

√
30
2

(e) x2 + (y − 3)2 = 0
This is not a circle.

(f)
(
x+ 1

2

)2
+
(
y − 3

5

)2
= 161

100

Center
(
−1

2 ,
3
5

)
, radius r =

√
161
10

3. (a) (x− 3)2 + (y − 5)2 = 65

(b) (x− 3)2 + (y − 6)2 = 20

(c) (x− 1)2 + (y − 5)2 = 5

(d) (x− 1)2 +
(
y − 3

2

)2
= 13

2

5. x2 + (y − 72)2 = 4096
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7.3 Parabolas

We have already learned that the graph of a quadratic function f(x) = ax2 + bx + c (a 6= 0) is
called a parabola. To our surprise and delight, we may also define parabolas in terms of distance.

Definition 7.3. Let F be a point in the plane and D be a line not containing F . A parabola is
the set of all points equidistant from F and D. The point F is called the focus of the parabola
and the line D is called the directrix of the parabola.

Schematically, we have the following.

F

D

V

Each dashed line from the point F to a point on the curve has the same length as the dashed line
from the point on the curve to the line D. The point suggestively labeled V is, as you should
expect, the vertex. The vertex is the point on the parabola closest to the focus.

We want to use only the distance definition of parabola to derive the equation of a parabola and,
if all is right with the universe, we should get an expression much like those studied in Section 2.3.
Let p denote the directed1 distance from the vertex to the focus, which by definition is the same as
the distance from the vertex to the directrix. For simplicity, assume that the vertex is (0, 0) and
that the parabola opens upwards. Hence, the focus is (0, p) and the directrix is the line y = −p.
Our picture becomes

(0, p)

x

y

y = −p

(x, y)

(x,−p)

(0, 0)

From the definition of parabola, we know the distance from (0, p) to (x, y) is the same as the
distance from (x,−p) to (x, y). Using the Distance Formula, Equation 1.1, we get

1We’ll talk more about what ‘directed’ means later.
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√
(x− 0)2 + (y − p)2 =

√
(x− x)2 + (y − (−p))2√

x2 + (y − p)2 =
√

(y + p)2

x2 + (y − p)2 = (y + p)2 square both sides

x2 + y2 − 2py + p2 = y2 + 2py + p2 expand quantities

x2 = 4py gather like terms

Solving for y yields y = x2

4p , which is a quadratic function of the form found in Equation 2.4 with

a = 1
4p and vertex (0, 0).

We know from previous experience that if the coefficient of x2 is negative, the parabola opens
downwards. In the equation y = x2

4p this happens when p < 0. In our formulation, we say that p is
a ‘directed distance’ from the vertex to the focus: if p > 0, the focus is above the vertex; if p < 0,
the focus is below the vertex. The focal length of a parabola is |p|.

What if we choose to place the vertex at an arbitrary point (h, k)? We can either use transformations
(vertical and horizontal shifts from Section 1.8) or re-derive the equation from Definition 7.3 to
arrive at the following.

Equation 7.2. The Standard Equation of a Verticala Parabola: The equation of a (vertical)
parabola with vertex (h, k) and focal length |p| is

(x− h)2 = 4p(y − k)

If p > 0, the parabola opens upwards; if p < 0, it opens downwards.

aThat is, a parabola which opens either upwards or downwards.

Notice that in the standard equation of the parabola above, only one of the variables, x, is squared.
This is a quick way to distinguish an equation of a parabola from that of a circle because in the
equation of a circle, both variables are squared.

Example 7.3.1. Graph (x+ 1)2 = −8(y − 3). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.2. Here, x − h is x + 1 so h = −1,
and y−k is y−3 so k = 3. Hence, the vertex is (−1, 3). We also see that 4p = −8 so p = −2. Since
p < 0, the focus will be below the vertex and the parabola will open downwards. The distance from
the vertex to the focus is |p| = 2, which means the focus is 2 units below the vertex. If we start at
(−1, 3) and move down 2 units, we arrive at the focus (−1, 1). The directrix, then, is 2 units above
the vertex and if we move 2 units up from (−1, 3), we’d be on the horizontal line y = 5.
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x

y

−6 −5 −4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

5

Of all of the information requested in the previous example, only the vertex is part of the graph
of the parabola. So in order to get a sense of the actual shape of the graph, we need some more
information. While we could plot a few points randomly, a more useful measure of how wide a
parabola opens is the length of the parabola’s latus rectum.2 The latus rectum of a parabola
is the line segment parallel to the directrix which contains the focus. The endpoints of the latus
rectum are, then, two points on ‘opposite’ sides of the parabola. Graphically, we have the following.

F

the latus rectum

D

V

It turns out3 that the length of the latus rectum, called the focal diameter of the parabola is |4p|,
which, in light of Equation 7.2, is easy to find. In our last example, for instance, when graphing
(x + 1)2 = −8(y − 3), we can use the fact that the focal diameter is | − 8| = 8, which means the
parabola is 8 units wide at the focus, to help generate a more accurate graph by plotting points 4
units to the left and right of the focus.

Example 7.3.2. Find the standard form of the parabola with focus (2, 1) and directrix y = −4.

Solution. Sketching the data yields,

2No, I’m not making this up.
3Consider this an exercise to show what follows.
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x

y

The vertex lies on this vertical line

midway between the focus and the directrix

−1 1 2 3

−3

−2

−1

1

From the diagram, we see the parabola opens upwards. (Take a moment to think about it if you
don’t see that immediately.) Hence, the vertex lies below the focus and has an x-coordinate of 2.
To find the y-coordinate, we note that the distance from the focus to the directrix is 1− (−4) = 5,
which means the vertex lies 5/2 units (halfway) below the focus. Starting at (2, 1) and moving
down 5/2 units leaves us at (2,−3/2), which is our vertex. Since the parabola opens upwards, we
know p is positive. Thus p = 5/2. Plugging all of this data into Equation 7.2 give us

(x− 2)2 = 4

(
5

2

)(
y −

(
−3

2

))
(x− 2)2 = 10

(
y +

3

2

)

If we interchange the roles of x and y, we can produce ‘horizontal’ parabolas: parabolas which open
to the left or to the right. The directrices4 of such animals would be vertical lines and the focus
would either lie to the left or to the right of the vertex. A typical ‘horizontal’ parabola is sketched
below.

F

D

V

4plural of ‘directrix’
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Equation 7.3. The Standard Equation of a Horizontal Parabola: The equation of a
(horizontal) parabola with vertex (h, k) and focal length |p| is

(y − k)2 = 4p(x− h)

If p > 0, the parabola opens to the right; if p < 0, it opens to the left.

Example 7.3.3. Graph (y − 2)2 = 12(x+ 1). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.3. Here, x − h is x + 1 so h = −1,
and y − k is y − 2 so k = 2. Hence, the vertex is (−1, 2). We also see that 4p = 12 so p = 3.
Since p > 0, the focus will be the right of the vertex and the parabola will open to the right. The
distance from the vertex to the focus is |p| = 3, which means the focus is 3 units to the right. If
we start at (−1, 2) and move right 3 units, we arrive at the focus (2, 2). The directrix, then, is 3
units to the left of the vertex and if we move left 3 units from (−1, 2), we’d be on the vertical line
x = −4. Since the focal diameter is |4p| = 12, the parabola is 12 units wide at the focus, and thus
there are points 6 units above and below the focus on the parabola.

x

y

−5 −4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

5

6

7

8

As with circles, not all parabolas will come to us in the forms in Equations 7.2 or 7.3. If we
encounter an equation with two variables in which exactly one variable is squared, we can attempt
to put the equation into a standard form using the following steps.

To Write the Equation of a Parabola in Standard Form

1. Group the variable which is squared on one side of the equation and position the non-squared
variable and the constant on the other side.

2. Complete the square if necessary and divide by the coefficient of the perfect square.

3. Factor out the coefficient of the non-squared variable from it and the constant.
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Example 7.3.4. Consider the equation y2 + 4y + 8x = 4. Put this equation into standard form
and graph the parabola. Find the vertex, focus, and directrix.

Solution. We need to get a perfect square (in this case, using y) on the left-hand side of the
equation and factor out the coefficient of the non-squared variable (in this case, the x) on the
other.

y2 + 4y + 8x = 4

y2 + 4y = −8x+ 4

y2 + 4y + 4 = −8x+ 4 + 4 complete the square in y only

(y + 2)2 = −8x+ 8 factor

(y + 2)2 = −8(x− 1)

Now that the equation is in the form given in Equation 7.3, we see that x−h is x−1 so h = 1, and
y − k is y + 2 so k = −2. Hence, the vertex is (1,−2). We also see that 4p = −8 so that p = −2.
Since p < 0, the focus will be the left of the vertex and the parabola will open to the left. The
distance from the vertex to the focus is |p| = 2, which means the focus is 2 units to the left of 1, so
if we start at (1,−2) and move left 2 units, we arrive at the focus (−1,−2). The directrix, then, is
2 units to the right of the vertex, so if we move right 2 units from (1,−2), we’d be on the vertical
line x = 3. Since the focal diameter is |4p| is 8, the parabola is 8 units wide at the focus, so there
are points 4 units above and below the focus on the parabola.

x

y

−2 −1 1 2

−6

−5

−4

−3

−2

−1

1

2

In studying quadratic functions, we have seen parabolas used to model physical phenomena such as
the trajectories of projectiles. Other applications of the parabola concern its ‘reflective property’
which necessitates knowing about the focus of a parabola. For example, many satellite dishes are
formed in the shape of a paraboloid of revolution as depicted below.



7.3 Parabolas 413

Every cross section through the vertex of the paraboloid is a parabola with the same focus. To see
why this is important, imagine the dashed lines below as electromagnetic waves heading towards
a parabolic dish. It turns out that the waves reflect off the parabola and concentrate at the focus
which then becomes the optimal place for the receiver. If, on the other hand, we imagine the dashed
lines as emanating from the focus, we see that the waves are reflected off the parabola in a coherent
fashion as in the case in a flashlight. Here, the bulb is placed at the focus and the light rays are
reflected off a parabolic mirror to give directional light.

F

Example 7.3.5. A satellite dish is to be constructed in the shape of a paraboloid of revolution. If
the receiver placed at the focus is located 2 ft above the vertex of the dish, and the dish is to be
12 feet wide, how deep will the dish be?

Solution. One way to approach this problem is to determine the equation of the parabola sug-
gested to us by this data. For simplicity, we’ll assume the vertex is (0, 0) and the parabola opens
upwards. Our standard form for such a parabola is x2 = 4py. Since the focus is 2 units above the
vertex, we know p = 2, so we have x2 = 8y. Visually,
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?

(6, y)

y

x

12 units wide

−6 6

2

Since the parabola is 12 feet wide, we know the edge is 6 feet from the vertex. To find the depth,
we are looking for the y value when x = 6. Substituting x = 6 into the equation of the parabola
yields 62 = 8y or y = 36/8 = 9/2 = 4.5. Hence, the dish will be 9/2 or 4.5 feet deep.
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7.3.1 Exercises

1. Sketch the graph of the given parabola. Find the vertex, focus and directrix. Include the
endpoints of the latus rectum in your sketch.

(a) (y − 2)2 = −12(x+ 3)

(b) (y + 4)2 = 4x

(c) (x− 3)2 = −16y

(d)
(
x+ 7

3

)2
= 2

(
y + 5

2

)
(e) (x− 1)2 = 4(y + 3)

(f) (x+ 2)2 = −20(y − 5)

(g) (y − 4)2 = 18(x− 2)

(h)
(
y + 3

2

)2
= −7

(
x+ 9

2

)
2. Put the equation into standard form and identify the vertex, focus and directrix.

(a) y2 − 10y − 27x+ 133 = 0

(b) 25x2 + 20x+ 5y − 1 = 0

(c) x2 + 2x− 8y + 49 = 0

(d) 2y2 + 4y + x− 8 = 0

(e) x2 − 10x+ 12y + 1 = 0

(f) 3y2 − 27y + 4x+ 211
4 = 0

3. Find an equation for the parabola which fits the given criteria.

(a) Vertex (7, 0), focus (0, 0)

(b) Vertex (−8,−9), Both (0, 0), (−16, 0) are points on the curve

(c) Focus (10, 1), directrix x = 5

(d) The endpoints of latus rectum are (−2,−7) and (4,−7)

4. The mirror in Carl’s flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in
diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus
of the mirror?

5. A parabolic Wi-Fi antenna is constructed by taking a flat sheet of metal and bending it into
a parabolic shape.5 If the cross section of the antenna is a parabola which is 45 centimeters
wide and 25 centimeters deep, where receiver be placed to maximize reception?

6. The graphs of vertical parabolas represent y as a function of x, but those of horizontal
parabolas do not (Why?) However, the top half or bottom half of a horizontal parabola does
form the graph of a function which we have studied thoroughly. To what functions am I
referring and where in the text have they appeared? How could we use the transformations
in Section 1.8 to better understand the graphs of horizontal parabolas?

7. A popular novelty item is the ‘mirage bowl.’ Follow this link to see another startling appli-
cation of the reflective property of the parabola.

8. With the help of your classmates, research spinning liquid mirrors. To get you started, check
out this website.

5This shape is called a ‘parabolic cylinder.’

http://spie.org/etop/2007/etop07methodsV.pdf
http://www.astro.ubc.ca/LMT/lzt/
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7.3.2 Answers

1. (a) (y − 2)2 = −12(x+ 3)

Vertex (−3, 2)

Focus (−6, 2)

Directrix x = 0

Endpoints of latus rectum (−6, 8), (−6,−4)

x

y

−7−6−5−4−3−2−1

−4

−3

−2

−1

1

2

3

4

5

6

7

8

(b) (y + 4)2 = 4x

Vertex (0,−4)

Focus (1,−4)

Directrix x = −1

Endpoints of latus rectum (1,−2), (1,−6)

x

y

−1 1 2 3 4

−8

−7

−6

−5

−4

−3

−2

−1

(c) (x− 3)2 = −16y

Vertex (3, 0)

Focus (3,−4)

Directrix y = 4

Endpoints of latus rectum (−5,−4), (11,−4)
x

y

−5−4−3−2−1 1 2 3 4 5 6 7 8 9 10 11

−4

−3

−2

−1

1

2

3

4

(d)
(
x+ 7

3

)2
= 2

(
y + 5

2

)
Vertex

(
− 7

3 ,−
5
2

)
Focus

(
− 7

3 ,−2
)

Directrix y = −3

Endpoints of latus rectum
(
− 10

3 ,−2
)
,
(
− 4

3 ,−2
)

x

y

−5 −4 −3 −2 −1

−3

−2

−1

1

2
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(e) (x− 1)2 = 4(y + 3)

Vertex (1,−3)

Focus (1,−2)

Directrix y = −4

Endpoints of latus rectum (3,−2), (−1,−2)

x

y

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

(f) (x+ 2)2 = −20(y − 5)

Vertex (−2, 5)

Focus (−2, 0)

Directrix y = 10

Endpoints of latus rectum (−12, 0), (8, 0)

x

y

−12 −10 −8 −6 −4 −2 2 4 6 8

1

2

3

4

5

6

7

8

9

10

(g) (y − 4)2 = 18(x− 2)

Vertex (2, 4)

Focus
(
13
2 , 4

)
Directrix x = − 5

2

Endpoints of latus rectum
(
13
2 ,−5

)
,
(
13
2 , 13

)

x

y

−1 1 2 3 4 5 6 7

−5

−3

−1

1

3

5

7

9

11

13

(h)
(
y + 3

2

)2
= −7

(
x+ 9

2

)
Vertex

(
− 9

2 ,−
3
2

)
Focus

(
− 25

4 ,−
3
2

)
Directrix x = − 11

4

Endpoints of latus rectum
(
− 25

4 , 2
)
,
(
− 25

4 ,−5
) x

y

−5 −4 −3 −2 −1

−5

−4

−3

−2

−1

1

2
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2. (a) (y − 5)2 = 27(x− 4)
Vertex (4, 5)
Focus

(
43
4 , 5

)
Directrix x = −11

4

(b)
(
x+ 2

5

)2
= −1

5(y − 1)
Vertex

(
−2

5 , 1
)

Focus
(
−2

5 ,
19
20

)
Directrix y = 21

20

(c) (x+ 1)2 = 8(y − 6)
Vertex (−1, 6)
Focus (−1, 8)
Directrix y = 4

(d) (y + 1)2 = −1
2(x− 10)

Vertex (10,−1)
Focus

(
79
8 ,−1

)
Directrix x = 81

8

(e) (x− 5)2 = −12(y − 2)
Vertex (5, 2)
Focus (5,−1)
Directrix y = 5

(f)
(
y − 9

2

)2
= −4

3(x− 2)
Vertex

(
2, 9

2

)
Focus

(
5
3 ,

9
2

)
Directrix x = 7

3

3. (a) y2 = −28(x− 7)

(b) (x+ 8)2 = 64
9 (y + 9)

(c) (y − 1)2 = 10
(
x− 15

2

)
(d) (x− 1)2 = 6

(
y + 17

2

)
or

(x− 1)2 = −6
(
y + 11

2

)

4. The bulb should be placed 0.625 centimeters above the vertex of the mirror. (This actually
checks out, folks!)

5. The receiver should be placed 5.0625 centimeters above the vertex of the cross section of the
antenna.
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7.4 Ellipses

In the definition of a circle, Definition 7.1, we fixed a point called the center and considered all
of the points which were a fixed distance r from that one point. For our next conic section, the
ellipse, we fix two distinct points and a distance d to use in our definition.

Definition 7.4. Given two distinct points F1 and F2 in the plane and a fixed distance d, an
ellipse is the set of all points (x, y) in the plane such that the sum of the distance from F1 to
(x, y) and the distance from F2 to (x, y) is d. The points F1 and F2 are called the focia of the
ellipse.

athe plural of ‘focus’

(x, y)

d1 d2

F1 F2

d1 + d2 = d for all (x, y) on the ellipse

We may imagine taking a length of string and anchoring it to two points on a piece of paper. The
curve traced out by taking a pencil and moving it so the string is always taut is an ellipse.

The center of the ellipse is the midpoint of the line segment connecting the two foci. The major
axis of the ellipse is the line segment connecting two opposite ends of the ellipse which also contains
the center and foci. The minor axis of the ellipse is the line segment connecting two opposite
ends of the ellipse which contains the center but is perpendicular to the major axis. The vertices
of an ellipse are the points of the ellipse which lie on the major axis. Notice that the center is also
the midpoint of the major axis, hence it is the midpoint of the vertices. In pictures we have,
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F1 F2

V2V1

C

Major Axis

M
in

o
r

A
x
is

An ellipse with center C; foci F1, F2; and vertices V1, V2

Note that the major axis is the longer of the two axes through the center, and likewise, the minor
axis is the shorter of the two. In order to derive the standard equation of an ellipse, we assume that
the ellipse has its center at (0, 0), its major axis along the x-axis, and has foci (c, 0) and (−c, 0)
and vertices (−a, 0) and (a, 0). We will label the y-intercepts of the ellipse as (0, b) and (0,−b) (We
assume a, b, and c are all positive numbers.) Schematically,

(−c, 0) (c, 0)(−a, 0) (a, 0)

(0, b)

(0,−b)

(x, y)

x

y

Note that since (a, 0) is on the ellipse, it must satisfy the conditions of Definition 7.4. That is, the
distance from (−c, 0) to (a, 0) plus the distance from (c, 0) to (a, 0) must equal the fixed distance
d. Since all of these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0) + distance from (c, 0) to (a, 0) = d

(a+ c) + (a− c) = d

2a = d
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In other words, the fixed distance d mentioned in the definition of the ellipse is none other than
the length of the major axis. We now use that fact (0, b) is on the ellipse, along with the fact that
d = 2a to get

distance from (−c, 0) to (0, b) + distance from (c, 0) to (0, b) = 2a√
(0− (−c))2 + (b− 0)2 +

√
(0− c)2 + (b− 0)2 = 2a√
b2 + c2 +

√
b2 + c2 = 2a

2
√
b2 + c2 = 2a√
b2 + c2 = a

From this, we get a2 = b2 + c2, or b2 = a2 − c2, which will prove useful later. Now consider a point
(x, y) on the ellipse. Applying Definition 7.4, we get

distance from (−c, 0) to (x, y) + distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 +

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a

In order to make sense of this situation, we need to do some rearranging, squaring, and more
rearranging.1√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a√
(x+ c)2 + y2 = 2a−

√
(x− c)2 + y2(√

(x+ c)2 + y2
)2

=
(

2a−
√

(x− c)2 + y2
)2

(x+ c)2 + y2 = 4a2 − 4a
√

(x− c)2 + y2 + (x− c)2 + y2

4a
√

(x− c)2 + y2 = 4a2 + (x− c)2 − (x+ c)2

4a
√

(x− c)2 + y2 = 4a2 − 4cx

a
√

(x− c)2 + y2 = a2 − cx(
a
√

(x− c)2 + y2
)2

=
(
a2 − cx

)2
a2
(
(x− c)2 + y2

)
= a4 − 2a2cx+ c2x2

a2x2 − 2a2cx+ a2c2 + a2y2 = a4 − 2a2cx+ c2x2

a2x2 − c2x2 + a2y2 = a4 − a2c2(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
We are nearly finished. Recall that b2 = a2 − c2 so that(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
b2x2 + a2y2 = a2b2

x2

a2
+
y2

b2
= 1

1In other words, tons and tons of Intermediate Algebra. Stay sharp, this is not for the faint of heart.
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This equation is for an ellipse centered at the origin. If the ellipse were centered at a point (h, k),
we would get the following

Equation 7.4. The Standard Equation of an Ellipse: For positive unequal numbers a and
b, the equation of an ellipse with center (h, k) is

(x− h)2

a2
+

(y − k)2

b2
= 1

Some remarks about Equation 7.4 are in order. First note that the values a and b determine
how far in the x and y directions, respectively, one counts from the center to arrive at points on
the ellipse. Also take note that if a > b, then we have an ellipse whose major axis is horizontal,
and hence, the foci lie to the left and right of the center. In this case, as we’ve seen in the
derivation, the distance from the center to the focus, c, can be found by c =

√
a2 − b2. If b > a,

the roles of the major and minor axes are reversed, and the foci lie above and below the center.
In this case, c =

√
b2 − a2. In either case, c is the distance from the center to each focus, and

c =
√

bigger denominator− smaller denominator. Finally, it is worth mentioning that if we take
the standard equation of a circle, Equation 7.1, and divide both sides by r2, we get

Equation 7.5. The Alternate Standard Equation of a Circle: The equation of a circle
with center (h, k) and radius r > 0 is

(x− h)2

r2
+

(y − k)2

r2
= 1

Notice the similarity between Equation 7.4 and Equation 7.5. Both equations involve a sum of
squares equal to 1; the difference is that with a circle, the denominators are the same, and with an
ellipse, they are different. If we take a transformational approach, we can consider both equations
as shifts and stretches of the Unit Circle x2 + y2 = 1 in Definition 7.2. Replacing x with (x − h)
and y with (y−k) causes the usual horizontal and vertical shifts. Replacing x with x

a and y with y
b

causes the usual vertical and horizontal stretches. In other words, it is perfectly fine to think of an
ellipse as the deformation of a circle in which the circle is stretched farther in one direction than
the other.

Example 7.4.1. Graph
(x+ 1)2

9
+

(y − 2)2

25
= 1. Find the center, the lines which contain the major

and minor axes, the vertices, and the foci.

Solution. We see that this equation is in the standard form of Equation 7.4. Here x− h is x+ 1
so h = −1, and y−k is y−2 so k = 2. Hence, our ellipse is centered at (−1, 2). We see that a2 = 9
so a = 3, and b2 = 25 so b = 5. This means that we move 3 units left and right from the center
and 5 units up and down from the center to arrive at points on the ellipse. As an aid to sketching,
we draw a rectangle matching this description, called a guide rectangle, and sketch the ellipse
inside this rectangle as seen below on the left.



7.4 Ellipses 423

x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

Since we moved farther in the y direction than in the x direction, the major axis will lie along
the vertical line x = −1, which means the minor axis lies along the horizontal line, y = 2. The
vertices are the points on the ellipse which lie along the major axis so in this case, they are the
points (−1, 7) and (−1,−3). (Notice that these are two of the points we plotted when drawing the
ellipse.) To find the foci, we find c =

√
25− 9 =

√
16 = 4, which means the foci lie 4 units from the

center. Since the major axis is vertical, the foci lie 4 units above and below the center, at (−1,−2)
and (−1, 6). Plotting all this information gives the graph seen above on the right.

Example 7.4.2. Find the equation of the ellipse with foci (2, 1) and (4, 1) and vertex (0, 1).

Solution. Plotting the data given to us, we have

x

y

1 2 3 4 5

1

From this sketch, we know that the major axis is horizontal, meaning a > b. Since the center is the
midpoint of the foci, we know it is (3, 1). Since one vertex is (0, 1) we have that a = 3, so a2 = 9.
All that remains is to find b2. To that end, we use the fact that c = 1 to get
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c =
√
a2 − b2

1 =
√

9− b2

12 =
(√

9− b2
)2

1 = 9− b2

b2 = 8

Substituting all of our findings into the equation
(x− h)2

a2
+

(y − k)2

b2
= 1, we get our final answer

to be
(x− 3)2

9
+

(y − 1)2

8
= 1.

As with circles and parabolas, an equation may be given which is an ellipse, but isn’t in the standard
form of Equation 7.4. In those cases, as with circles and parabolas before, we will need to massage
the given equation into the standard form.

To Write the Equation of an Ellipse in Standard Form

1. Group the same variables together on one side of the equation and position the constant on
the other side.

2. Complete the square in both variables as needed.

3. Divide both sides by the constant term so that the constant on the other side of the equation
becomes 1.

Example 7.4.3. Graph x2 + 4y2 − 2x+ 24y+ 33 = 0. Find the center, the lines which contain the
major and minor axes, the vertices, and the foci.

Solution. Since we have a sum of squares and the squared terms have unequal coefficients, it’s a
good bet we have an ellipse on our hands. (A parabola would have only one squared variable and
a circle would have the same coefficient on the squared terms.) We need to complete both squares,
and then divide, if necessary, to get the right-hand side equal to 1.

x2 + 4y2 − 2x+ 24y + 33 = 0

x2 − 2x+ 4y2 + 24y = −33

x2 − 2x+ 4
(
y2 + 6y

)
= −33(

x2 − 2x+ 1
)

+ 4
(
y2 + 6y + 9

)
= −33 + 1 + 4(9)

(x− 1)2 + 4(y + 3)2 = 4
(x− 1)2 + 4(y + 3)2

4
=

4

4
(x− 1)2

4
+ (y + 3)2 = 1

(x− 1)2

4
+

(y + 3)2

1
= 1
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Now that this equation is in the standard form of Equation 7.4, we see that x−h is x− 1 so h = 1,
and y − k is y + 3 so k = −3. Hence, our ellipse is centered at (1,−3). We see that a2 = 4 so
a = 2, and b2 = 1 so b = 1. This means we move 2 units left and right from the center and 1 unit
up and down from the center to arrive at points on the ellipse. Since we moved farther in the x
direction than in the y direction, the major axis will lie along the horizontal line y = −3, which
means the minor axis lies along the vertical line x = 1. The vertices are the points on the ellipse
which lie along the major axis so in this case, they are the points (−1,−3) and (3,−3). To find
the foci, we find c =

√
4− 1 =

√
3, which means the foci lie

√
3 units from the center. Since the

major axis is horizontal, the foci lie
√

3 units to the left and right of the center, at (1 −
√

3,−3)
and (1 +

√
3,−3). Plotting all of this information gives

x

y

1 2 3 4

−4

−3

−2

−1

As you come across ellipses in the homework exercises and in the wild, you’ll notice they come in
all shapes in sizes. Compare the two ellipses below.

Certainly, one ellipse is ‘rounder’ than the other. This notion of roundness is quantified below.

Definition 7.5. The eccentricity of an ellipse, denoted e, is the following ratio:

e =
distance from the center to a focus

distance from the center to a vertex

In an ellipse, the foci are closer to the center than the vertices, so 0 < e < 1. For the ellipse above
on the left, e ≈ 0.98; for the ellipse on the right, e ≈ 0.66. In general, the closer the eccentricity
is to 0, the more ‘circular’ the ellipse; the closer the eccentricity is to 1, the more ‘eccentric’ the
ellipse.
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Example 7.4.4. Find the equation of the ellipse whose vertices are (0,±5) with eccentricity e = 1
4 .

Solution. As before, we plot the data given to us

x

y

From this sketch, we know that the major axis is vertical, meaning b > a. With the vertices located
at (0,±5), we get b = 5 so b2 = 25. We also know that the center is (0, 0) because the center is
the midpoint of the vertices. All that remains is to find a2. To that end, we use the fact that the
eccentricity e = 1

4 which means

e =
distance from the center to a focus

distance from the center to a vertex
=
c

b
=
c

5
=

1

4

from which we get c = 5
4 . To get a2, we use the fact that c =

√
b2 − a2

c =
√
b2 − a2

5
4 =

√
25− a2(

5
4

)2
=

(√
25− a2

)2

25
16 = 25− a2

a2 = 25− 25
16

a2 = 375
16

Substituting all of our findings into the equation
(x− h)2

a2
+

(y − k)2

b2
= 1, yields our final answer

16x2

375
+
y2

25
= 1.

As with parabolas, ellipses have a reflective property. If we imagine the dashed lines below as sound
waves, then the waves emanating from one focus reflect off the top of the ellipse and head towards
the other focus. Such geometry is exploited in the construction of so-called ‘Whispering Galleries’.
If a person whispers at one focus, a person standing at the other focus will hear the first person as
if they were standing right next to them.
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F1 F2

Example 7.4.5. Jamie and Jason want to exchange secrets (terrible secrets) from across a crowded
whispering gallery. Recall that a whispering gallery is a room which, in cross section, is half of an
ellipse. If the room is 40 feet high at the center and 100 feet wide at the floor, how far from the
outer wall should each of them stand so that they will be positioned at the foci of the ellipse?

Solution. Graphing the data yields

x

y

100 units wide

40 units tall

It’s most convenient to imagine this ellipse centered at (0, 0). Since the ellipse is 100 units wide
and 40 units tall, we get a = 50 and b = 40. Hence, our ellipse has the equation

x2

502
+

y2

402
= 1.

We’re looking for the foci, and we get c =
√

502 − 402 =
√

900 = 30, so that the foci are 30 units
from the center. That means they are 50 − 30 = 20 units from the vertices. Hence, Jason and
Jamie should stand 20 feet from opposite ends of the gallery.
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7.4.1 Exercises

1. Graph the ellipse. Find the center, the lines which contain the major and minor axes, the
vertices, the foci and the eccentricity.

(a)
x2

169
+
y2

25
= 1

(b)
(x− 2)2

4
+

(y + 3)2

9
= 1

(c)
(x+ 5)2

16
+

(y − 4)2

1
= 1

(d)
(x− 1)2

10
+

(y − 3)2

11
= 1

(e)
(x− 1)2

9
+

(y + 3)2

4
= 1

(f)
(x+ 2)2

16
+

(y − 5)2

20
= 1

(g)
(x− 4)2

8
+

(y − 2)2

18
= 1

2. Put the equation in standard form. Find the center, the lines which contain the major and
minor axes, the vertices, the foci and the eccentricity.

(a) 12x2 + 3y2 − 30y + 39 = 0

(b) 5x2 + 18y2 − 30x+ 72y + 27 = 0

(c) x2 − 2x+ 2y2 − 12y + 3 = 0

(d) 9x2 + 4y2 − 4y − 8 = 0

(e) 9x2 + 25y2 − 54x− 50y − 119 = 0

(f) 6x2 + 5y2 − 24x+ 20y + 14 = 0

3. Find the standard form of the equation of the ellipse which has the given properties.

(a) Center (3, 7), Vertex (3, 2), Focus (3, 3)

(b) All points on the ellipse are in Quadrant IV except (0,−9) and (8, 0)2

(c) Foci (0,±4), Point on curve
(

2, 5
√

5
3

)
(d) Vertex (−10, 5), Focus (−2, 5), Eccentricity 1

2

4. The Earth’s orbit around the sun is an ellipse with the sun at one focus and eccentricity
e ≈ 0.0167. The length of the semimajor axis (that is, half of the major axis) is defined
to be 1 astronomical unit (AU). The vertices of the elliptical orbit are given special names:
‘aphelion’ is the vertex farther from the sun, and ‘perihelion’ is the vertex closest to the sun.
Find the distance in AU between the sun and aphelion and the distance in AU between the
sun and perihelion.

5. The graph of an ellipse clearly fails the Vertical Line Test, Theorem 1.1, so the equation of
an ellipse does not define y as a function of x. However, much like with circles and horizontal
parabolas, we can split an ellipse into a top half and a bottom half, each of which would
indeed represent y as a function of x. With the help of your classmates, use your calculator
to graph the ellipses given in Exercise 1 above. What difficulties arise when you plot them
on the calculator?

2One might also say that the ellipse is “tangent to the axes” at those two points.
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6. With the help of your classmates, research whispering galleries and other ways ellipses have
been used in architecture and design.

7. With the help of your classmates, research “extracorporeal shock-wave lithotripsy”. It uses
the reflective property of the ellipsoid to dissolve kidney stones.
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7.4.2 Answers

1. (a)
x2

169
+
y2

25
= 1

Center (0, 0)
Major axis along y = 0
Minor axis along x = 0
Vertices (13, 0), (−13, 0)
Foci (12, 0), (−12, 0)

e =
12

13

x

y

−13 −1 1 13

−5

−4

−3

−2

−1

1

2

3

4

5

(b)
(x− 2)2

4
+

(y + 3)2

9
= 1

Center (2,−3)
Major axis along x = 2
Minor axis along y = −3
Vertices (2, 0), (2,−6)
Foci (2,−3 +

√
5), (2,−3−

√
5)

e =

√
5

3

x

y

1 2 3 4

−6

−5

−4

−3

−2

−1

(c)
(x+ 5)2

16
+

(y − 4)2

1
= 1

Center (−5, 4)
Major axis along y = 4
Minor axis along x = −5
Vertices (−9, 4), (−1, 4)
Foci (−5 +

√
15, 4), (−5−

√
15, 4)

e =

√
15

4

x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1

1

2

3

4

(d)
(x− 1)2

10
+

(y − 3)2

11
= 1

Center (1, 3)
Major axis along x = 1
Minor axis along y = 3
Vertices (1, 3 +

√
11), (1, 3−

√
11)

Foci (1, 2), (1, 4)

e =

√
11

11

x

y

−2 −1 1 2 3 4

1

2

3

4

5

6
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(e)
(x− 1)2

9
+

(y + 3)2

4
= 1

Center (1,−3)
Major axis along y = −3
Minor axis along x = 1
Vertices (4,−3), (−2,−3)
Foci (1 +

√
5,−3), (1−

√
5,−3)

e =

√
5

3

x

y

−2 −1 1 2 3 4

−5

−4

−3

−2

−1

(f)
(x+ 2)2

16
+

(y − 5)2

20
= 1

Center (−2, 5)
Major axis along x = −2
Minor axis along y = 5
Vertices (−2, 5 + 2

√
5), (−2, 5− 2

√
5)

Foci (−2, 7), (−2, 3)

e =

√
5

5

x

y

−6 −5 −4 −3 −2 −1 1 2

1

2

3

4

5

6

7

8

9

10

(g)
(x− 4)2

8
+

(y − 2)2

18
= 1

Center (4, 2)
Major axis along x = 4
Minor axis along y = 2
Vertices (4, 2 + 3

√
2), (4, 2− 3

√
2)

Foci (4, 2 +
√

10), (4, 2−
√

10)

e =

√
5

3

x

y

1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7
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2. (a)
x2

3
+

(y − 5)2

12
= 1

Center (0, 5)
Major axis along x = 0
Minor axis along y = 5
Vertices (0, 5− 2

√
3), (0, 5 + 2

√
3)

Foci (0, 2), (0, 8)

e =
√

3
2

(b)
(x− 3)2

18
+

(y + 2)2

5
= 1

Center (3,−2)
Major axis along y = −2
Minor axis along x = 3
Vertices (3− 3

√
2,−2), (3 + 3

√
2,−2)

Foci (3−
√

13,−2), (3 +
√

13,−2)

e =
√

26
6

(c)
(x− 1)2

16
+

(y − 3)2

8
= 1

Center (1, 3)
Major Axis along y = 3
Minor Axis along x = 1
Vertices (5, 3), (−3, 3)
Foci (1 + 2

√
2, 3), (1− 2

√
2, 3)

e =
√

2
2

(d)
x2

1
+

4
(
y − 1

2

)2
9

= 1

Center
(
0, 1

2

)
Major Axis along x = 0 (the y-axis)
Minor Axis along y = 1

2
Vertices (0, 2), (0,−1)

Foci
(

0, 1+
√

5
2

)
,
(

0, 1−
√

5
2

)
e =

√
5

3

(e)
(x− 3)2

25
+

(y − 1)2

9
= 1

Center (3, 1)
Major Axis along y = 1
Minor Axis along x = 3
Vertices (8, 1), (−2, 1)
Foci (7, 1), (−1, 1)
e = 4

5

(f)
(x− 2)2

5
+

(y + 2)2

6
= 1

Center (2,−2)
Major Axis along x = 2
Minor Axis along y = −2
Vertices

(
2,−2 +

√
6
)
, (2,−2−

√
6)

Foci (2,−1), (2,−3)

e =
√

6
6

3. (a)
(x− 3)2

9
+

(y − 7)2

25
= 1

(b)
(x− 8)2

64
+

(y + 9)2

81
= 1

(c)
x2

9
+
y2

25
= 1

(d)
(x− 6)2

256
+

(y − 5)2

192
= 1

4. Distance from the sun to aphelion ≈ 1.0167 AU.
Distance from the sun to perihelion ≈ 0.9833 AU.
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7.5 Hyperbolas

In the definition of an ellipse, Definition 7.4, we fixed two points called foci and looked at points
whose distances to the foci always added to a constant distance d. Those prone to syntactical
tinkering may wonder what, if any, curve we’d generate if we replaced added with subtracted.
The answer is a hyperbola.

Definition 7.6. Given two distinct points F1 and F2 in the plane and a fixed distance d, a
hyperbola is the set of all points (x, y) in the plane such that the absolute value of the difference
of the distances between the foci and (x, y) is d. The points F1 and F2 are called the foci of the
hyperbola.

(x1, y1)

(x2, y2)

F1 F2

In the figure above:

the distance from F1 to (x1, y1)− the distance from F2 to (x1, y1) = d

and

the distance from F2 to (x2, y2)− the distance from F1 to (x2, y2) = d

Note that the hyperbola has two parts, called branches. The center of the hyperbola is the
midpoint of the line segment connecting the two foci. The transverse axis of the hyperbola is
the line segment connecting two opposite ends of the hyperbola which also contains the center and
foci. The vertices of a hyperbola are the points of the hyperbola which lie on the transverse axis.
In addition, we will show momentarily that there are lines called asymptotes which the branches
of the hyperbola approach for large x and y values. They serve as guides to the graph. In pictures,
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V2V1F1 F2

Transverse Axis

C

A hyperbola with center C; foci F1, F2; and vertices V1, V2 and asymptotes (dashed)

Before we derive the standard equation of the hyperbola, we need to discuss one further parameter,
the conjugate axis of the hyperbola. The conjugate axis of a hyperbola is the line segment
through the center which is perpendicular to the transverse axis and has the same length as the
line segment through a vertex which connects the asymptotes. In pictures we have

V2V1 C

C
o
n

ju
g
a
te

A
x
is

Note that in the diagram, we can construct a rectangle using line segments with lengths equal to
the lengths of the transverse and conjugate axes whose center is the center of the hyperbola and
whose diagonals are contained in the asymptotes. This guide rectangle, which is very similar to
the one we created in the Section 7.4 to help us graph ellipses, will aid us in graphing hyperbolas
when the time comes.

Suppose we wish to derive the equation of a hyperbola. For simplicity, we shall assume that the
center is (0, 0), the vertices are (a, 0) and (−a, 0) and the foci are (c, 0) and (−c, 0). We label the
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endpoints of the conjugate axis (0, b) and (0,−b). (Although b does not enter into our derivation,
we will have to justify this choice as you shall see later.) As before, we assume a, b, and c are all
positive numbers. Schematically we have

x

y

(a, 0)(−a, 0)

(0, b)

(0,−b)

(−c, 0) (c, 0)

(x, y)

Since (a, 0) is on the hyperbola, it must satisfy the conditions of Definition 7.6. That is, the distance
from (−c, 0) to (a, 0) minus the distance from (c, 0) to (a, 0) must equal the fixed distance d. Since
all these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0)− distance from (c, 0) to (a, 0) = d

(a+ c)− (c− a) = d

2a = d

In other words, the fixed distance d from the definition of the hyperbola is actually the length of
the transverse axis! (Where have we seen that type of coincidence before?) Now consider a point
(x, y) on the hyperbola. Applying Definition 7.6, we get

distance from (−c, 0) to (x, y)− distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 −

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a

Using the same arsenal of Intermediate Algebra weaponry we used in deriving the standard formula
of an ellipse, Equation 7.4, we arrive at the following.1

1It is a good exercise to actually work this out.
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(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
What remains is to determine the relationship between a, b and c. To that end, we note that since
a and c are both positive numbers with a < c, we get a2 < c2 so that a2− c2 is a negative number.
Hence, c2 − a2 is a positive number. For reasons which will become clear soon, we re-write the
equation by solving for y2/x2 to get(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−
(
c2 − a2

)
x2 + a2y2 = −a2

(
c2 − a2

)
a2y2 =

(
c2 − a2

)
x2 − a2

(
c2 − a2

)
y2

x2
=

(
c2 − a2

)
a2

−
(
c2 − a2

)
x2

As x and y attain very large values, the quantity

(
c2 − a2

)
x2

→ 0 so that
y2

x2
→
(
c2 − a2

)
a2

. By setting

b2 = c2− a2 we get
y2

x2
→ b2

a2
. This shows that y → ± b

a
x as |x| grows large. Thus y = ± b

a
x are the

asymptotes to the graph as predicted and our choice of labels for the endpoints of the conjugate
axis is justified. In our equation of the hyperbola we can substitute a2 − c2 = −b2 which yields(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−b2x2 + a2y2 = −a2b2

x2

a2
− y2

b2
= 1

The equation above is for a hyperbola whose center is the origin and which opens to the left and
right. If the hyperbola were centered at a point (h, k), we would get the following.

Equation 7.6. The Standard Equation of a Horizontala Hyperbola For positive numbers
a and b, the equation of a horizontal hyperbola with center (h, k) is

(x− h)2

a2
− (y − k)2

b2
= 1

aThat is, a hyperbola whose branches open to the left and right

If the roles of x and y were interchanged, then the hyperbola’s branches would open upwards and
downwards and we would get a ‘vertical’ hyperbola.

Equation 7.7. The Standard Equation of a Vertical Hyperbola For positive numbers a
and b, the equation of a vertical hyperbola with center (h, k) is:

(y − k)2

b2
− (x− h)2

a2
= 1

The values of a and b determine how far in the x and y directions, respectively, one counts from the
center to determine the rectangle through which the asymptotes pass. In both cases, the distance
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from the center to the foci, c, as seen in the derivation, can be found by the formula c =
√
a2 + b2.

Lastly, note that we can quickly distinguish the equation of a hyperbola from that of a circle or
ellipse because the hyperbola formula involves a difference of squares where the circle and ellipse
formulas both involve the sum of squares.

Example 7.5.1. Graph the equation
(x− 2)2

4
− y2

25
= 1. Find the center, the lines which contain

the transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

Solution. We first see that this equation is given to us in the standard form of Equation 7.6.
Here x−h is x−2 so h = 2, and y−k is y so k = 0. Hence, our hyperbola is centered at (2, 0). We
see that a2 = 4 so a = 2, and b2 = 25 so b = 5. This means we move 2 units to the left and right
of the center and 5 units up and down from the center to arrive at points on the guide rectangle.
The asymptotes pass through the center of the hyperbola as well as the corners of the rectangle.
This yields the following set up.

x

y

−2 −1 1 2 3 4 5 6

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Since the y2 term is being subtracted from the x2 term, we know that the branches of the hyperbola
open to the left and right. This means that the transverse axis lies along the x-axis. Hence, the
conjugate axis lies along the vertical line x = 2. Since the vertices of the hyperbola are where the
hyperbola intersects the transverse axis, we get that the vertices are 2 units to the left and right of
(2, 0) at (0, 0) and (4, 0). To find the foci, we need c =

√
a2 + b2 =

√
4 + 25 =

√
29. Since the foci

lie on the transverse axis, we move
√

29 units to the left and right of (2, 0) to arrive at (2−
√

29, 0)
(approximately (−3.39, 0)) and (2 +

√
29, 0) (approximately (7.39, 0)). To determine the equations

of the asymptotes, recall that the asymptotes go through the center of the hyperbola, (2, 0), as well
as the corners of guide rectangle, so they have slopes of ± b

a = ±5
2 . Using the point-slope equation

of a line, Equation 2.2, yields
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y = ±5

2
(x− 2) + 0,

so we get y = 5
2x− 5 and y = −5

2x+ 5. Putting it all together, we get

x

y

−3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Example 7.5.2. Find the equation of the hyperbola with asymptotes y = ±2x and vertices (±5, 0).

Solution. Plotting the data given to us, we have

x

y

−5 5

−5

5

This graph not only tells us that the branches of the hyperbola open to the left and to the right,
it also tells us that the center is (0, 0). Hence, our standard form is

x2

a2
− y2

b2
= 1.
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Since the vertices are (±5, 0), we have a = 5 so a2 = 25. In order to determine b2, we recall that
the slopes of the asymptotes are ± b

a . Since a = 5 and the slope of the line y = 2x is 2, we have

that b
5 = 2, so b = 10. Hence, b2 = 100 and our final answer is

x2

25
− y2

100
= 1

As with the other conic sections, an equation whose graph is a hyperbola may be given in a form
other than the standard forms in Equations 7.6 or 7.7. In those cases, as with conic sections which
have come before, we will need to massage the given equation into one of the forms in Equations
7.6 or 7.7.

To Write the Equation of a Hyperbola in Standard Form

1. Group the same variables together on one side of the equation and position the constant on
the other side

2. Complete the square in both variables as needed

3. Divide both sides by the constant term so that the constant on the other side of the equation
becomes 1

Example 7.5.3. Consider the equation 9y2 − x2 − 6x = 10. Put this equation in to standard form
and graph. Find the center, the lines which contain the transverse and conjugate axes, the vertices,
the foci, and the equations of the asymptotes.

Solution. We need only complete the square on the x, and then divide, if necessary, to get the
right-hand side equal to 1.

9y2 − x2 − 6x = 10

9y2 − 1
(
x2 + 6x

)
= 10

9y2 −
(
x2 + 6x+ 9

)
= 10− 1(9)

9y2 − (x+ 3)2 = 1

y2

1
9

− (x+ 3)2

1
= 1

Now that this equation is in the standard form of Equation 7.7, we see that x − h is x + 3 so
h = −3, and y − k is y so k = 0. Hence, our hyperbola is centered at (−3, 0). We find that a2 = 1
so a = 1, and b2 = 1

9 so b = 1
3 . This means that we move 1 unit to the left and right of the

center and 1/3 units up and down from the center to arrive at points on the guide rectangle. Since
the x2 term is being subtracted from the y2 term, we know the branches of the hyperbola open
upwards and downwards. This means the transverse axis lies along the vertical line x = −3 and the
conjugate axis lies along the x-axis. Since the vertices of the hyperbola are where the hyperbola
intersects the transverse axis, we get that the vertices are 1

3 of a unit above and below (−3, 0) at
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(
−3, 1

3

)
and

(
−3,−1

3

)
. To find the foci, we need c =

√
a2 + b2 =

√
1
9 + 1 =

√
10
3 . Since the foci

lie on the transverse axis, we move
√

10
3 units above and below (−3, 0) to arrive at

(
−3,

√
10
3

)
and(

−3,−
√

10
3

)
. To determine the asymptotes, recall that the asymptotes go through the center of

the hyperbola, (−3, 0), as well as the corners of guide rectangle, so they have slopes of ± b
a = ±1

3 .
Using the point-slope equation of a line, Equation 2.2, we get y = 1

3x+1 and y = −1
3x−1. Putting

it all together, we get

x

y

−6 −1

1

−1

Hyperbolas can be used in positioning problems, as the next example illustrates.

Example 7.5.4. Jeff is stationed 10 miles due west of Carl in an otherwise empty forest in an
attempt to locate an elusive Sasquatch. At the stroke of midnight, Jeff records a Sasquatch call
9 seconds earlier than Carl. If the speed of sound that night is 760 miles per hour, determine a
hyperbolic path along which Sasquatch must be located.

Solution. Since Jeff hears Sasquatch sooner, it is closer to Jeff than it is to Carl. Since the
speed of sound is 760 miles per hour, we can determine how much closer Sasquatch is to Jeff by
multiplying

760
miles

hour
× 1 hour

3600 seconds
× 9 seconds = 1.9 miles

This means that Sasquatch is 1.9 miles closer to Jeff than it is to Carl. In other words, Sasquatch
must lie on a path where

(the distance to Carl)− (the distance to Jeff) = 1.9

This is exactly the situation in the definition of a hyperbola, Definition 7.6. In this case, Jeff and
Carl are located at the foci, and our fixed distance d is 1.9. For simplicity, we assume the hyperbola
is centered at (0, 0) with its foci at (−5, 0) and (5, 0). Schematically, we have
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x

y

Jeff Carl
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

We are seeking a curve of the form x2

a2 − y2

b2
= 1 in which the distance from the center to each focus

is c = 5. As we saw in the derivation of the standard equation of the hyperbola, Equation 7.6,
d = 2a, so that 2a = 1.9, or a = 0.95 and a2 = 0.9025. All that remains is to find b2. To that end,
we recall that a2 + b2 = c2 so b2 = c2 − a2 = 25 − 0.9025 = 24.0975. Since Sasquatch is closer to

Jeff than it is to Carl, it must be on the western (left hand) branch of x2

0.9025 −
y2

24.0975 = 1.

In our previous example, we did not have enough information to pin down the exact location of
Sasquatch. To accomplish this, we would need a third observer.

Example 7.5.5. By a stroke of luck, Kai was also camping in the woods during the events of the
previous example. He was located 6 miles due north of Jeff and heard the Sasquatch call 18 seconds
after Jeff did. Use this added information to locate Sasquatch.

Solution. Kai and Jeff are now the foci of a second hyperbola where the fixed distance d can be
determined as before

760
miles

hour
× 1 hour

3600 seconds
× 18 seconds = 3.8 miles

Since Jeff was positioned at (−5, 0), we place Kai at (−5, 6). This puts the center of the new
hyperbola at (−5, 3). Plotting Kai’s position and the new center gives us
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x

y

Jeff Carl

Kai

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

The second hyperbola is vertical, so it must be of the form (y−3)2

b2
− (x+5)2

a2 = 1. As before, the
distance d is the length of the major axis, which in this case is 2b. We get 2b = 3.8 so that b = 1.9
and b2 = 3.61. With Kai 6 miles due North of Jeff, we have that the distance from the center to
the focus is c = 3. Since a2 + b2 = c2, we get a2 = c2 − b2 = 9 − 3.61 = 5.39. Kai heard the
Sasquatch call after Jeff, so Kai is farther from Sasquatch than Jeff. Thus Sasquatch must lie on

the southern branch of the hyperbola (y−3)2

3.61 −
(x+5)2

5.39 = 1. Looking at the western branch of the
hyperbola determined by Jeff and Carl along with the southern branch of the hyperbola determined
by Kai and Jeff, we see that there is exactly one point in common, and this is where Sasquatch
must have been when it called.

x

y

Jeff Carl

Kai

Sasquatch
−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1
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5
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To determine the coordinates of this point of intersection exactly, we would need techniques for
solving systems of non-linear equations. We will see those later in Section 8.7. A calculator can
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be of use in approximating these coordinates using the Intersect command. In order to use this
command, however, we first need to solve each of our hyperbolas for y, choose the correct equation
to enter into the calculator, and proceed from there. We leave this as an exercise.

The procedure outlined in the two previous examples is the basis for LOng Range Aid to Navigation
(LORAN for short.) While it appears to be losing its popularity due to Global Positioning Satellites
(GPS), it remains one of most important applications of hyperbolas.

http://en.wikipedia.org/wiki/LORAN
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7.5.1 Exercises

1. Graph the hyperbola. Find the center, the lines which contain the transverse and conjugate
axes, the vertices, the foci and the equations of the asymptotes.

(a)
y2

9
− x2

16
= 1

(b)
(x− 2)2

4
− (y + 3)2

9
= 1

(c)
(y − 3)2

11
− (x− 1)2

10
= 1

(d)
(x+ 4)2

16
− (y − 4)2

1
= 1

(e)
(x+ 1)2

9
− (y − 3)2

4
= 1

(f)
(y + 2)2

16
− (x− 5)2

20
= 1

(g)
(x− 4)2

8
− (y − 2)2

18
= 1

2. Put the equation in standard form. Find the center, the lines which contain the transverse
and conjugate axes, the vertices, the foci and the equations of the asymptotes.

(a) 12x2 − 3y2 + 30y − 111 = 0

(b) 18y2 − 5x2 + 72y + 30x− 63 = 0

(c) 9x2 − 25y2 − 54x− 50y − 169 = 0

(d) −6x2 + 5y2 − 24x+ 40y + 26 = 0

3. Find the standard form of the equation of the hyperbola which has the given properties.

(a) Center (3, 7), Vertex (3, 3), Focus (3, 2)

(b) Vertex (0, 1), Vertex (8, 1), Focus (−3, 1)

(c) Foci (0,±5), Point on curve

(
2,

3
√

5

2

)
(d) Vertex (−10, 5), Asymptotes y = ±1

2(x− 6) + 5

4. The graph of a vertical or horizontal hyperbola clearly fails the Vertical Line Test, Theorem
1.1, so the equation of a vertical of horizontal hyperbola does not define y as a function of x.2

However, much like with circles, horizontal parabolas and ellipses, we can split a hyperbola
into pieces, each of which would indeed represent y as a function of x. With the help of your
classmates, use your calculator to graph the hyperbolas given in Exercise 1 above. How many
pieces do you need for a vertical hyperbola? How many for a horizontal hyperbola?

5. Use your calculator to find the approximate location of Sasquatch in Example 7.5.5.

6. The location of an earthquake’s epicenter − the point on the surface of the Earth directly
above where the earthquake actually occurred − can be determined by a process similar to
how we located Sasquatch in Example 7.5.5. (As we said back in Exercise 6a in Section 6.1,
earthquakes are complicated events and it is not our intent to provide a complete discussion

2We will see later in the text that the graphs of certain rotated hyperbolas pass the Vertical Line Test.
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of the science involved in them. Instead, we refer the interested reader to a course in Geology
or the U.S. Geological Survey’s Earthquake Hazards Program found here.) Our technique
works only for relatively small distances because we need to assume the Earth is flat in order
to use hyperbolas in the plane.3 The P-waves (“P” stands for Primary) of an earthquake
in Sasquatchia travel at 6 kilometers per second.4 Station A records the waves first. Then
Station B, which is 100 kilometers due north of Station A, records the waves 2 seconds later.
Station C, which is 150 kilometers due west of Station A records the waves 3 seconds after
that (a total of 5 seconds after Station A). Where is the epicenter?

7. The notion of eccentricity introduced for ellipses in Definition 7.5 in Section 7.4 is the same
for hyperbolas in that we can define the eccentricity e of a hyperbola as

e =
distance from the center to a focus

distance from the center to a vertex

(a) With the help of your classmates, explain why e > 1 for any hyperbola.

(b) Find the equation of the hyperbola with vertices (±3, 0) and eccentricity e = 2.

(c) With the help of your classmates, find the eccentricity of each of the hyperbolas in
number 1. What role does eccentricity play in the shape of the graphs?

8. With the help of your classmates, research the shape of cooling towers for nuclear power
plants and other ways hyperbolas have been used in architecture and design.

9. With the help of your classmates, research the Cassegrain Telescope. It uses the reflective
property of the hyperbola as well as that of the parabola to make an ingenious telescope.

10. With the help of your classmates show that if Ax2 + Cy2 + Dx + Ey + F = 0 determines a
non-degenerate conic5 then

• AC < 0 means that the graph is a hyperbola

• AC = 0 means that the graph is a parabola

• AC > 0 means that the graph is an ellipse or circle

NOTE: This result will be generalized in Theorem 11.11 in Section 11.6.1.

3Back in the Exercises in Section 1.1 you were asked to research people who believe the world is flat. What did
you discover?

4Depending on the composition of the crust at a specific location, P-waves can travel between 5 kps and 8 kps.
5Recall that this means its graph is either a circle, parabola, ellipse or hyperbola.

http://earthquake.usgs.gov/
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7.5.2 Answers

1. (a) y2

9 −
x2

16 = 1

Center (0, 0)
Transverse axis on x = 0
Conjugate axis on y = 0
Vertices (0, 3), (0,−3)
Foci (0, 5), (0,−5)
Asymptotes y = ±3

4x

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

(b) (x−2)2

4 − (y+3)2

9 = 1

Center (2,−3)
Transverse axis on y = −3
Conjugate axis on x = 2
Vertices (0,−3), (4,−3)
Foci (2 +

√
13,−3), (2−

√
13,−3)

Asymptotes y = ±3
2(x− 2)− 3

x

y

−3 −2 −1 1 2 3 4 5 6 7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

(c) (y−3)2

11 − (x−1)2

10 = 1

Center (1, 3)
Transverse axis on x = 1
Conjugate axis on y = 3
Vertices (1, 3 +

√
10), (1, 3−

√
10)

Foci (1, 3 +
√

21), (1, 3−
√

21)

Asymptotes y = ±
√

110
11 (x− 1) + 3 x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

8

9

(d) (x+4)2

16 − (y−4)2

1 = 1

Center (−4, 4)
Transverse axis on y = 4
Conjugate axis on x = −4
Vertices (−8, 4), (0, 4)
Foci (−4 +

√
17, 4), (−4−

√
17, 4)

Asymptotes y = ±1
4(x+ 4) + 4

x

y

−11−10−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3

1

2

3

4

5
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(e)
(x+ 1)2

9
− (y − 3)2

4
= 1

Center (−1, 3)
Transverse axis on y = 3
Conjugate axis on x = −1
Vertices (2, 3), (−4, 3)
Foci

(
−1 +

√
13, 3

)
,
(
−1−

√
13, 3

)
Asymptotes y = ±2

3(x+ 1) + 3 x

y

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4

5

(f)
(y + 2)2

16
− (x− 5)2

20
= 1

Center (5,−2)
Transverse axis on x = 5
Conjugate axis on y = −2
Vertices (5, 2), (5,−6)
Foci (5, 4) , (5,−8)

Asymptotes y = ±2
√

5
5 (x− 5)− 2

x

y

−1 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

(g)
(x− 4)2

8
− (y − 2)2

18
= 1

Center (4, 2)
Transverse axis on y = 2
Conjugate axis on x = 4
Vertices

(
4 + 2

√
2, 2
)
,
(
4− 2

√
2, 2
)

Foci
(
4 +
√

26, 2
)
,
(
4−
√

26, 2
)

Asymptotes y = ±3
2(x− 4) + 2

x

y

−2−1 1 2 3 4 5 6 7 8 9 10

-

−2

−1

1

2

3

4

5

6

7

8

9

2. (a)
x2

3
− (y − 5)2

12
= 1

Center (0, 5)
Transverse axis on y = 5
Conjugate axis on x = 0
Vertices (

√
3, 5), (−

√
3, 5)

Foci (
√

15, 5), (−
√

15, 5)
Asymptotes y = ±2x+ 5

(b)
(y + 2)2

5
− (x− 3)2

18
= 1

Center (3,−2)
Transverse axis on x = 3
Conjugate axis on y = −2
Vertices (3,−2 +

√
5), (3,−2−

√
5)

Foci (3,−2 +
√

23), (3,−2−
√

23)

Asymptotes y = ±
√

10
6 (x− 3)− 2
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(c)
(x− 3)2

25
− (y + 1)2

9
= 1

Center (3,−1)
Transverse axis on y = −1
Conjugate axis on x = 3
Vertices (8,−1), (−2,−1)
Foci

(
3 +
√

34,−1
)
,
(
3−
√

34,−1
)

Asymptotes y = ±3
5(x− 3)− 1

(d)
(y + 4)2

6
− (x+ 2)2

5
= 1

Center (−2,−4)
Transverse axis on x = −2
Conjugate axis on y = −4
Vertices

(
−2,−4 +

√
6
)
,
(
−2,−4−

√
6
)

Foci
(
−2,−4 +

√
11
)
,
(
−2,−4−

√
11
)

Asymptotes y = ±
√

30
5 (x+ 2)− 4

3. (a)
(y − 7)2

16
− (x− 3)2

9
= 1

(b)
(x− 4)2

16
− (y − 1)2

33
= 1

(c)
y2

9
− x2

16
= 1

(d)
(x− 6)2

256
− (y − 5)2

64
= 1

5. Sasquatch is located at the point (−0.9629,−0.8113).

6. By placing Station A at (0,−50) and Station B at (0, 50), the two second time difference

yields the hyperbola
y2

36
− x2

2464
= 1 with foci A and B and center (0, 0). Placing Station C

at (−150,−50) and using foci A and C gives us a center of (−75,−50) and the hyperbola
(x+ 75)2

225
− (y + 50)2

5400
= 1. The point of intersection of these two hyperbolas which is closer

to A than B and closer to A than C is (−57.8444,−9.21336) so that is the epicenter.

7. (b)
x2

9
− y2

27
= 1.



Chapter 8

Systems of Equations and Matrices

8.1 Systems of Linear Equations: Gaussian Elimination

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(x) = g(x), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The x-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(x) and y = g(x), where both the solution to x and y are of interest, we have
what is known as a system of equations, usually written as{

y = f(x)
y = g(x)

The ‘curly bracket’ notation means we are to find all pairs of points (x, y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a1x+ a2y = c
where a1, a2 and c are real numbers and at least one of a1 and a2 is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3x− y

2 = 0.1 is a linear equation in two variables with a1 = 3, a2 = −1
2

and c = 0.1. We can also consider x = 5 to be a linear equation in two variables by identifying
a1 = 1, a2 = 0, and c = 5.1 If a1 and a2 are both 0, then depending on c, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If c = 0, then we get 0 = 0, which is always true. If c 6= 0, then we’d have
0 6= 0, which is never true.) Even though identities and contradictions have a large role to play

1Critics may argue that x = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.
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in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are x2 +y = 1, xy = 5 and
e2x + ln(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 1.2 and 2.1, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

1.

{
2x− y = 1

y = 3

2.

{
3x+ 4y = −2
−3x− y = 5

3.

{
x
3 −

4y
5 = 7

5
2x
9 + y

3 = 1
2

4.

{
2x− 4y = 6
3x− 6y = 9

5.

{
6x+ 3y = 9
4x+ 2y = 12

6.


x− y = 0
x+ y = 2

−2x+ y = −2

Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2x − 3 = 1, so that x = 2. Our solution to the system is (2, 3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) − 3 = 1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x− y = 1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3x+ 4y = −2

+ (−3x− y = 5)

3y = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say −3x−y = 5,
to get −3x− 1 = 5 so that x = −2. Our solution is (−2, 1). Substituting x = −2 and y = 1
into the first equation gives 3(−2) + 4(1) = −2, which is true, and, likewise, when we check
(−2, 1) in the second equation, we get −3(−2)− 1 = 5, which is also true. Geometrically, the
lines 3x+ 4y = −2 and −3x− y = 5 intersect at (−2, 1).
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(2, 3)

x

y

−1 1 2 3 4

1

2

4

2x− y = 1
y = 3

(−2, 1)

x

y

−4 −3 −2 −1

−2

−1

1

2

3x+ 4y = −2
−3x− y = 5

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system{

5x− 12y = 21
4x+ 6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by −5, we will be in a position to
eliminate the x term

20x− 48y = 84

+ (−20x− 30y = −45)

−78y = 39

From this we get y = −1
2 . We can temporarily avoid too much unpleasantness by choosing to

substitute y = −1
2 into one of the equivalent equations we found by clearing denominators,

say into 5x − 12y = 21. We get 5x + 6 = 21 which gives x = 3. Our answer is
(
3,−1

2

)
.

At this point, we have no choice − in order to check an answer algebraically, we must see
if the answer satisfies both of the original equations, so we substitute x = 3 and y = −1

2

into both x
3 −

4y
5 = 7

5 and 2x
9 + y

3 = 1
2 . We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of

(
3,−1

2

)
.

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by −2, we are ready to
eliminate the x
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6x− 12y = 18

+ (−6x+ 12y = −18)

0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x, y) satisfies the equation 2x − 4y = 6, it automatically satisfies the equation
3x− 6y = 9. One way to describe the solution set to this system is to use the roster method2

and write {(x, y) : 2x − 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution. Our first step is to solve 2x − 4y = 6 for one of the
variables, say y = 1

2x −
3
2 . For each value of x, the formula y = 1

2x −
3
2 determines the

corresponding y-value of a solution. Since we have no restriction on x, it is called a free
variable. We let x = t, a so-called ‘parameter’, and get y = 1

2 t−
3
2 . Our set of solutions can

then be described as
{(
t, 1

2 t−
3
2

)
: −∞ < t <∞

}
.3 For specific values of t, we can generate

solutions. For example, t = 0 gives us the solution
(
0,−3

2

)
; t = 117 gives us (117, 57),

and while we can readily check each of these particular solutions satisfy both equations, the
question is how do we check our general answer algebraically? Same as always. We claim that
for any real number t, the pair

(
t, 1

2 t−
3
2

)
satisfies both equations. Substituting x = t and

y = 1
2 t−

3
2 into 2x−4y = 6 gives 2t−4

(
1
2 t−

3
2

)
= 6. Simplifying, we get 2t−2t+6 = 6, which

is always true. Similarly, when we make these substitutions in the equation 3x− 6y = 9, we
get 3t− 6

(
1
2 t−

3
2

)
= 9 which reduces to 3t− 3t+ 9 = 9, so it checks out, too. Geometrically,

2x − 4y = 6 and 3x − 6y = 9 are the same line, which means that they intersect at every
point on their graphs. The reader is encouraged to think about how our parametric solution
says exactly that.

(
3,− 1

2

) x

y

−1 1 2 4 5 6 7

−4

−3

−2

−1

1

x
3
− 4y

5
= 7

5
2x
9

+ y
3

= 1
2

x

y

1 2 3 4

−1

1

2

2x− 4y = 6
3x− 6y = 9
(Same line.)

2See Section 1.2 for a review of this.
3Note that we could have just as easily chosen to solve 2x− 4y = 6 for x to obtain x = 2y + 3. Letting y be the

parameter t, we have that for any value of t, x = 2t + 3, which gives {(2t + 3, t) : −∞ < t < ∞}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.



8.1 Systems of Linear Equations: Gaussian Elimination 453

5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by −3, we set the stage to eliminate x

12x+ 6y = 18

+ (−12x− 6y = −36)

0 = −18

As in the previous example, both x and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = −18. This tells us that it is impossible to find a pair (x, y)
which satisfies both equations; in other words, the system has no solution. Graphically, we
see that the lines 6x+ 3y = 9 and 4x+ 2y = 12 are distinct and parallel, and as such do not
intersect.

6. We can begin to solve our last system by adding the first two equations

x− y = 0

+ (x+ y = 2)

2x = 2

which gives x = 1. Substituting this into the first equation gives 1 − y = 0 so that y = 1.
We seem to have determined a solution to our system, (1, 1). While this checks in the
first two equations, when we substitute x = 1 and y = 1 into the third equation, we get
−2(1)+(1) = −2 which simplifies to the contradiction −1 = −2. Graphing the lines x−y = 0,
x + y = 2, and −2x + y = −2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

x

y

1 2

−3
−2
−1

1
2
3
4
5
6

6x+ 3y = 9
4x+ 2y = 12

x

y

−1

1

y − x = 0
y + x = 2

−2x+ y = −2

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
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solution are called inconsistent. We also distinguish the two different types of behavior among
consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.4 Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.5 The system in 6 above is called overdetermined, since we have more
equations than variables.6 Not surprisingly, a system with more variables than equations is called
underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,7 but a consistent
underdetermined system of linear equations is necessarily dependent.8

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, x1, x2, . . . , xn is an equation of the form
a1x1 + a2x2 + . . .+ anxn = c where a1, a2, . . . an and c are real numbers and at least one of a1, a2,
. . . , an is nonzero.

Instead of using more familiar variables like x, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3x1−x2 = 4 represents the same relationship
between the variables x1 and x2 as the equation 3x − y = 4 does between the variables x and y.
In addition, just as we cannot combine the terms in the expression 3x− y, we cannot combine the
terms in the expression 3x1 − x2. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.9

4In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

5The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems - they describe the type of solu-
tions.

6If we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

7We need more than two variables to give an example of the latter.
8Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.
9That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

• Interchange the position of any two equations.

• Replace an equation with a nonzero multiple of itself.a

• Replace an equation with itself plus a nonzero multiple of another equation.

aThat is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved
the systems Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations


x− 1

3y + 1
2z = 1

y − 1
2z = 4

z = −1

Clearly z = −1, and we substitute this into the second equation y − 1
2(−1) = 4 to obtain y = 7

2 .
Finally, we substitute y = 7

2 and z = −1 into the first equation to get x − 1
3

(
7
2

)
+ 1

2(−1) = 1,
so that x = 8

3 . The reader can verify that these values of x, y and z satisfy all three original
equations. It is tempting for us to write the solution to this system by extending the usual (x, y)
notation to (x, y, z) and list our solution as

(
8
3 ,

7
2 ,−1

)
. The question quickly becomes what does

an ‘ordered triple’ like
(

8
3 ,

7
2 ,−1

)
represent? Just as ordered pairs are used to locate points on the

two-dimensional plane, ordered triples can be used to locate points in space.10 Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,11

so our intersection point is where all three of these lines meet.

10You were asked to think about this in Exercise 13 in Section 1.1.
11In fact, these lines are described by the parametric solutions to the systems formed by taking any two of these

equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

x− 1
3y + 1

2z = 1

y − 1
2z = 4

z = −1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x1, x2, . . .xn is said to be in trian-
gular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.

2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variablesa cannot be placed above an equation with variables.

anecessarily an identity or contradiction

In our previous system, if make the obvious choices x = x1, y = x2, and z = x3, we see that the
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system is in triangular form.12 An example of a more complicated system in triangular form is
x1 − 4x3 + x4 − x6 = 6

x2 + 2x3 = 1
x4 + 3x5 − x6 = 8

x5 + 9x6 = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

1.


3x− y + z = 3

2x− 4y + 3z = 16
x− y + z = 5

2.


2x+ 3y − z = 1

10x− z = 2
4x− 9y + 2z = 5

3.


3x1 + x2 + x4 = 6
2x1 + x2 − x3 = 4
x2 − 3x3 − 2x4 = 0

Solution.

1. For definitiveness, we label the topmost equation in the system E1, the equation beneath that
E2, and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with x, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange E1 and E3.


(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

To satisfy Definition 8.3, we need to eliminate the x’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by −2 then add; to eliminate the x from E3, we need to
multiply E1 by −3 then add. Applying the third move listed in Theorem 8.1 twice, we get


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

Replace E2 with −2E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −3E1 + E3


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

12If letters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem
8.1 and replace E2 with itself times −1

2 .


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

Replace E2 with − 1
2
E2

−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

To eliminate the y in E3, we add −2E2 to it.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

Replace E3 with −2E2 + E3−−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Finally, we apply the second move from Theorem 8.1 one last time and multiply E3 by −1
to satisfy the conditions of Definition 8.3 for the variable z.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Replace E3 with −1E3−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y − 3 = −3 so that y = 0.
With y = 0 and z = 6, E1 becomes x − 0 + 6 = 5, or x = −1. Our solution is (−1, 0, 6).
We leave it to the reader to check that substituting the respective values for x, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

2. Proceeding as we did in 1, our first step is to get an equation with x in the E1 position with
1 as its coefficient. Since there is no easy fix, we multiply E1 by 1

2 .


(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E1 with 1
2
E1

−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Now it’s time to take care of the x’s in E2 and E3.


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have


(E1) x+ 3

2y −
1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

Replace E2 with − 1
15
E2

−−−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Finally, we rid E3 of y.


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Replace E3 with 15E2 + E3−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5

(E2) y − 1
2z = −3

(E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying E1 by 1
3 to get a coefficient of 1 on x1.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Next we eliminate x1 from E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4

(E3) x2 − 3x3 − 2x4 = 0

Replace E2−−−−−−−−−−→
with −2E1 + E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

We switch E2 and E3 to get a coefficient of 1 for x2.


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

Switch E2 and E3−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Finally, we eliminate x2 in E3.
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(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Replace E3−−−−−−−−−−→
with − 1

3
E2 + E3


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 0 = 0

Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x3

or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting x3 = s and x4 = t and obtain from E2
that x2 = 3s + 2t. Substituting this and x4 = t into E1, we have x1 + 1

3 (3s+ 2t) + 1
3 t = 2

which gives x1 = 2−s− t. Our solution is the set {(2−s− t, 2s+3t, s, t) : −∞ < s, t <∞}.13

We leave it to the reader to verify that the substitutions x1 = 2− s− t, x2 = 3s+ 2t, x3 = s
and x4 = t satisfy the equations in the original system.

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

(E1) x+ 3
2y −

1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

that equations E2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.7. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we’ll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

13Here, any choice of s and t will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution + amount of water = 500 mL

Using our defined variables, this reduces to x+ y +w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in x mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30x+ 0.90y = 200. Converting to fractions,14 our system of equations becomes{

x+ y + w = 500
3
10x+ 9

10y = 200

We first eliminate the x from the second equation

{
(E1) x+ y + w = 500
(E2) 3

10x+ 9
10y = 200

Replace E2 with − 3
10
E1 + E2

−−−−−−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Next, we get a coefficient of 1 on the leading variable in E2{
(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Replace E2 with 5
3
E2

−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) y − 1

2w = 250
3

Notice that we have no equation to determine w, and as such, w is free. We set w = t and from E2
get y = 1

2 t+ 250
3 . Substituting into E1 gives x+

(
1
2 t+ 250

3

)
+ t = 500 so that x = −3

2 t+ 1250
3 . This

system is consistent, dependent and its solution set is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
: −∞ < t < ∞}.

While this answer checks algebraically, we have neglected to take into account that x, y and w,
being amounts of acid and water, need to be nonnegative. That is, x ≥ 0, y ≥ 0 and w ≥ 0. The
constraint x ≥ 0 gives us −3

2 t+ 1250
3 ≥ 0, or t ≤ 2500

9 . From y ≥ 0, we get 1
2 t+ 250

3 ≥ 0 or t ≥ −500
3 .

The condition z ≥ 0 yields t ≥ 0, and we see that when we take the set theoretic intersection of
these intervals, we get 0 ≤ t ≤ 2500

9 . Our final answer is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
: 0 ≤ t ≤ 2500

9 }.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that 1

2 t + 250
3 = 100, and we get t = 100

3 . This means the amount of 30% solution required is
x = −3

2 t + 1250
3 = −3

2

(
100
3

)
+ 1250

3 = 1100
3 mL, and for the water, w = t = 100

3 mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required
40% acid mix.

14We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 Exercises

1. Put the following systems of linear equations into triangular form and then solve the sys-
tem if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

(a)

{
−5x+ y = 17
x+ y = 5

(b)


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

(c)


4x− y + z = 5

2y + 6z = 30
x+ z = 5

(d)


4x− y + z = 5

2y + 6z = 30
x+ z = 6

(e)

{
x+ y + z = −17
y − 3z = 0

(f)


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

(g)


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

(h)


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

(i)


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

(j)


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3

(k)


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

(l)


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2

(m)


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

(n)


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

(o)


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

(p)


2x1 + x2 − 12x3 − x4 = 16
−x1 + x2 + 12x3 − 4x4 = −5
3x1 + 2x2 − 16x3 − 3x4 = 25

x1 + 2x2 − 5x4 = 11

(q)


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

(r)


x1 − x2 − 5x3 + 3x4 = −1
x1 + x2 + 5x3 − 3x4 = 0

x2 + 5x3 − 3x4 = 1
x1 − 2x2 − 10x3 + 6x4 = −1

2. Find two other forms of the parametric solution to Exercise 1c above by reorganizing the
equations so that x or y can be the free variable.

3. At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?
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4. Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

5. A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

6. At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

7. Discuss with your classmates how you would approach Exercise 6 above if they needed to use
up a pound of Type I tea to make room on the shelf for a new canister.

8. Discuss with your classmates why it is impossible to mix a 20% acid solution with a 40% acid
solution to produce a 60% acid solution. If you were to try to make 100 mL of a 60% acid
solution using stock solutions at 20% and 40%, respectively, what would the triangular form
of the resulting system look like?
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8.1.2 Answers

1. Because triangular form is not unique, we give only one possible answer to that part of the
question. Yours may be different and still be correct.

(a)

{
x+ y = 5

y = 7
Consistent independent
Solution (−2, 7)

(b)


x− 5

3y −
7
3z = −7

3

y + 5
4z = 2
z = 0

Consistent independent
Solution (1, 2, 0)

(c)


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 0

Consistent dependent
Solution (−t+ 5,−3t+ 15, t)
for all real numbers t

(d)


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 1

Inconsistent
No solution

(e)

{
x+ y + z = −17
y − 3z = 0

Consistent dependent
Solution (−4t− 17, 3t, t)
for all real numbers t

(f)


x− 2y + 3z = 7

y − 11
5 z = −16

5
z = 1

Consistent independent
Solution (2,−1, 1)

(g)


x+ y + 2z = 0

y − 3
2z = 6
z = −2

Consistent independent
Solution (1, 3,−2)

(h)


x− 1

2y + 1
2z = −1

2

y + 3
5z = 3

5
0 = 1

Inconsistent
no solution

(i)


x− y + z = −4
y − 7z = 17

z = −2

Consistent independent
Solution (1, 3,−2)

(j)


x− 2y + 2z = −2

y = 1
2

z = 1

Consistent independent
Solution

(
−3, 1

2 , 1
)
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(k)


x− 1

2y + 1
2z = 1

2

y − 2
3z = 0
z = 1

Consistent independent
Solution

(
1
3 ,

2
3 , 1
)

(l)


x− 3y − 4z = 3

y + 11
13z = 4

13
0 = 0

Consistent dependent
Solution

(
19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

(m)


x+ y + z = 4
y + 1

2z = 3
2

0 = 1

Inconsistent
no solution

(n)


x− y + z = 8
y − 2z = −5

z = 1

Consistent independent
Solution (4,−3, 1)

(o)


x− 3

2y + 1
2z = −1

2

y + z = −11
2

0 = 0

Consistent dependent
Solution

(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t

(p)


x1 + 2

3x2 − 16
3 x3 − x4 = 25

3

x2 + 4x3 − 3x4 = 2
0 = 0
0 = 0

Consistent dependent
Solution (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

(q)


x1 − x3 = −2

x2 − 1
2x4 = 0

x3 − 1
2x4 = 1

x4 = 4

Consistent independent
Solution (1, 2, 3, 4)

(r)


x1 − x2 − 5x3 + 3x4 = −1

x2 + 5x3 − 3x4 = 1
2

0 = 1
0 = 0

Inconsistent
No solution

2. If x is the free variable then the solution is (t, 3t,−t+ 5) and if y is the free variable then the
solution is

(
1
3 t, t,−

1
3 t+ 5

)
.

3. Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.

4. Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

5. 22.5 gallons of the 10% solution and 52.5 gallons of pure water.

6. 4
3 −

1
2 t pounds of Type I, 2

3 −
1
2 t pounds of Type II and t pounds of Type III where 0 ≤ t ≤ 4

3 .



466 Systems of Equations and Matrices

8.2 Systems of Linear Equations: Augmented Matrices

In Section 8.1 we introduced Gaussian Elimination as a means of transforming a system of linear
equations into triangular form with the ultimate goal of producing an equivalent system of linear
equations which is easier to solve. If take a step back and study the process, we see that all of our
moves are determined entirely by the coefficients of the variables involved, and not the variables
themselves. Much the same thing happened when we studied long division in Section 3.2. Just as
we developed synthetic division to streamline that process, in this section, we introduce a similar
bookkeeping device to help us solve systems of linear equations. To that end, we define a matrix
as a rectangular array of real numbers. We typically enclose matrices with square brackets, ‘[ ’ and
‘ ]’, and we size matrices by the number of rows and columns they have. For example, the size
(sometimes called the dimension) of [

3 0 −1
2 −5 10

]
is 2 × 3 because it has 2 rows and 3 columns. The individual numbers in a matrix are called its
entries and are usually labeled with double subscripts: the first tells which row the element is in
and the second tells which column it is in. The rows are numbered from top to bottom and the
columns are numbered from left to right. Matrices themselves are usually denoted by uppercase
letters (A, B, C, etc.) while their entries are usually denoted by the corresponding letter. So, for
instance, if we have

A =

[
3 0 −1
2 −5 10

]
then a11 = 3, a12 = 0, a13 = −1, a21 = 2, a22 = −5, and a23 = 10. We shall explore matrices as
mathematical objects with their own algebra in Section 8.3 and introduce them here solely as a
bookkeeping device. Consider the system of linear equations from number 2 in Example 8.1.2

(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

We encode this system into a matrix by assigning each equation to a corresponding row. Within
that row, each variable and the constant gets its own column, and to separate the variables on the
left hand side of the equation from the constants on the right hand side, we use a vertical bar, |.
Note that in E2, since y is not present, we record its coefficient as 0. The matrix associated with
this system is

x y z c
(E1)→
(E2)→
(E3)→

 2 3 −1 1
10 0 −1 2
4 −9 2 5
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This matrix is called an augmented matrix because the column containing the constants is
appended to the matrix containing the coefficients.1 To solve this system, we can use the same
kind operations on the rows of the matrix that we performed on the equations of the system. More
specifically, we have the following analog of Theorem 8.1 below.

Theorem 8.2. Row Operations: Given an augmented matrix for a system of linear equations,
the following row operations produce an augmented matrix which corresponds to an equivalent
system of linear equations.

• Interchange any two rows.

• Replace a row with a nonzero multiple of itself.a

• Replace a row with itself plus a nonzero multiple of another row.b

aThat is, the row obtained by multiplying each entry in the row by the same nonzero number.
bWhere we add entries in corresponding columns.

As a demonstration of the moves in Theorem 8.2, we revisit some of the steps that were used in
solving the systems of linear equations in Example 8.1.2 of Section 8.1. The reader is encouraged to
perform the indicated operations on the rows of the augmented matrix to see that the machinations
are identical to what is done to the coefficients of the variables in the equations. We first see a
demonstration of switching two rows using the first step of part 1 in Example 8.1.2.

(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3 3 −1 1 3

2 −4 3 16
1 −1 1 5

 Switch R1 and R3−−−−−−−−−−−→

 1 −1 1 5
2 −4 3 16
3 −1 1 3


Next, we have a demonstration of replacing a row with a nonzero multiple of itself using the first
step of part 3 in Example 8.1.2.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0 3 1 0 1 6

2 1 −1 0 4
0 1 −3 −2 0

 Replace R1 with 1
3
R1

−−−−−−−−−−−−−→

 1 1
3 0 1

3 2
2 1 −1 0 4
0 1 −3 −2 0


Finally, we have an example of replacing a row with itself plus a multiple of another row using the
second step from part 2 in Example 8.1.2.

1We shall study the coefficient and constant matrices separately in Section 8.3.
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(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3 1 3

2 −1
2

1
2

10 0 −1 2
4 −9 2 5

 Replace R2 with −10R1 +R2−−−−−−−−−−−−−−−−−−→
Replace R3 with −4R1 +R3

 1 3
2 −1

2
1
2

0 −15 4 −3
0 −15 4 3


The matrix equivalent of ‘triangular form’ is row echelon form. The reader is encouraged to
refer to Definition 8.3 for comparison. Note that the analog of ‘leading variable’ of an equation
is ‘leading entry’ of a row. Specifically, the first nonzero entry (if it exists) in a row is called the
leading entry of that row.

Definition 8.4. A matrix is said to be in row echelon form provided all of the following
conditions hold:

1. The first nonzero entry in each row is 1.

2. The leading 1 of a given row must be to the right of the leading 1 of the row above it.

3. Any row of all zeros cannot be placed above a row with nonzero entries.

To solve a system of a linear equations using an augmented matrix, we encode the system into an
augmented matrix and apply Gaussian Elimination to the rows to get the matrix into row-echelon
form. We then decode the matrix and back substitute. The next example illustrates this nicely.

Example 8.2.1. Use an augmented matrix to transform the following system of linear equations
into triangular form. Solve the system.

3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Solution. We first encode the system into an augmented matrix.
3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Encode into the matrix−−−−−−−−−−−−−−→

 3 −1 1 8
1 2 −1 4
2 3 −4 10


Thinking back to Gaussian Elimination at an equations level, our first order of business is to get x
in E1 with a coefficient of 1. At the matrix level, this means getting a leading 1 in R1. This is in
accordance with the first criteria in Definition 8.4. To that end, we interchange R1 and R2. 3 −1 1 8

1 2 −1 4
2 3 −4 10

 Switch R1 and R2−−−−−−−−−−−→

 1 2 −1 4
3 −1 1 8
2 3 −4 10
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Our next step is to eliminate the x’s from E2 and E3. From a matrix standpoint, this means we
need 0’s below the leading 1 in R1. This guarantees the leading 1 in R2 will be to the right of the
leading 1 in R1 in accordance with the second requirement of Definition 8.4. 1 2 −1 4

3 −1 1 8
2 3 −4 10

 Replace R2 with −3R1 +R2−−−−−−−−−−−−−−−−−→
Replace R3 with −2R1 +R3

 1 2 −1 4
0 −7 4 −4
0 −1 −2 2


Now we repeat the above process for the variable y which means we need to get the leading entry
in R2 to be 1.  1 2 −1 4

0 −7 4 −4
0 −1 −2 2

 Replace R2 with − 1
7
R2

−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 −1 −2 2


To guarantee the leading 1 in R3 is to the right of the leading 1 in R2, we get a 0 in the second
column of R3.  1 2 −1 4

0 1 −4
7

4
7

0 −1 −2 2

 Replace R3 with R2 +R3−−−−−−−−−−−−−−−−→

 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7


Finally, we get the leading entry in R3 to be 1. 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7

 Replace R3 with − 7
18
R3

−−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 0 1 −1


Decoding from the matrix gives a system in triangular form 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x+ 2y − z = 4

y − 4
7z = 4

7
z = −1

We get z = −1, y = 4
7z + 4

7 = 4
7(−1) + 4

7 = 0 and x = −2y + z + 4 = −2(0) + (−1) + 4 = 3 for a
final answer of (3, 0,−1). We leave it to the reader to check.

As part of Gaussian Elimination, we used row operations to obtain 0’s beneath each leading 1 to
put the matrix into row echelon form. If we also require that 0’s are the only numbers above a
leading 1, we have what is known as the reduced row echelon form of the matrix.

Definition 8.5. A matrix is said to be in reduced row echelon form provided both of the
following conditions hold:

1. The matrix is in row echelon form.

2. The leading 1s are the only nonzero entry in their respective columns.
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Of what significance is the reduced row echelon form of a matrix? To illustrate, let’s take the row
echelon form from Example 8.2.1 and perform the necessary steps to put into reduced row echelon
form. We start by using the leading 1 in R3 to zero out the numbers in the rows above it. 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Replace R1 with R3 +R1−−−−−−−−−−−−−−−−−→
Replace R2 with 4

7
R3 +R2

 1 2 0 3
0 1 0 0
0 0 1 −1


Finally, we take care of the 2 in R1 above the leading 1 in R2. 1 2 0 3

0 1 0 0
0 0 1 −1

 Replace R1 with −2R2 +R1−−−−−−−−−−−−−−−−−→

 1 0 0 3
0 1 0 0
0 0 1 −1


To our surprise and delight, when we decode this matrix, we obtain the solution instantly without
having to deal with any back-substitution at all. 1 0 0 3

0 1 0 0
0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x = 3
y = 0
z = −1

Note that in the previous discussion, we could have started with R2 and used it to get a zero above
its leading 1 and then done the same for the leading 1 in R3. By starting with R3, however, we get
more zeros first, and the more zeros there are, the faster the remaining calculations will be.2 It is
also worth noting that while a matrix has several3 row echelon forms, it has only one reduced row
echelon form. The process by which we have put a matrix into reduced row echelon form is called
Gauss-Jordan Elimination.

Example 8.2.2. Solve the following system using an augmented matrix. Use Gauss-Jordan Elimi-
nation to put the augmented matrix into reduced row echelon form.

x2 − 3x1 + x4 = 2
2x1 + 4x3 = 5
4x2 − x4 = 3

Solution. We first encode the system into a matrix. (Pay attention to the subscripts!)
x2 − 3x1 + x4 = 2

2x1 + 4x3 = 5
4x2 − x4 = 3

Encode into the matrix−−−−−−−−−−−−−−→

 −3 1 0 1 2
2 0 4 0 5
0 4 0 −1 3


Next, we get a leading 1 in the first column of R1. −3 1 0 1 2

2 0 4 0 5
0 4 0 −1 3

 Replace R1 with − 1
3
R1

−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3


2Carl also finds starting with R3 to be more symmetric, in a purely poetic way.
3infinite, in fact
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Now we eliminate the nonzero entry below our leading 1. 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3

 Replace R2 with −2R1 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 2
3 4 2

3
19
3

0 4 0 −1 3


We proceed to get a leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 2
3 4 2

3
19
3

0 4 0 −1 3

 Replace R2 with 3
2
R2

−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 4 0 −1 3


We now zero out the entry below the leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 4 0 −1 3

 Replace R3 with −4R2 +R3−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 −24 −5 −35


Next, it’s time for a leading 1 in R3. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 −24 −5 −35

 Replace R3 with − 1
24
R3

−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 1 5
24

35
24


The matrix is now in row echelon form. To get the reduced row echelon form, we start with the
last leading 1 we produced and work to get 0’s above it. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 1 5
24

35
24

 Replace R2 with −6R3 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


Lastly, we get a 0 above the leading 1 of R2. 1 −1

3 0 −1
3 −2

3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Replace R1 with 1
3
R2 +R1

−−−−−−−−−−−−−−−−−→

 1 0 0 − 5
12 − 5

12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


At last, we decode to get 1 0 0 − 5

12 − 5
12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Decode from the matrix−−−−−−−−−−−−−−→


x1 − 5

12x4 = − 5
12

x2 − 1
4x4 = 3

4

x3 + 5
24x4 = 35

24

We have that x4 is free and we assign it the parameter t. We obtain x3 = − 5
24 t+ 35

24 , x2 = 1
4 t+ 3

4 ,
and x1 = 5

12 t−
5
12 . Our solution is

{(
5
12 t−

5
12 ,

1
4 t+ 3

4 ,−
5
24 t+ 35

24 , t
)

: −∞ < t <∞
}

and leave it to
the reader to check.
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Like all good algorithms, putting a matrix in row echelon or reduced row echelon form can easily
be programmed into a calculator, and, doubtless, your graphing calculator has such a feature. We
use this in our next example.

Example 8.2.3. Find the quadratic function which passes through the points (−1, 3), (2, 4), (5,−2).

Solution. According to Definition 2.5, a quadratic function has the form f(x) = ax2 + bx + c
where a 6= 0. Our goal is to find a, b and c so that the three given points are on the graph of
f . If (−1, 3) is on the graph of f , then f(−1) = 3, or a(−1)2 + b(−1) + c = 3 which reduces to
a− b+ c = 3, an honest-to-goodness linear equation with the variables a, b and c. Since the point
(2, 4) is also on the graph of f , then f(2) = 4 which gives us the equation 4a+ 2b+ c = 4. Lastly,
the point (5,−2) is on the graph of f gives us 25a+ 5b+ c = −2. Putting these together, we obtain
a system of three linear equations. Encoding this into an augmented matrix produces

a− b+ c = 3
4a+ 2b+ c = 4

25a+ 5b+ c = −2

Encode into the matrix−−−−−−−−−−−−−−→

 1 −1 1 3
4 2 1 4

25 5 1 −2


Using a calculator,4 we find a = − 7

18 , b = 13
18 and c = 37

9 . Hence, the one and only quadratic which
fits the bill is f(x) = − 7

18x
2 + 13

18x+ 37
9 . To verify this analytically, we see that f(−1) = 3, f(2) = 4,

and f(5) = −2. We can use the calculator to check our solution as well by plotting the three data
points and the function f .

The graph of f(x) = − 7
18x

2 + 13
18x+ 37

9
with the points (−1, 3), (2, 4) and (5,−2)

4We’ve tortured you enough already with fractions in this exposition!
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8.2.1 Exercises

1. State whether the given matrix is in reduced row echelon form, row echelon form only or in
neither of those forms.

(a)

[
1 0 3
0 1 3

]

(b)

 3 −1 1 3
2 −4 3 16
1 −1 1 5


(c)

 1 1 4 3
0 1 3 6
0 0 0 1


(d)

 1 0 0 0
0 1 0 0
0 0 0 1


(e)

 1 0 4 3 0
0 1 3 6 0
0 0 0 0 0


(f)

[
1 1 4 3
0 1 3 6

]

2. The following matrices are in reduced row echelon form. Decode from each matrix the solution
of the corresponding system of linear equations or state that the system is inconsistent.

(a)

[
1 0 −2
0 1 7

]

(b)

 1 0 0 −3
0 1 0 20
0 0 1 19


(c)

 1 0 0 3 4
0 1 0 6 −6
0 0 1 0 2



(d)

 1 0 0 3 0
0 1 2 6 0
0 0 0 0 1



(e)


1 0 −8 1 7
0 1 4 −3 2
0 0 0 0 0
0 0 0 0 0



(f)

 1 0 9 −3
0 1 −4 20
0 0 0 0



(g)


1 0 0 0 0
0 1 4 3 0
0 0 0 0 1
0 0 0 0 0



3. Solve the following systems of linear equations using the techniques discussed in this section.
Compare and contrast these techniques with those you used to solve the systems in the
Exercises in Section 8.1.

(a)

{
−5x+ y = 17
x+ y = 5

(b)


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

(c)


4x− y + z = 5

2y + 6z = 30
x+ z = 5

(d)


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

(e)


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

(f)


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

(g)


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

(h)


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3

(i)


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9
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(j)


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2

(k)


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

(l)


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

(m)


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

(n)


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

4. Carl wants to make a party mix consisting of almonds (which cost $7 per pound), cashews
(which cost $5 per pound), and peanuts (which cost $2 per pound.) If he wants to make a 10
pound mix with a budget of $35, what are the possible combinations almonds, cashews, and
peanuts? (You may find it helpful to review Example 8.1.3 in Section 8.1.)

5. The price for admission into the Stitz-Zeager Sasquatch Museum and Research Station is $15
for adults and $8 for kids 13 years old and younger. When the Zahlenreich family visits the
museum their bill is $38 and when the Nullsatz family visits their bill is $39. One day both
families went together and took an adult babysitter along to watch the kids and the total
admission charge was $92. Later that summer, the adults from both families went without
the kids and the bill was $45. Is that enough information to determine how many adults
and children are in each family? If not, state whether the resulting system is inconsistent or
consistent dependent. In the latter case, give at least two plausible solutions.

6. At 9 PM, the temperature was 60◦F; at midnight, the temperature was 50◦F; and at 6 AM,
the temperature was 70◦F . Use the technique in Example 8.2.3 to fit a quadratic function
to these data with the temperature, T , measured in degrees Fahrenheit, as the dependent
variable, and the number of hours after 9 PM, t, measured in hours, as the independent
variable. What was the coldest temperature of the night? When did it occur?

7. Use the technique in Example 8.2.3 to find the line between the points (−3, 4) and (6, 1).
How does your answer compare to the slope-intercept form of the line in Equation 2.3?

8. With the help of your classmates, find at least two different row echelon forms for the matrix[
1 2 3
4 12 8

]
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8.2.2 Answers

1. (a) Reduced row echelon form

(b) Neither

(c) Row echelon form only

(d) Reduced row echelon form

(e) Reduced row echelon form

(f) Row echelon form only

2. (a) (−2, 7)

(b) (−3, 20, 19)

(c) (−3t+ 4,−6t− 6, 2, t)
for all real numbers t

(d) Inconsistent

(e) (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

(f) (−9t− 3, 4t+ 20, t)
for all real numbers t

(g) Inconsistent

3. (a) (−2, 7)

(b) (1, 2, 0)

(c) (−t+ 5,−3t+ 15, t)
for all real numbers t

(d) (2,−1, 1)

(e) (1, 3,−2)

(f) Inconsistent

(g) (1, 3,−2)

(h)
(
−3, 1

2 , 1
)

(i)
(

1
3 ,

2
3 , 1
)

(j)
(

19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

(k) Inconsistent

(l) (4,−3, 1)

(m)
(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t

(n) (1, 2, 3, 4)

4. If t represents the amount (in pounds) of peanuts, then we need 1.5t−7.5 pounds of almonds
and 17.5− 2.5t pounds of cashews. Since we can’t have a negative amount of nuts, 5 ≤ t ≤ 7.

5. Let x1 and x2 be the numbers of adults and children, respectively, in the Zahlenreich family
and let x3 and x4 be the numbers of adults and children, respectively, in the Nullsatz family.
The system of equations determined by the given information is

15x1 + 8x2 = 38
15x3 + 8x4 = 39

15x1 + 8x2 + 15x3 + 8x4 = 77
15x1 + 15x3 = 45

We subtracted the cost of the babysitter in E3 so the constant is 77, not 92. This system is
consistent dependent and its solution is

(
8
15 t+ 2

5 ,−t+ 4,− 8
15 t+ 13

5 , t
)
. Our variables repre-

sent numbers of adults and children so they must be whole numbers. Running through the
values t = 0, 1, 2, 3, 4 yields only one solution where all four variables are whole numbers;
t = 3 gives us (2, 1, 1, 3). Thus there are 2 adults and 1 child in the Zahlenreichs and 1 adult
and 3 kids in the Nullsatzs.

6. T (t) = 20
27 t

2 − 50
9 t+ 60. Lowest temperature of the evening 595

12 ≈ 49.58◦F at 12:45 AM.
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8.3 Matrix Arithmetic

In Section 8.2, we used a special class of matrices, the augmented matrices, to assist us in solving
systems of linear equations. In this section, we study matrices as mathematical objects of their
own accord, temporarily divorced from systems of linear equations. To do so conveniently requires
some more notation. When we write A = [aij ]m×n, we mean A is an m by n matrix1 and aij is the
entry found in the ith row and jth column. Schematically, we have

j counts columns

from left to right

−−−−−−−−−−−−−−−→

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


y

i counts rows

from top to bottom

With this new notation we can define what it means for two matrices to be equal.

Definition 8.6. Matrix Equality: Two matrices are said to be equal if they are the same size
and their corresponding entries are equal. More specifically, if A = [aij ]m×n and B = [bij ]p×r, we
write A = B provided

1. m = p and n = r

2. aij = bij for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

Essentially, two matrices are equal if they are the same size and they have the same numbers in
the same spots.2 For example, the two 2× 3 matrices below are, despite appearances, equal.[

0 −2 9
25 117 −3

]
=

[
ln(1) 3

√
−8 e2 ln(3)

1252/3 32 · 13 log(0.001)

]
Now that we have an agreed upon understanding of what it means for two matrices to equal each
other, we may begin defining arithmetic operations on matrices. Our first operation is addition.

Definition 8.7. Matrix Addition: Given two matrices of the same size, the matrix obtained
by adding the corresponding entries of the two matrices is called the sum of the two matrices.
More specifically, if A = [aij ]m×n and B = [bij ]m×n, we define

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n

As an example, consider the sum below.

1Recall that means A has m rows and n columns.
2Critics may well ask: Why not leave it at that? Why the need for all the notation in Definition 8.6? It is the

authors’ attempt to expose you to the wonderful world of mathematical precision.
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 2 3
4 −1
0 −7

+

 −1 4
−5 −3

8 1

 =

 2 + (−1) 3 + 4
4 + (−5) (−1) + (−3)

0 + 8 (−7) + 1

 =

 1 7
−1 −4

8 −6


It is worth the reader’s time to think what would have happened had we reversed the order of the
summands above. As we would expect, we arrive at the same answer. In general, A+B = B +A
for matrices A and B, provided they are the same size so that the sum is defined in the first place.
This is the commutative law of matrix addition. To see why this is true in general, we appeal to
the definition of matrix addition. Given A = [aij ]m×n and B = [bij ]m×n,

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n = [bij + aij ]m×n = [bij ]m×n + [aij ]m×n = B +A

where the second equality is the definition of A+ B, the third equality holds by the commutative
law of real number addition, and the fourth equality is the definition of B + A. In other words,
matrix addition is commutative because real number addition is. A similar argument shows the
associative law of matrix addition also holds, inherited in turn from the associative law of real
number addition. Specifically, for matrices A, B, and C of the same size, (A+B)+C = A+(B+C).
In other words, when adding more than two matrices, it doesn’t matter how they are grouped. This
means that we can write A+B+C without parentheses and there is no ambiguity as to what this
means.3 These properties and more are summarized in the following theorem.

Theorem 8.3. Properties of Matrix Addition

• Commutative Property: For all m× n matrices, A+B = B +A

• Associative Property: For all m× n matrices, (A+B) + C = A+ (B + C)

• Identity Property: If 0m×n is the m × n matrix whose entries are all 0, then 0m×n is
called the m× n additive identity and for all m× n matrices A

A+ 0m×n = 0m×n +A = A

• Inverse Property: For every given m×n matrix A, there is a unique matrix denoted −A
called the additive inverse of A such that

A+ (−A) = (−A) +A = 0m×n

The identity property is easily verified by resorting to the definition of matrix addition; just as the
number 0 is the additive identity for real numbers, the matrix comprised of all 0’s does the same
job for matrices. To establish the inverse property, given a matrix A = [aij ]m×n, we are looking
for a matrix B = [bij ]m×n so that A + B = 0m×n. By the definition of matrix addition, we must
have that aij + bij = 0 for all i and j. Solving, we get bij = −aij . Hence, given a matrix A,
its additive inverse, which we call −A, does exist and is unique and, moreover, is given by the
formula: −A = [−aij ]m×n. The long and short of this is: to get the additive inverse of a matrix,

3A technical detail which is sadly lost on most readers.
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take additive inverses of each of its entries. With the concept of additive inverse well in hand, we
may now discuss what is meant by subtracting matrices. You may remember from arithmetic that
a− b = a+ (−b); that is, subtraction is defined as ‘adding the opposite (inverse).’ We extend this
concept to matrices. For two matrices A and B of the same size, we define A−B = A+ (−B). At
the level of entries, this amounts to

A−B = A+ (−B) = [aij ]m×n + [−bij ]m×n = [aij + (−bij)]m×n = [aij − bij ]m×n
Thus to subtract two matrices of equal size, we subtract their corresponding entries. Surprised?

Our next task is to define what it means to multiply a matrix by a real number. Thinking back to
arithmetic, you may recall that multiplication, at least by a natural number, can be thought of as
‘rapid addition.’ For example, 2 + 2 + 2 = 3 · 2. We know from algebra4 that 3x = x+ x+ x, so it
seems natural that given a matrix A, we define 3A = A+A+A. If A = [aij ]m×n, we have

3A = A+A+A = [aij ]m×n + [aij ]m×n + [aij ]m×n = [aij + aij + aij ]m×n = [3aij ]m×n

In other words, multiplying the matrix in this fashion by 3 is the same as multiplying each entry
by 3. This leads us to the following definition.

Definition 8.8. Scalara Multiplication: We define the product of a real number and a matrix
to be the matrix obtained by multiplying each of its entries by said real number. More specifically,
if k is a real number and A = [aij ]m×n, we define

kA = k [aij ]m×n = [kaij ]m×n

aThe word ‘scalar’ here refers to real numbers. ‘Scalar multiplication’ in this context means we are multiplying
a matrix by a real number (a scalar).

One may well wonder why the word ‘scalar’ is used for ‘real number.’ It has everything to do with
‘scaling’ factors.5 A point P (x, y) in the plane can be represented by its position matrix, P :

(x, y)↔ P =

[
x
y

]
Suppose we take the point (−2, 1) and multiply its position matrix by 3. We have

3P = 3

[
−2

1

]
=

[
3(−2)

3(1)

]
=

[
−6

3

]
which corresponds to the point (−6, 3). We can imagine taking (−2, 1) to (−6, 3) in this fashion as
a dilation by a factor of 3 in both the horizontal and vertical directions. Doing this to all points
(x, y) in the plane, therefore, has the effect of magnifying (scaling) the plane by a factor of 3.

4The Distributive Property, in particular.
5See Section 1.8.
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As did matrix addition, scalar multiplication inherits many properties from real number arithmetic.
Below we summarize these properties.

Theorem 8.4. Properties of Scalar Multiplication

• Associative Property: For every m× n matrix A and scalars k and r, (kr)A = k(rA).

• Identity Property: For all m× n matrices A, 1A = A.

• Additive Inverse Property: For all m× n matrices A, −A = (−1)A.

• Distributive Property of Scalar Multiplication over Scalar Addition: For every
m× n matrix A and scalars k and r,

(k + r)A = kA+ rA

• Distributive Property of Scalar Multiplication over Matrix Addition: For all m×n
matrices A and B scalars k,

k(A+B) = kA+ kB

• Zero Product Property: If A is an m× n matrix and k is a scalar, then

kA = 0m×n if and only if k = 0 or A = 0m×n

As with the other results in this section, Theorem 8.4 can be proved using the definitions of scalar
multiplication and matrix addition. For example, to prove that k(A+B) = kA+ kB for a scalar k
and m× n matrices A and B, we start by adding A and B, then multiplying by k and seeing how
that compares with the sum of kA and kB.

k(A+B) = k
(
[aij ]m×n + [bij ]m×n

)
= k [aij + bij ]m×n = [k (aij + bij)]m×n = [kaij + kbij ]m×n

As for kA+ kB, we have

kA+ kB = k [aij ]m×n + k [bij ]m×n = [kaij ]m×n + [kbij ]m×n = [kaij + kbij ]m×n X

which establishes the property. The remaining properties are left to the reader. The properties in
Theorems 8.3 and 8.4 establish an algebraic system that lets us treat matrices and scalars more or
less as we would real numbers and variables, as the next example illustrates.

Example 8.3.1. Solve for the matrix A: 3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]
using the definitions and properties of matrix arithmetic.
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Solution.

3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]

3A+

{
−
([

2 −1
3 5

]
+ 5A

)}
=

[
−4 2

6 −2

]
+

[ (
1
3

)
(9)

(
1
3

)
(12)(

1
3

)
(−3)

(
1
3

)
(39)

]

3A+ (−1)

([
2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

[
3 4
−1 13

]
3A+

{
(−1)

[
2 −1
3 5

]
+ (−1)(5A)

}
=

[
−1 6

5 11

]
3A+ (−1)

[
2 −1
3 5

]
+ (−1)(5A) =

[
−1 6

5 11

]
3A+

[
(−1)(2) (−1)(−1)
(−1)(3) (−1)(5)

]
+ ((−1)(5))A =

[
−1 6

5 11

]
3A+

[
−2 1
−3 −5

]
+ (−5)A =

[
−1 6

5 11

]
3A+ (−5)A+

[
−2 1
−3 −5

]
=

[
−1 6

5 11

]
(3 + (−5))A+

[
−2 1
−3 −5

]
+

(
−
[
−2 1
−3 −5

])
=

[
−1 6

5 11

]
+

(
−
[
−2 1
−3 −5

])
(−2)A+ 02×2 =

[
−1 6

5 11

]
−
[
−2 1
−3 −5

]
(−2)A =

[
−1− (−2) 6− 1

5− (−3) 11− (−5)

]
(−2)A =

[
1 5
8 16

]
(
−1

2

)
((−2)A) = −1

2

[
1 5
8 16

]
((
−1

2

)
(−2)

)
A =

[ (
−1

2

)
(1)

(
−1

2

)
(5)(

−1
2

)
(8)

(
−1

2

)
(16)

]

1A =

[
−1

2 −5
2

−4 −16
2

]

A =

[
−1

2 −5
2

−4 −8

]
The reader is encouraged to check our answer in the original equation.
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While the solution to the previous example is written in excruciating detail, in practice many of
the steps above are omitted. We have spelled out each step in this example to encourage the reader
to justify each step using the definitions and properties we have established thus far for matrix
arithmetic. The reader is encouraged to solve the equation in Example 8.3.1 as they would any
other linear equation, for example: 3a− (2 + 5a) = −4 + 1

3(9).

We now turn our attention to matrix multiplication - that is, multiplying a matrix by another
matrix. Based on the ‘no surprises’ trend so far in the section, you may expect that in order to
multiply to matrices, they must be of the same size and you find the product my multiplying the
corresponding entries. While this kind of product is used in other area of mathematics,6 we define
matrix multiplication to serve us in solving systems of linear equations. To that end, we begin by
defining the product of a row and a column. We motivate the general definition with an example.
Consider the two matrices A and B below.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


Let R1 denote the first row of A and C1 denote the first column of B. To find the ‘product’ of R1
with C1, denoted R1 ·C1, we first find the product of the first entry in R1 and the first entry in C1.
Next, we add to that the product of the second entry in R1 and the second entry in C1. Finally,
we take that sum and we add to that the product of the last entry in R1 and the last entry in C1.
Using entry notation, R1·C1 = a11b11 +a12b21 +a13b31 = (2)(3)+(0)(4)+(−1)(5) = 6+0+(−5) = 1.
We can visualize this schematically as follows

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


−−−−−−−−−→
2 0 −1

3
4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3

4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3
4

5

y︸ ︷︷ ︸
a11b11 + a12b21 + a13b31

(2)(3) + (0)(4) + (−1)(5)

To find R2 · C3 where R2 denotes the second row of A and C3 denotes the third column of B, we
proceed similarly. We start with finding the product of the first entry of R2 with the first entry in
C3 then add to it the product of the second entry in R2 with the second entry in C3, and so forth.
Using entry notation, we have R2·C3 = a21b13+a22b23+a23b33 = (−10)(2)+(3)(−5)+(5)(−2) = −45.
Schematically,

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


6See this article on the Hadamard Product.

http://en.wikipedia.org/wiki/Matrix_multiplication
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−−−−−−−−−→
−10 3 5

2
−5
−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2

−5

−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2
−5

−2

y︸ ︷︷ ︸
a21b13 = (−10)(2) = −20 + a22b23 = (3)(−5) = −15 + a23b33 = (5)(−2) = −10

Generalizing this process, we have the following definition.

Definition 8.9. Product of a Row and a Column: Suppose A = [aij ]m×n and B = [bij ]n×r.
Let Ri denote the ith row of A and let Cj denote the jth column of B. The product of Ri and
Cj, denoted Ri · Cj is the real number defined by

Ri · Cj = ai1b1j + ai2b2j + . . . ainbnj

Note that in order to multiply a row by a column, the number of entries in the row must match
the number of entries in the column. We are now in the position to define matrix multiplication.

Definition 8.10. Matrix Multiplication: Suppose A = [aij ]m×n and B = [bij ]n×r. Let Ri
denote the ith row of A and let Cj denote the jth column of B. The product of A and B,
denoted AB, is the matrix defined by

AB = [Ri · Cj]m×r

that is

AB =


R1 · C1 R1 · C2 . . . R1 · Cr
R2 · C1 R2 · C2 . . . R2 · Cr

...
...

...
Rm · C1 Rm · C2 . . . Rm · Cr


There are a number of subtleties in Definition 8.10 which warrant closer inspection. First and
foremost, Definition 8.10 tells us that the ij-entry of a matrix product AB is the ith row of A
times the jth column of B. In order for this to be defined, the number of entries in the rows of A
must match the number of entries in the columns of B. This means that the number of columns
of A must match the number of rows of B.7 In other words, to multiply A times B, the second
dimension of A must match the first dimension of B, which is why in Definition 8.10, Am×n is being
multiplied by a matrix Bn×r. Furthermore, the product matrix AB has as many rows as A and as
many columns of B. As a result, when multiplying a matrix Am×n by a matrix Bn×r, the result is
the matrix ABm×r. Returning to our example matrices below, we see that A is a 2× 3 matrix and
B is a 3× 4 matrix. This means that the product matrix AB is defined and will be a 2× 4 matrix.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


7The reader is encouraged to think this through carefully.
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Using Ri to denote the ith row of A and Cj to denote the jth column of B, we form AB according
to Definition 8.10.

AB =

[
R1 · C1 R1 · C2 R1 · C3 R1 · C4
R2 · C1 R2 · C2 R2 · C3 R2 · C4

]
=

[
1 2 6 −4
7 14 −45 47

]
Note that the product BA is not defined, since B is a 3× 4 matrix while A is a 2× 3 matrix; B has
more columns than A has rows, and so it is not possible to multiply a row of B by a column of A.
Even when the dimensions of A and B are compatible such that AB and BA are both defined, the
product AB and BA aren’t necessarily equal.8 In other words, AB may not equal BA. Although
there is no commutative property of matrix multiplication in general, several other real number
properties are inherited by matrix multiplication, as illustrated in our next theorem.

Theorem 8.5. Properties of Matrix Multiplication Let A, B and C be matrices such that
all of the matrix products below are defined and let k be a real number.

• Associative Property of Matrix Multiplication: (AB)C = A(BC)

• Associative Property with Scalar Multiplication: k(AB) = (kA)B = A(kB)

• Identity Property: For a natural number k, the k × k identity matrix, denoted Ik, is
defined by Ik = [dij ]k×k where

dij =

{
1, if i = j
0, otherwise

For all m× n matrices, ImA = AIn = A.

• Distributive Property of Matrix Multiplication over Matrix Addition:

A(B ± C) = AB ±AC and (A±B)C = AC ±BC

The one property in Theorem 8.5 which begs further investigation is, without doubt, the multi-
plicative identity. The entries in a matrix where i = j comprise what is called the main diagonal
of the matrix. The identity matrix has 1’s along its main diagonal and 0’s everywhere else. A few
examples of the matrix Ik mentioned in Theorem 8.5 are given below. The reader is encouraged to
see how they match the definition of the identity matrix presented there.

[1]

[
1 0
0 1

]  1 0 0
0 1 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


I1 I2 I3 I4

8And may not even have the same dimensions. For example, if A is a 2× 3 matrix and B is a 3× 2 matrix, then
AB is defined and is a 2× 2 matrix while BA is also defined... but is a 3× 3 matrix!
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The identity matrix is an example of what is called a square matrix as it has the same number
of rows as columns. Note that to in order to verify that the identity matrix acts as a multiplicative
identity, some care must be taken depending on the order of the multiplication. For example, take
the matrix 2× 3 matrix A from earlier

A =

[
2 0 −1

−10 3 5

]
In order for the product IkA to be defined, k = 2; similarly, for AIk to be defined, k = 3. We leave
it to the reader to show I2A = A and AI3 = A. In other words,

[
1 0
0 1

] [
2 0 −1

−10 3 5

]
=

[
2 0 −1

−10 3 5

]
and [

2 0 −1
−10 3 5

] 1 0 0
0 1 0
0 0 1

 =

[
2 0 −1

−10 3 5

]

While the proofs of the properties in Theorem 8.5 are computational in nature, the notation becomes
quite involved very quickly, so they are left to a course in Linear Algebra. The following example
provides some practice with matrix multiplication and its properties. As usual, some valuable
lessons are to be learned.

Example 8.3.2.

1. Find AB for A =

[
−23 −1 17

46 2 −34

]
and B =

 −3 2
1 5
−4 3



2. Find C2 − 5C + 10I2 for C =

[
1 −2
3 4

]
3. Suppose M is a 4× 4 matrix. Use Theorem 8.5 to expand (M − 2I4) (M + 3I4).

Solution.

1. We have AB =

[
−23 −1 17

46 2 −34

] −3 2
1 5
−4 3

 =

[
0 0
0 0

]

2. Just as x2 means x times itself, C2 denotes the matrix C times itself. We get
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C2 − 5C + 10I2 =

[
1 −2
3 4

]2

− 5

[
1 −2
3 4

]
+ 10

[
1 0
0 1

]
=

[
1 −2
3 4

] [
1 −2
3 4

]
+

[
−5 10
−15 −20

]
+

[
10 0
0 10

]
=

[
−5 −10
15 10

]
+

[
5 10

−15 −10

]
=

[
0 0
0 0

]
3. We expand (M − 2I4) (M + 3I4) with the same pedantic zeal we showed in Example 8.3.1.

The reader is encouraged to determine which property of matrix arithmetic is used as we
proceed from one step to the next.

(M − 2I4) (M + 3I4) = (M − 2I4)M + (M − 2I4) (3I4)
= MM − (2I4)M +M (3I4)− (2I4) (3I4)
= M2 − 2 (I4M) + 3 (MI4)− 2 (I4 (3I4))
= M2 − 2M + 3M − 2 (3 (I4I4))
= M2 +M − 6I4

Example 8.3.2 illustrates some interesting features of matrix multiplication. First note that in
part 1, neither A nor B is the zero matrix, yet the product AB is the zero matrix. Hence, the
the zero product property enjoyed by real numbers and scalar multiplication does not hold for
matrix multiplication. Parts 2 and 3 introduce us to polynomials involving matrices. The reader is
encouraged to step back and compare our expansion of the matrix product (M − 2I4) (M + 3I4) in
part 3 with the product (x − 2)(x + 3) from real number algebra. The exercises explore this kind
of parallel further.

As we mentioned earlier, a point P (x, y) in the xy-plane can be represented as a 2 × 1 position
matrix. We now show that matrix multiplication can be used to rotate these points, and hence
graphs of equations.

Example 8.3.3. Let R =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]
.

1. Plot P (2,−2), Q(4, 0), S(0, 3), and T (−3,−3) in the plane as well as the points RP , RQ,
RS, and RT . Plot the lines y = x and y = −x as guides. What does R appear to be doing
to these points?

2. If a point P is on the hyperbola x2 − y2 = 4, show that the point RP is on the curve y = 2
x .
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Solution. For P (2,−2), the position matrix is P =

[
2
−2

]
, and

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
2

−2

]

=

[
2
√

2
0

]

We have that R takes (2,−2) to (2
√

2, 0). Similarly, we find (4, 0) is moved to (2
√

2, 2
√

2), (0, 3)

is moved to
(
−3
√

2
2 , 3

√
2

2

)
, and (−3,−3) is moved to (0,−3

√
2). Plotting these in the coordinate

plane along with the lines y = x and y = −x, we see that the matrix R is rotating these points
counterclockwise by 45◦.

P

RP

Q

RQ
S

RS

T

RT

x

y

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

4

For a generic point P (x, y) on the hyperbola x2 − y2 = 4, we have

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
x

y

]

=

[ √
2

2 x−
√

2
2 y√

2
2 x+

√
2

2 y

]

which means R takes (x, y) to
(√

2
2 x−

√
2

2 y,
√

2
2 x+

√
2

2 y
)

. To show that this point is on the curve

y = 2
x , we replace x with

√
2

2 x−
√

2
2 y and y with

√
2

2 x+
√

2
2 y and simplify.
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y = 2
x√

2
2 x+

√
2

2 y
?
= 2√

2
2
x−
√

2
2
y(√

2
2 x−

√
2

2 y
)(√

2
2 x+

√
2

2 y
)

?
=

(
2

√
2

2 x−
√

2
2 y

)(√
2

2 x−
√

2
2 y
)

(√
2

2 x
)2
−
(√

2
2 y
)2 ?

= 2

x2

2 −
y2

2
?
= 2

x2 − y2 X
= 4

Since (x, y) is on the hyperbola x2 − y2 = 4, we know that this last equation is true. Since all of
our steps are reversible, this last equation is equivalent to our original equation, which establishes
the point is, indeed, on the graph of y = 2

x . This means that the graph of y = 2
x is a hyperbola

− it is the hyperbola x2 − y2 = 4 rotated counterclockwise by 45◦.9 Below we have the graph of
x2 − y2 = 4 (solid line) and y = 2

x (dashed line) for comparison.

x

y

−3 −1 1 3 4

−3

−2

−1

1

2

3

4

When we started this section, we mentioned that we would temporarily consider matrices as their
own entities, but that the algebra developed here would ultimately allow us to solve systems of
linear equations. To that end, consider the system

3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

In Section 8.2, we encoded this system into the augmented matrix 3 −1 1 8
1 2 −1 4
2 3 −4 10


9See Section 7.5 for more details.
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Recall that the entries to the left of the vertical line come from the coefficients of the variables in
the system, while those on the right comprise the associated constants. For that reason, we may
form the coefficient matrix A, the unknowns matrix X and the constant matrix B as below

A =

 3 −1 1
1 2 −1
2 3 −4

 X =

 x
y
z

 B =

 8
4

10


We now consider the matrix equation AX = B.

AX = B 3 −1 1
1 2 −1
2 3 −4

 x
y
z

 =

 8
4

10


 3x− y + z

x+ 2y − z
2x+ 3y − 4z

 =

 8
4

10


We see that finding a solution (x, y, z) to the original system corresponds to finding a solution X
for the matrix equation AX = B. If we think about solving the real number equation ax = b, we
would simply ‘divide’ both sides by a. Is it possible to ‘divide’ both sides of the matrix equation
AX = B by the matrix A? This is the central topic of Section 8.4.
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8.3.1 Exercises

1. Using the matrices

A =

[
1 2
3 4

]
B =

[
0 −3
−5 2

]
C =

[
10 −11

2 0
3
5 5 9

]

D =

 7 −13
−4

3 0
6 8

 E =

 1 2 3
0 4 −9
0 0 −5


compute the following matrices or state that they are undefined.

(a) 7B − 4A

(b) AB

(c) BA

(d) E +D

(e) ED

(f) CD + 2I2A

(g) A− 4I2

(h) A2 −B2

(i) (A+B)(A−B)

(j) A2 − 5A− 2I2

(k) E2 + 5E − 36I3

(l) EDC

(m) CDE

(n) ABCEDI2

2. Let

A =

[
a b c
d e f

]
E1 =

[
0 1
1 0

]
E2 =

[
5 0
0 1

]
E3 =

[
1 −2
0 1

]
Compute E1A, E2A and E3A. What effect did each of the Ei matrices have on the rows of
A? Create E4 so that its effect on A is to multiply the bottom row by −6. How would you
extend this idea to matrices with more than two rows?

3. In the small village of Pedimaxus in the country of Sasquatchia, all 150 residents get one of the
two local newspapers. Market research has shown that in any given week, 90% of those who
subscribe to the Pedimaxus Tribune want to keep getting it, but 10% want to switch to the
Sasquatchia Picayune. Of those who receive the Picayune, 80% want to continue with it and
20% want switch to the Tribune. We can express this situation using matrices. Specifically,
let X be the ‘state matrix’ given by

X =

[
T
P

]
where T is the number of people who get the Tribune and P is the number of people who get
the Picayune in a given week. Let Q be the ‘transition matrix’ given by

Q =

[
0.90 0.20
0.10 0.80

]
such that QX will be the state matrix for the next week.
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(a) Let’s assume that when Pedimaxus was founded, all 150 residents got the Tribune. (Let’s
call this Week 0.) This would mean

X =

[
150

0

]
Since 10% of that 150 want to switch to the Picayune, we should have that for Week
1, 135 people get the Tribune and 15 people get the Picayune. Show that QX in this
situation is indeed

QX =

[
135
15

]
(b) Assuming that the percentages stay the same, we can get to the subscription numbers

for Week 2 by computing Q2X. How many people get each paper in Week 2?

(c) Explain why the transition matrix does what we want it to do.

(d) If the conditions do not change from week to week, then Q remains the same and we
have what’s known as a Stochastic Process10 because Week n’s numbers are found by
computing QnX. Choose a few values of n and, with the help of your classmates and
calculator, find out how many people get each paper for that week. You should start to
see a pattern as n→∞.

(e) If you didn’t see the pattern, we’ll help you out. Let

Xs =

[
100
50

]
.

Show that QXs = Xs This is called the steady state because the number of people
who get each paper didn’t change for the next week. Show that QnX → Xs as n→∞.

(f) Now let

S =

[
2
3

2
3

1
3

1
3

]
Show that Qn → S as n→∞.

(g) Show that SY = Xs for any matrix Y of the form

Y =

[
y

150− y

]
This means that no matter how the distribution starts in Pedimaxus, if Q is applied
often enough, we always end up with 100 people getting the Tribune and 50 people
getting the Picayune.

10More specifically, we have a Markov Chain, which is a special type of stochastic process.
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4. Let z = a + bi and w = c + di be arbitrary complex numbers. Associate z and w with the
matrices

Z =

[
a b
−b a

]
and W =

[
c d
−d c

]
Show that complex number addition, subtraction and multiplication are mirrored by the
associated matrix arithmetic. That is, show that Z +W , Z −W and ZW produce matrices
which can be associated with the complex numbers z + w, z − w and zw, respectively.

5. A square matrix is said to be an upper triangular matrix if all of its entries below the
main diagonal are zero and it is said to be a lower triangular matrix if all of its entries
above the main diagonal are zero. For example,

E =

 1 2 3
0 4 −9
0 0 −5


from Exercise 1 above is an upper triangular matrix whereas

F =

[
1 0
3 0

]
is a lower triangular matrix. (Zeros are allowed on the main diagonal.) Discuss the following
questions with your classmates.

(a) Give an example of a matrix which is neither upper triangular nor lower triangular.

(b) Is the product of two n× n upper triangular matrices always upper triangular?

(c) Is the product of two n× n lower triangular matrices always lower triangular?

(d) Given the matrix

A =

[
1 2
3 4

]
write A as LU where L is a lower triangular matrix and U is an upper triangular matrix?

(e) Are there any matrices which are simultaneously upper and lower triangular?

6. Let

A =

[
1 2
3 4

]
and B =

[
0 −3
−5 2

]
Compare (A+ B)2 to A2 + 2AB + B2. Discuss with your classmates what constraints must
be placed on two arbitrary matrices A and B so that both (A+B)2 and A2 +2AB+B2 exist.
When will (A+B)2 = A2 + 2AB+B2? In general, what is the correct formula for (A+B)2?



492 Systems of Equations and Matrices

8.3.2 Answers

1. (a) 7B − 4A =

[
−4 −29
−47 −2

]
(b) AB =

[
−10 1
−20 −1

]
(c) BA =

[
−9 −12

1 −2

]
(d) E +D is undefined

(e) ED =

 67
3 11

−178
3 −72
−30 −40


(f) CD + 2I2A =

[
238
3 −126

863
15

361
5

]

(g) A− 4I2 =

[
−3 2

3 0

]

(h) A2 −B2 =

[
−8 16
25 3

]
(i) (A+B)(A−B) =

[
−7 3
46 2

]
(j) A2 − 5A− 2I2 =

[
0 0
0 0

]

(k) E2 + 5E − 36I3 =

 −30 20 −15
0 0 −36
0 0 −36


(l) EDC =

 3449
15 −407

6 99

−9548
15 −101

3 −648
−324 −35 −360


(m) CDE is undefined

(n) ABCEDI2 =

[
−90749

15 −28867
5

−156601
15 −47033

5

]

2. E1A =

[
d e f
a b c

]
E1 interchanged R1 and R2 of A.

E2A =

[
5a 5b 5c
d e f

]
E2 multiplied R1 of A by 5.

E3A =

[
a− 2d b− 2e c− 2f

d e f

]
E3 replaced R1 in A with R1− 2R2.

E4 =

[
1 0
0 −6

]
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8.4 Systems of Linear Equations: Matrix Inverses

We concluded Section 8.3 by showing how we can rewrite a system of linear equations as the matrix
equation AX = B where A and B are known matrices and the solution matrix X of the equation
corresponds to the solution of the system. In this section, we develop the method for solving such
an equation. To that end, consider the system{

2x− 3y = 16
3x+ 4y = 7

To write this as a matrix equation, we follow the procedure outlined on page 488. We find the
coefficient matrix A, the unknowns matrix X and constant matrix B to be

A =

[
2 −3
3 4

]
X =

[
x
y

]
B =

[
16
7

]
In order to motivate how we solve a matrix equation like AX = B, we revisit solving a similar
equation involving real numbers. Consider the equation 3x = 5. To solve, we simply divide both
sides by 3 and obtain x = 5

3 . How can we go about defining an analogous process for matrices?
To answer this question, we solve 3x = 5 again, but this time, we pay attention to the properties
of real numbers being used at each step. Recall that dividing by 3 is the same as multiplying by
1
3 = 3−1, the so-called multiplicative inverse of 3.1

3x = 5
3−1(3x) = 3−1(5) Multiply by the (multiplicative) inverse of 3(

3−1 · 3
)
x = 3−1(5) Associative property of multiplication

1 · x = 3−1(5) Inverse property
x = 3−1(5) Multiplicative Identity

If we wish to check our answer, we substitute x = 3−1(5) into the original equation

3x
?
= 5

3
(
3−1(5)

) ?
= 5(

3 · 3−1
)

(5)
?
= 5 Associative property of multiplication

1 · 5 ?
= 5 Inverse property

5
X
= 5 Multiplicative Identity

Thinking back to Theorem 8.5, we know that matrix multiplication enjoys both an associative
property and a multiplicative identity. What’s missing from the mix is a multiplicative inverse for
the coefficient matrix A. Assuming we can find such a beast, we can mimic our solution (and check)
to 3x = 5 as follows

1Every nonzero real number a has a multiplicative inverse, denoted a−1, such that a−1 · a = a · a−1 = 1.
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Solving AX = B Checking our answer

AX = B
A−1(AX) = A−1B(
A−1A

)
X = A−1B

I2X = A−1B
X = A−1B

AX
?
= B

A
(
A−1B

) ?
= B(

AA−1
)
B

?
= B

I2B
?
= B

B
X
= B

The matrix A−1 is read ‘A-inverse’ and we will define it formally later in the section. At this stage,
we have no idea if such a matrix A−1 exists, but that won’t deter us from trying to find it.2 We
want A−1 to satisfy two equations, A−1A = I2 and AA−1 = I2, making A−1 necessarily a 2 × 2
matrix.3 Hence, we assume A−1 has the form

A−1 =

[
x1 x2

x3 x4

]
for real numbers x1, x2, x3 and x4. For reasons which will become clear later, we focus our attention
on the equation AA−1 = I2. We have

AA−1 = I2[
2 −3
3 4

] [
x1 x2

x3 x4

]
=

[
1 0
0 1

]
[

2x1 − 3x3 2x2 − 3x4

3x1 + 4x3 3x2 + 4x4

]
=

[
1 0
0 1

]
This gives rise to two more systems of equations

{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

{
2x2 − 3x4 = 0
3x2 + 4x4 = 1

At this point, it may seem absurd to continue with this venture. After all, the intent was to solve
one system of equations, and in doing so, we have produced two more to solve. Remember, the
objective of this discussion is to develop a general method which, when used in the correct scenarios,
allows us to do far more than just solve a system of equations. If we set about to solve these systems
using augmented matrices using the techniques in Section 8.2, we see that not only do both systems
have the same coefficient matrix, this coefficient matrix is none other than the matrix A itself. (We
will come back to this observation in a moment.)

2Much like Carl’s quest to find Sasquatch.
3Since matrix multiplication isn’t necessarily commutative, at this stage, these are two different equations.
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{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

Encode into a matrix−−−−−−−−−−−−−→
[

2 −3 1
3 4 0

]
{

2x2 − 3x4 = 0
3x2 + 4x4 = 1

Encode into a matrix−−−−−−−−−−−−−→
[

2 −3 0
3 4 1

]
To solve these two systems, we use Gauss-Jordan Elimination to put the augmented matrices into
reduced row echelon form. (We leave the details to the reader.) For the first system, we get[

2 −3 1
3 4 0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 4

17

0 1 − 3
17

]
which gives x1 = 4

17 and x3 = − 3
17 . To solve the second system, we use the exact same row

operations, in the same order, to put its augmented matrix into reduced row echelon form (Think
about why that works.) and we obtain[

2 −3 0
3 4 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 3

17

0 1 2
17

]
which means x2 = 3

17 and x4 = 2
17 . Hence,

A−1 =

[
x1 x2

x3 x4

]
=

[
4
17

3
17

− 3
17

2
17

]
We can check to see that A−1 behaves as it should by computing AA−1

AA−1 =

[
2 −3
3 4

][ 4
17

3
17

− 3
17

2
17

]
=

[
1 0
0 1

]
= I2 X

As an added bonus,

A−1A =

[
4
17

3
17

− 3
17

2
17

] [
2 −3
3 4

]
=

[
1 0
0 1

]
= I2 X

We can now return to the problem at hand. From our discussion at the beginning of the section
on page 494, we know

X = A−1B =

[
4
17

3
17

− 3
17

2
17

] [
16
7

]
=

[
5
−2

]
so that our final solution to the system is (x, y) = (5,−2).

As we mentioned, the point of this exercise was not just to solve the system of linear equations, but
to develop a general method for finding A−1. We now take a step back and analyze the foregoing
discussion in a more general context. In solving for A−1, we used two augmented matrices, both of
which contained the same entries as A
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[
2 −3 1
3 4 0

]
=

[
A

1
0

]
[

2 −3 0
3 4 1

]
=

[
A

0
1

]
We also note that the reduced row echelon forms of these augmented matrices can be written as[

1 0 4
17

0 1 − 3
17

]
=

[
I2

x1

x3

]
[

1 0 3
17

0 1 2
17

]
=

[
I2

x2

x4

]
where we have identified the entries to the left of the vertical bar as the identity I2 and the entries
to the right of the vertical bar as the solutions to our systems. The long and short of the solution
process can be summarized as[

A
1
0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1

x3

]
[
A

0
1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x2

x4

]
Since the row operations for both processes are the same, all of the arithmetic on the left hand side
of the vertical bar is identical in both problems. The only difference between the two processes is
what happens to the constants to the right of the vertical bar. As long as we keep these separated
into columns, we can combine our efforts into one ‘super-sized’ augmented matrix and describe the
above process as [

A
1 0
0 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1 x2

x3 x4

]
We have the identity matrix I2 appearing as the right hand side of the first super-sized augmented
matrix and the left hand side of the second super-sized augmented matrix. To our surprise and
delight, the elements on the right hand side of the second super-sized augmented matrix are none
other than those which comprise A−1. Hence, we have

[
A I2

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→
[
I2 A−1

]
In other words, the process of finding A−1 for a matrix A can be viewed as performing a series of
row operations which transform A into the identity matrix of the same dimension. We can view
this process as follows. In trying to find A−1, we are trying to ‘undo’ multiplication by the matrix
A. The identity matrix in the super-sized augmented matrix [A|I] keeps a running memory of all
of the moves required to ‘undo’ A. This results in exactly what we want, A−1. We are now ready
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to formalize and generalize the foregoing discussion. We begin with the formal definition of an
invertible matrix.

Definition 8.11. An n× n matrix A is said to be invertible if there exists a matrix A−1, read
‘A inverse’, such that A−1A = AA−1 = In.

Note that, according to our definition, invertible matrices are square, and as such, the conditions
in Definition 8.11 force the matrix A−1 to be same dimensions as A, that is, n × n. Since not
all matrices are square, not all matrices are invertible. However, just because a matrix is square
doesn’t guarantee it is invertible. (See the exercises.) Our first result summarizes some of the
important characteristics of invertible matrices and their inverses.

Theorem 8.6. Suppose A is an n× n matrix.

1. If A is invertible then A−1 is unique.

2. A is invertible if and only if AX = B has a unique solution for every n× r matrix B.

The proofs of the properties in Theorem 8.6 rely on a healthy mix of definition and matrix arith-
metic. To establish the first property, we assume that A is invertible and suppose the matrices B and
C act as inverses for A. That is, BA = AB = In and CA = AC = In. We need to show that B and
C are, in fact, the same matrix. To see this, we note that B = InB = (CA)B = C(AB) = CIn = C.
Hence, any two matrices that act like A−1 are, in fact, the same matrix.4 To prove the second
property of Theorem 8.6, we note that if A is invertible then the discussion on page 494 shows
the solution to AX = B to be X = A−1B, and since A−1 is unique, so is A−1B. Conversely, if
AX = B has a unique solution for every n × r matrix B, then, in particular, there is a unique
solution X0 to the equation AX = In. The solution matrix X0 is our candidate for A−1. We
have AX0 = In by definition, but we need to also show X0A = In. To that end, we note that
A (X0A) = (AX0)A = InA = A. In other words, the matrix X0A is a solution to the equation
AX = A. Clearly, X = In is also a solution to the equation AX = A, and since we are assuming ev-
ery such equation as a unique solution, we must have X0A = In. Hence, we have X0A = AX0 = In,
so that X0 = A−1 and A is invertible. The foregoing discussion justifies our quest to find A−1 using
our super-sized augmented matrix approach[

A In
] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
In A−1

]
We are, in essence, trying to find the unique solution to the equation AX = In using row operations.

What does all of this mean for a system of linear equations? Theorem 8.6 tells us that if we write
the system in the form AX = B, then if the coefficient matrix A is invertible, there is only one
solution to the system − that is, if A is invertible, the system is consistent and independent.5 We

4If this proof sounds familiar, it should. See the discussion following Theorem 5.2 on page 295.
5It can be shown that a matrix is invertible if and only if when it serves as a coefficient matrix for a system of

equations, the system is always consistent independent. It amounts to the second property in Theorem 8.6 where
the matrices B are restricted to being n × 1 matrices. We note for the interested reader that, owing to how matrix
multiplication is defined, being able to find unique solutions to AX = B for n × 1 matrices B gives you the same
statement about solving such equations for n× r matrices − since we can find a unique solution to them one column
at a time.
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also know that the process by which we find A−1 is determined completely by A, and not by the
constants in B. This answers the question as to why we would bother doing row operations on
a super-sized augmented matrix to find A−1 instead of an ordinary augmented matrix to solve a
system; by finding A−1 we have done all of the row operations we ever need to do, once and for all,
since we can quickly solve any equation AX = B using one multiplication, A−1B. We illustrate
this in our next example.

Example 8.4.1. Let A =

 3 1 2
0 −1 5
2 1 4


1. Use row operations to find A−1. Check your answer by finding A−1A and AA−1.

2. Use A−1 to solve the following systems of equations

(a)


3x+ y + 2z = 26
−y + 5z = 39

2x+ y + 4z = 117
(b)


3x+ y + 2z = 4
−y + 5z = 2

2x+ y + 4z = 5
(c)


3x+ y + 2z = 1
−y + 5z = 0

2x+ y + 4z = 0

Solution.

1. We begin with a super-sized augmented matrix and proceed with Gauss-Jordan elimination. 3 1 2 1 0 0
0 −1 5 0 1 0
2 1 4 0 0 1

 Replace R1−−−−−−−→
with 1

3
R1

 1 1
3

2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1


 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1

 Replace R3 with−−−−−−−−−−→
−2R1 +R3

 1 1
3

2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1


 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1

 Replace R2−−−−−−−−→
with (−1)R2

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1

 Replace R3 with−−−−−−−−−−→
− 1

3
R2 +R3

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1

 Replace R3−−−−−−−→
with 3

13
R3

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13


Replace R1 with

− 2
3
R3 +R1

−−−−−−−−−−−−→
Replace R2 with

5R3 +R2

 1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13
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 1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13

 Replace R1 with−−−−−−−−−−→
− 1

3
R2 +R1

 1 0 0 9
13

2
13 − 7

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13



We find A−1 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

. To check our answer, we compute

A−1A =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 3 1 2

0 −1 5

2 1 4

 =

 1 0 0

0 1 0

0 0 1

 = I3 X

and

AA−1 =

 3 1 2

0 −1 5

2 1 4




9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

 =

 1 0 0

0 1 0

0 0 1

 = I3 X

2. Each of the systems in this part has A as its coefficient matrix. The only difference between
the systems is the constants which is the matrix B in the associated matrix equation AX = B.
We solve each of them using the formula X = A−1B.

(a) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 26

39

117

 =

 −39

91

26

. Our solution is (−39, 91, 26).

(b) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 4

2

5

 =


5
13
19
13
9
13

. We get
(

5
13 ,

19
13 ,

9
13

)
.

(c) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 1

0

0

 =


9
13

−10
13

− 2
13

. We find
(

9
13 ,−

10
13 ,−

2
13

)
.6

In Example 8.4.1, we see that finding one inverse matrix can enable us to solve an entire family
of systems of linear equations. There are many examples of where this comes in handy ‘in the
wild’, and we chose our example for this section from the field of electronics. We also take this
opportunity to introduce the student to how we can compute inverse matrices using the calculator.

6Note that the solution is the first column of the A−1. The reader is encouraged to meditate on this ‘coincidence’.
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Example 8.4.2. Consider the circuit diagram below.7 We have two batteries with source voltages
VB1 and VB2, measured in volts V , along with six resistors with resistances R1 through R6, measured
in kiloohms, kΩ. Using Ohm’s Law and Kirchhoff’s Voltage Law, we can relate the voltage supplied
to the circuit by the two batteries to the voltage drops across the six resistors in order to find the
four ‘mesh’ currents: i1, i2, i3 and i4, measured in milliamps, mA. If we think of electrons flowing
through the circuit, we can think of the voltage sources as providing the ‘push’ which makes the
electrons move, the resistors as obstacles for the electrons to overcome, and the mesh current as a
net rate of flow of electrons around the indicated loops.

VB1

R5

R1 R2 R6

VB2R3 R4i1 i2 i3

i4

1

The system of linear equations associated with this circuit is
(R1 +R3) i1 −R3i2 −R1i4 = VB1

−R3i1 + (R2 +R3 +R4) i2 −R4i3 −R2i4 = 0
−R4i2 + (R4 +R6) i3 −R6i4 = −VB2

−R1i1 −R2i2 −R6i3 + (R1 +R2 +R5 +R6) i4 = 0

1. Assuming the resistances are all 1kΩ, find the mesh currents if the battery voltages are

(a) VB1 = 10V and VB2 = 5V

(b) VB1 = 10V and VB2 = 0V

(c) VB1 = 0V and VB2 = 10V

(d) VB1 = 10V and VB2 = 10V

2. Assuming VB1 = 10V and VB2 = 5V , find the possible combinations of resistances which
would yield the mesh currents you found in 1(a).

7The authors wish to thank Don Anthan of Lakeland Community College for the design of this example.

http://en.wikipedia.org/wiki/Ohm's_law
http://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws
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Solution.

1. Substituting the resistance values into our system of equations, we get


2i1 − i2 − i4 = VB1

−i1 + 3i2 − i3 − i4 = 0
−i2 + 2i3 − i4 = −VB2

−i1 − i2 − i3 + 4i4 = 0

This corresponds to the matrix equation AX = B where

A =


2 −1 0 −1
−1 3 −1 −1

0 −1 2 −1
−1 −1 −1 4

 X =


i1
i2
i3
i4

 B =


VB1

0
−VB2

0


When we input the matrix A into the calculator, we find

from which we have A−1 =


1.625 1.25 1.125 1
1.25 1.5 1.25 1

1.125 1.25 1.625 1
1 1 1 1

.

To solve the four systems given to us, we find X = A−1B where the value of B is determined
by the given values of VB1 and VB2

1 (a) B =


10
0
−5

0

 , 1 (b) B =


10
0
0
0

 , 1 (c) B =


0
0

−10
0

 , 1 (d) B =


10
0

10
0


(a) For VB1 = 10V and VB2 = 5V , the calculator gives i1 = 10.625 mA, i2 = 6.25 mA,

i3 = 3.125 mA, and i4 = 5 mA.
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(b) By keeping VB1 = 10V and setting VB2 = 0V , we are essentially removing the effect
of the second battery. We get i1 = 16.25 mA, i2 = 12.5 mA, i3 = 11.25 mA, and
i4 = 10 mA.

Solution to 1(a) Solution to 1(b)

(c) Part (c) is a symmetric situation to part (b) in so much as we are zeroing out VB1 and
making VB2 = 10. We find i1 = −11.25 mA, i2 = −12.5 mA, i3 = −16.25 mA, and
i4 = −10 mA, where the negatives indicate that the current is flowing in the opposite
direction as is indicated on the diagram. The reader is encouraged to study the symmetry
here, and if need be, hold up a mirror to the diagram to literally ‘see’ what is happening.

(d) For VB1 = 10V and VB2 = 10V , we get i1 = 5 mA, i2 = 0 mA, i3 = −5 mA, and
i4 = 0 mA. The mesh currents i2 and i4 being zero is a consequence of both batteries
‘pushing’ in equal but opposite directions, causing the net flow of electrons in these two
regions to cancel out.

Solution to 1(c) Solution to 1(d)

2. We now turn the tables and are given VB1 = 10V , VB2 = 5V , i1 = 10.625 mA, i2 = 6.25 mA,
i3 = 3.125 mA and i4 = 5 mA and our unknowns are the resistance values. Rewriting our
system of equations, we get

5.625R1 + 4.375R3 = 10
1.25R2 − 4.375R3 + 3.125R4 = 0

−3.125R4 − 1.875R6 = −5
−5.625R1 − 1.25R2 + 5R5 + 1.875R6 = 0

The coefficient matrix for this system is 4× 6 (4 equations with 6 unknowns) and is therefore
not invertible. We do know, however, this system is consistent, since setting all the resis-
tance values equal to 1 corresponds to our situation in problem 1a. This means we have an
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underdetermined consistent system which is necessarily dependent. To solve this system, we
encode it into an augmented matrix


5.25 0 4.375 0 0 0 10

0 1.25 −4.375 3.125 0 0 0
0 0 0 −3.125 0 −1.875 −5

−5.625 −1.25 0 0 5 1.875 0



and use the calculator to write in reduced row echelon form


1 0 0.7 0 0 0 1.7
0 1 −3.5 0 0 −1.5 −4
0 0 0 1 0 0.6 1.6
0 0 0 0 1 0 1



Decoding this system from the matrix, we get


R1 + 0.7R3 = 1.7

R2 − 3.5R3 − 1.5R6 = −4
R4 + 0.6R6 = 1.6

R5 = 1

We have can solve for R1, R2, R4 and R5 leaving R3 and R6 as free variables. Labeling
R3 = s and R6 = t, we have R1 = −0.7s + 1.7, R2 = 3.5s + 1.5t − 4, R4 = −0.6t + 1.6
and R5 = 1. Since resistance values are always positive, we need to restrict our values of
s and t. We know R3 = s > 0 and when we combine that with R1 = −0.7s + 1.7 > 0,
we get 0 < s < 16

7 . Similarly, R6 = t > 0 and with R4 = −0.6t + 1.6 > 0, we find
0 < t < 8

3 . In order visualize the inequality R2 = 3.5s + 1.5t − 4 > 0, we graph the
line 3.5s + 1.5t − 4 = 0 on the st-plane and shade accordingly.8 Imposing the additional
conditions 0 < s < 16

7 and 0 < t < 8
3 , we find our values of s and t restricted to the region

depicted on the right. Using the roster method, the values of s and t are pulled from the region{
(s, t) : 0 < s < 16

7 , 0 < t < 8
3 , 3.5s+ 1.5t− 4 > 0

}
. The reader is encouraged to check that

the solution presented in 1(a), namely all resistance values equal to 1, corresponds to a pair
(s, t) in the region.

8See Section 2.4 for a review of this procedure.
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t

s

−2 −1 1 2 4

−1

1

2

3

The region where 3.5s+ 1.5t− 4 > 0

t

s

t = 8
3

s = 16
7

−2 −1 1 2 4

−1

1

2

3

The region for our parameters s and t.
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8.4.1 Exercises

1. Find the inverse of the matrix or state that the matrix is not invertible.

(a) A =

[
1 2
3 4

]
(b) B =

[
12 −7
−5 3

]
(c) C =

[
6 15

14 35

]
(d) D =

[
2 −1

16 −9

]

(e) E =

 3 0 4
2 −1 3
−3 2 −5



(f) F =

 4 6 −3
3 4 −3
1 2 6


(g) G =

 1 2 3
2 3 11
3 4 19



(h) H =


1 0 −3 0
2 −2 8 7
−5 0 16 0

1 0 4 1



2. Use a matrix inverse to solve the following systems of linear equations.

(a)

{
3x+ 7y = 26

5x+ 12y = 39
(b)

{
3x+ 7y = 0

5x+ 12y = −1
(c)

{
3x+ 7y = −7

5x+ 12y = 5

3. Use the inverse of E from Exercise 1 above to solve the following systems of linear equations.

(a)


3x+ 4z = 1

2x− y + 3z = 0
−3x+ 2y − 5z = 0

(b)


3x+ 4z = 0

2x− y + 3z = 1
−3x+ 2y − 5z = 0

(c)


3x+ 4z = 0

2x− y + 3z = 0
−3x+ 2y − 5z = 1

4. This exercise is a continuation of Example 8.3.3 in Section 8.3 and gives another application
of matrix inverses. Recall that given the position matrix P for a point in the plane, the
matrix RP corresponds to a point rotated 45◦ counterclockwise from P where

R =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]

(a) Find R−1.

(b) If RP rotates a point counterclockwise 45◦, what should R−1P do? Check your answer
by finding R−1P for various points on the coordinate axes and the lines y = x and
y = −x.

(c) Find R−1P where P corresponds to a generic point P (x, y). Verify that this takes points
on the curve y = 2

x to points on the curve x2 − y2 = 4.
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5. A Sasquatch’s diet consists of three primary foods: Ippizuti Fish, Misty Mushrooms, and Sun
Berries. Each serving of Ippizuti Fish is 500 calories, contains 40 grams of protein, and has
no Vitamin X. Each serving of Misty Mushrooms is 50 calories, contains 1 gram of protein,
and 5 milligrams of Vitamin X. Finally, each serving of Sun Berries is 80 calories, contains
no protein, but has 15 milligrams of Vitamin X.9

(a) If an adult male Sasquatch requires 3200 calories, 130 grams of protein, and 275 mil-
ligrams of Vitamin X daily, use a matrix inverse to find how many servings each of
Ippizuti Fish, Misty Mushrooms, and Sun Berries he needs to eat each day.

(b) An adult female Sasquatch requires 3100 calories, 120 grams of protein, and 300 mil-
ligrams of Vitamin X daily. Use the matrix inverse you found in part (a) to find how
many servings each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to
eat each day.

(c) An adolescent Sasquatch requires 5000 calories, 400 grams of protein daily, but no Vita-
min X daily.10 Use the matrix inverse you found in part (a) to find how many servings
each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to eat each day.

6. Using the matrices A, B and D from Exercise 1, show AB = D and D−1 = B−1A−1. That
is, show that (AB)−1 = B−1A−1.

7. Let M and N be invertible n × n matrices. Show that (MN)−1 = N−1M−1 and compare
your work to Exercise 8 in Section 5.2.

8. Matrices can be used in cryptography. Check out this website for a nice example of how
this is done. With the help of your classmates, see if you can create a 3 × 3 matrix M with
integer entries such that M−1 also has integer entries and then use your matrix to encode the
message.

9Misty Mushrooms and Sun Berries are the only known fictional sources of Vitamin X.
10Vitamin X is needed to sustain Sasquatch longevity only.

http://aix1.uottawa.ca/~jkhoury/cryptography.htm
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8.4.2 Answers

1. (a) A−1 =

[
−2 1

3
2 −1

2

]

(b) B−1 =

[
3 7
5 12

]
(c) C is not invertible

(d) D−1 =

[
9
2 −1

2
8 −1

]

(e) E−1 =

 −1 8 4
1 −3 −1
1 −6 −3



(f) F−1 =

 −
5
2

7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6


(g) G is not invertible

(h) H =


16 0 3 0

−90 −1
2 −35

2
7
2

5 0 1 0

−36 0 −7 1



2. The coefficient matrix is B−1 from Exercise 1 above so the inverse we need is (B−1)−1 = B.
The solutions to the systems are

(a)

[
12 −7
−5 3

] [
26
39

]
=

[
39
−13

]
So x = 39 and y = −13.

(b)

[
12 −7
−5 3

] [
0
−1

]
=

[
7
−3

]
So x = 7 and y = −3.

(c)

[
12 −7
−5 3

] [
−7

5

]
=

[
−119

50

]
So x = −119 and y = 50.

3. (a)

 −1 8 4
1 −3 −1
1 −6 −3

 1
0
0

 =

 −1
1
1

 So x = −1, y = 1 and z = 1.

(b)

 −1 8 4
1 −3 −1
1 −6 −3

 0
1
0

 =

 8
−3
−6

 So x = 8, y = −3 and z = −6.

(c)

 −1 8 4
1 −3 −1
1 −6 −3

 0
0
1

 =

 4
−1
−3

 So x = 4, y = −1 and z = −3.

5. (a) The adult male Sasquatch needs: 3 servings of Ippizuti Fish, 10 servings of Misty Mush-
rooms, and 15 servings of Sun Berries daily.

(b) The adult female Sasquatch needs: 3 servings of Ippizuti Fish and 20 servings of Sun
Berries daily. (No Misty Mushrooms are needed!)

(c) The adolescent Sasquatch requires 10 servings of Ippizuti Fish daily. (No Misty Mush-
rooms or Sun Berries are needed!)
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8.5 Determinants and Cramer’s Rule

8.5.1 Definition and Properties of the Determinant

In this section we assign to each square matrix A a real number, called the determinant of A,
which will eventually lead us to yet another technique for solving consistent independent systems
of linear equations. The determinant is defined recursively, that is, we define it for 1× 1 matrices
and give a rule by which we can reduce determinants of n × n matrices to a sum of determinants
of (n− 1)× (n− 1) matrices.1 This means we will be able to evaluate the determinant of a 2× 2
matrix as a sum of the determinants of 1× 1 matrices; the determinant of a 3× 3 matrix as a sum
of the determinants of 2 × 2 matrices, and so forth. To explain how we will take an n× n matrix
and distill from it an (n− 1)× (n− 1), we use the following notation.

Definition 8.12. Given an n× n matrix A where n > 1, the matrix Aij is the (n− 1)× (n− 1)
matrix formed by deleting the ith row of A and the jth column of A.

For example, using the matrix A below, we find the matrix A23 by deleting the second row and
third column of A.

A =

 3 1 2
0 −1 5
2 1 4

 Delete R2 and C3−−−−−−−−−−−→ A23 =

[
3 1
2 1

]

We are now in the position to define the determinant of a matrix.

Definition 8.13. Given an n× n matrix A the determinant of A, denoted det(A), is defined
as follows

• If n = 1, then A = [a11] and det(A) = det ([a11]) = a11.

• If n > 1, then A = [aij ]n×n and

det(A) = det
(
[aij ]n×n

)
= a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

There are two commonly used notations for the determinant of a matrix A: ‘det(A)’ and ‘|A|’
We have chosen to use the notation det(A) as opposed to |A| because we find that the latter is
often confused with absolute value, especially in the context of a 1 × 1 matrix. In the expansion
a11 det (A11)−a12 det (A12)+− . . .+(−1)1+na1n det (A1n), the notation ‘+− . . .+(−1)1+na1n’ means
that the signs alternate and the final sign is dictated by the sign of the quantity (−1)1+n. Since
the entries a11, a12 and so forth up through a1n comprise the first row of A, we say we are finding
the determinant of A by ‘expanding along the first row’. Later in the section, we will develop a
formula for det(A) which allows us to find it by expanding along any row.

Applying Definition 8.13 to the matrix A =

[
4 −3
2 1

]
we get

1We will talk more about the term ‘recursively’ in Section 9.1.
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det(A) = det

([
4 −3
2 1

])
= 4 det (A11)− (−3) det (A12)
= 4 det([1]) + 3 det([2])
= 4(1) + 3(2)
= 10

For a generic 2× 2 matrix A =

[
a b
c d

]
we get

det(A) = det

([
a b
c d

])
= adet (A11)− bdet (A12)
= adet ([d])− bdet ([c])
= ad− bc

This formula is worth remembering

Equation 8.1. For a 2× 2 matrix,

det

([
a b
c d

])
= ad− bc

Applying Definition 8.13 to the 3× 3 matrix A =

 3 1 2
0 −1 5
2 1 4

 we obtain

det(A) = det

 3 1 2
0 −1 5
2 1 4


= 3 det (A11)− 1 det (A12) + 2 det (A13)

= 3 det

([
−1 5

1 4

])
− det

([
0 5
2 4

])
+ 2 det

([
0 −1
2 1

])
= 3((−1)(4)− (5)(1))− ((0)(4)− (5)(2)) + 2((0)(1)− (−1)(2))
= 3(−9)− (−10) + 2(2)
= −13

To evaluate the determinant of a 4 × 4 matrix, we would have to evaluate the determinants of
four 3 × 3 matrices, each of which involves the finding the determinants of three 2 × 2 matrices.
As you can see, our method of evaluating determinants quickly gets out of hand and many of you
may be reaching for the calculator. There is some mathematical machinery which can assist us in
calculating determinants and we present that here. Before we state the theorem, we need some
more terminology.
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Definition 8.14. Let A be an n × n matrix and Aij be defined as in Definition 8.12. The ij
minor of A, denoted Mij is defined by Mij = det (Aij). The ij cofactor of A, denoted Cij is
defined by Cij = (−1)i+jMij = (−1)i+j det (Aij).

We note that in Definition 8.13, the sum

a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

can be rewritten as

a11(−1)1+1 det (A11) + a12(−1)1+2 det (A12) + . . .+ a1n(−1)1+n det (A1n)

which, in the language of cofactors is

a11C11 + a12C12 + . . .+ a1nC1n

We are now ready to state our main theorem concerning determinants.

Theorem 8.7. Properties of the Determinant: Let A = [aij ]n×n.

• We may find the determinant by expanding along any row. That is, for any 1 ≤ k ≤ n,

det(A) = ak1Ck1 + ak2Ck2 + . . .+ aknCkn

• If A′ is the matrix obtained from A by:

– interchanging any two rows, then det(A′) = −det(A).

– replacing a row with a nonzero multiple (say c) of itself, then det(A′) = cdet(A)

– replacing a row with itself plus a multiple of another row, then det(A′) = det(A)

• If A has two identical rows, or a row consisting of all 0’s, then det(A) = 0.

• If A is upper or lower triangular,a then det(A) is the product of the entries on the main
diagonal.b

• If B is an n× n matrix, then det(AB) = det(A) det(B).

• det (An) = det(A)n for all natural numbers n.

• A is invertible if and only if det(A) 6= 0. In this case, det
(
A−1

)
=

1

det(A)
.

aSee Exercise 5 in 8.3.
bSee page 483 in Section 8.3.

Unfortunately, while we can easily demonstrate the results in Theorem 8.7, the proofs of most of
these properties are beyond the scope of this text. We could prove these properties for generic 2×2
or even 3×3 matrices by brute force computation, but this manner of proof belies the elegance and
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symmetry of the determinant. We will prove what few properties we can after we have developed
some more tools such as the Principle of Mathematical Induction in Section 9.3.2 For the moment,
let us demonstrate some of the properties listed in Theorem 8.7 on the matrix A below. (Others
will be discussed in the Exercises.)

A =

 3 1 2
0 −1 5
2 1 4


We found det(A) = −13 by expanding along the first row. Theorem 8.7 guarantees that we will
get the same result if we expand along the second row. (Doing so would take advantage of the 0
there.)

det

 3 1 2
0 −1 5
2 1 4

 = 0C21 + (−1)C22 + 5C23

= (−1)(−1)2+2 det (A22) + 5(−1)2+3 det (A23)

= −det

([
3 2
2 4

])
− 5 det

([
3 1
2 1

])
= −((3)(4)− (2)(2))− 5((3)(1)− (2)(1))
= −8− 5
= −13 X

In general, the sign of (−1)i+j in front of the minor in the expansion of the determinant follows
an alternating pattern. Below is the pattern for 2 × 2, 3 × 3 and 4 × 4 matrices, and it extends
naturally to higher dimensions.

[
+ −
− +

]  + − +
− + −
+ − +




+ − + −
− + − +
+ − + −
− + − +


The reader is cautioned, however, against reading too much into these sign patterns. In the example
above, we expanded the 3× 3 matrix A by its second row and the term which corresponds to the
second entry ended up being negative even though the sign attached to the minor is (+). These
signs represent only the signs of the (−1)i+j in the formula; the sign of the corresponding entry as
well as the minor itself determine the ultimate sign of the term in the expansion of the determinant.

To illustrate some of the other properties in Theorem 8.7, we use row operations to transform our
3× 3 matrix A into an upper triangular matrix, keeping track of the row operations, and labeling

2For a very elegant treatment, take a course in Linear Algebra. There, you will most likely see the treatment of
determinants logically reversed than what is presented here. Specifically, the determinant is defined as a function
which takes a square matrix to a real number and satisfies some of the properties in Theorem 8.7. From that function,
a formula for the determinant is developed.
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each successive matrix.3 3 1 2
0 −1 5
2 1 4

 Replace R3−−−−−−−−−−→
with − 2

3
R1 +R3

 3 1 2
0 −1 5
0 1

3
8
3

 Replace R3 with−−−−−−−−−−→
1
3
R2 +R3

 3 1 2
0 −1 5
0 0 13

3


A B C

Theorem 8.7 guarantees us that det(A) = det(B) = det(C) since we are replacing a row with
itself plus a multiple of another row moving from one matrix to the next. Furthermore, since
C is upper triangular, det(C) is the product of the entries on the main diagonal, in this case
det(C) = (3)(−1)

(
13
3

)
= −13. This demonstrates the utility of using row operations to assist in

calculating determinants. This also sheds some light on the connection between a determinant and
invertibility. Recall from Section 8.4 that in order to find A−1, we attempt to transform A to In
using row operations

[
A In

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→
[
In A−1

]
As we apply our allowable row operations on A to put it into reduced row echelon form, the
determinant of the intermediate matrices can vary from the determinant of A by at most a nonzero
multiple. This means that if det(A) 6= 0, then the determinant of A’s reduced row echelon form
must also be nonzero, which, according to Definition 8.4 means that all the main diagonal entries
on A’s reduced row echelon form must be 1. That is, A’s reduced row echelon form is In, and A is
invertible. Conversely, if A is invertible, then A can be transformed into In using row operations.
Since det (In) = 1 6= 0, our same logic implies det(A) 6= 0. Basically, we have established that the
determinant determines whether or not the matrix A is invertible.4

It is worth noting that when we first introduced the notion of a matrix inverse, it was in the context
of solving a linear matrix equation. In effect, we were trying to ‘divide’ both sides of the matrix
equation AX = B by the matrix A. Just like we cannot divide a real number by 0, Theorem 8.7
tells us we cannot ‘divide’ by a matrix whose determinant is 0. We also know that if the coefficient
matrix of a system of linear equations is invertible, then system is consistent and independent. It
follows, then, that if the determinant of said coefficient is not zero, the system is consistent and
independent.

8.5.2 Cramer’s Rule and Matrix Adjoints

In this section, we introduce a theorem which enables us to solve a system of linear equations by
means of determinants only. As usual, the theorem is stated in full generality, using numbered
unknowns x1, x2, etc., instead of the more familiar letters x, y, z, etc. The proof of the general
case is best left to a course in Linear Algebra.

3Essentially, we follow the Gauss Jordan algorithm but we don’t care about getting leading 1’s.
4As we will see in Section 8.5.2, determinants (specifically cofactors) are deeply connected with the inverse of a

matrix.
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Theorem 8.8. Cramer’s Rule: Suppose AX = B is the matrix form of a system of n linear
equations in n unknowns where A is the coefficient matrix, X is the unknowns matrix, and B is
the constant matrix. If det(A) 6= 0, then the corresponding system is consistent and independent
and the solution for unknowns x1, x2, . . .xn is given by:

xj =
det (Aj)

det(A)
,

where Aj is the matrix A whose jth column has been replaced by the constants in B.

In words, Cramer’s Rule tells us we can solve for each unknown, one at a time, by finding the ratio
of the determinant of Aj to that of the determinant of the coefficient matrix. The matrix Aj is
found by replacing the column in the coefficient matrix which holds the coefficients of xj with the
constants of the system. The following example fleshes out this method.

Example 8.5.1. Use Cramer’s Rule to solve for the indicated unknowns.

1. Solve

{
2x1 − 3x2 = 4
5x1 + x2 = −2

for x1 and x2

2. Solve


2x− 3y + z = −1
x− y + z = 1

3x− 4z = 0
for z.

Solution.

1. Writing this system in matrix form, we find

A =

[
2 −3
5 1

]
X =

[
x1

x2

]
B =

[
4
−2

]
To find the matrix A1, we remove the column of the coefficient matrix A which holds the
coefficients of x1 and replace it with the corresponding entries in B. Likewise, we replace the
column of A which corresponds to the coefficients of x2 with the constants to form the matrix
A2. This yields

A1 =

[
4 −3
−2 1

]
A2 =

[
2 4
5 −2

]
Computing determinants, we get det(A) = 17, det (A1) = −2 and det (A2) = −24, so that

x1 =
det (A1)

det(A)
= − 2

17
x2 =

det (A2)

det(A)
= −24

17

The reader can check that the solution to the system is
(
− 2

17 ,−
24
17

)
.
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2. To use Cramer’s Rule to find z, we identify x3 as z. We have

A =

 2 −3 1
1 −1 1
3 0 −4

 X =

 x
y
z

 B =

 −1
1
0

 A3 = Az =

 2 −3 −1
1 −1 1
3 0 0


Expanding both det(A) and det (Az) along the third rows (to take advantage of the 0’s) gives

z =
det (Az)

det(A)
=
−12

−10
=

6

5

The reader is encouraged to solve this system for x and y similarly and check the answer.

Our last application of determinants is to develop an alternative method for finding the inverse of
a matrix.5 Let us consider the 3× 3 matrix A which we so extensively studied in Section 8.5.1

A =

 3 1 2
0 −1 5
2 1 4


We found through a variety of methods that det(A) = −13. To our surprise and delight, its inverse
below has a remarkable number of 13’s in the denominators of its entries. This is no coincidence.

A−1 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


Recall that to find A−1, we are essentially solving the matrix equation AX = I3, where X = [xij ]3×3
is a 3 × 3 matrix. Because of how matrix multiplication is defined, the first column of I3 is the
product of A with the first column of X, the second column of I3 is the product of A with the
second column of X and the third column of I3 is the product of A with the third column of X.6

In other words, we are solving three equations

A

 x11

x21

x31

 =

 1
0
0

 A

 x12

x22

x32

 =

 0
1
0

 A

 x13

x23

x33

 =

 0
0
1


We can solve each of these systems using Cramer’s Rule. Focusing on the first system, we have

A1 =

 1 1 2
0 −1 5
0 1 4

 A2 =

 3 1 2
0 0 5
2 0 4

 A3 =

 3 1 1
0 −1 0
2 1 0


5We are developing a method in the forthcoming discussion. As with the discussion in Section 8.4 when we

developed the first algorithm to find matrix inverses, we ask that you indulge us.
6The reader is encouraged to stop and think this through.
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If we expand det (A1) along the first row, we get

det (A1) = det

([
−1 5

1 4

])
− det

([
0 5
0 4

])
+ 2 det

([
0 −1
0 1

])
= det

([
−1 5

1 4

])
Amazingly, this is none other than the C11 cofactor of A. The reader is invited to check this, as
well as the claims that det (A2) = C12 and det (A3) = C13.

7 (To see this, though it seems unnatural
to do so, expand along the first row.) Cramer’s Rule tells us

x11 =
det (A1)

det(A)
=

C11

det(A)
, x21 =

det (A2)

det(A)
=

C12

det(A)
, x31 =

det (A3)

det(A)
=

C13

det(A)

So the first column of the inverse matrix X is:

 x11

x21

x31

 =



C11

det(A)

C12

det(A)

C13

det(A)


=

1

det(A)

 C11

C12

C13



Notice the reversal of the subscripts going from the unknown to the corresponding cofactor of A.
This trend continues and we get x12

x22

x32

 =
1

det(A)

 C21

C22

C23

  x13

x23

x33

 =
1

det(A)

 C31

C32

C33


Putting all of these together, we have obtained a new and surprising formula for A−1, namely

A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33


To see that this does indeed yield A−1, we find all of the cofactors of A

C11 = −9, C21 = −2, C31 = 7
C12 = 10, C22 = 8, C32 = −15
C13 = 2, C23 = −1, C33 = −3

And, as promised,

7In a solid Linear Algebra course you will learn that the properties in Theorem 8.7 hold equally well if the word
‘row’ is replaced by the word ‘column’. We’re not going to get into column operations in this text, but they do make
some of what we’re trying to say easier to follow.
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A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33

 = − 1

13

 −9 −2 7
10 8 −15
2 −1 −3

 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


To generalize this to invertible n × n matrices, we need another definition and a theorem. Our
definition gives a special name to the cofactor matrix, and the theorem tells us how to use it along
with det(A) to find the inverse of a matrix.

Definition 8.15. Let A be an n × n matrix, and Cij denote the ij cofactor of A. The adjoint
of A, denoted adj(A) is the matrix whose ij-entry is the ji cofactor of A, Cji. That is

adj(A) =


C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn


This new notation greatly shortens the statement of the formula for the inverse of a matrix.

Theorem 8.9. Let A be an invertible n× n matrix. Then

A−1 =
1

det(A)
adj(A)

For 2× 2 matrices, Theorem 8.9 reduces to a fairly simple formula.

Equation 8.2. For an invertible 2× 2 matrix,[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
The proof of Theorem 8.9 is, like so many of the results in this section, best left to a course in
Linear Algebra. In such a course, not only do you gain some more sophisticated proof techniques,
you also gain a larger perspective. The authors assure you that persistence pays off. If you stick
around a few semesters and take a course in Linear Algebra, you’ll see just how pretty all things
matrix really are - in spite of the tedious notation and sea of subscripts. Within the scope of this
text, we will prove a few results involving determinants in Section 9.3 once we have the Principle of
Mathematical Induction well in hand. Until then, make sure you have a handle on the mechanics
of matrices and the theory will come eventually.
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8.5.3 Exercises

1. Compute the determinant of the following matrices. (Some of these matrices appeared in
Exercise 1 in Section 8.4.)

(a) B =

[
12 −7
−5 3

]
(b) C =

[
6 15

14 35

]
(c) Q =

[
x x2

1 2x

]
(d) L =

[
1
x3

ln(x)
x3

− 3
x4

1−3 ln(x)
x4

]

(e) F =

 4 6 −3
3 4 −3
1 2 6



(f) G =

 1 2 3
2 3 11
3 4 19


(g) V =

 i j k
−1 0 5

9 −4 −2



(h) H =


1 0 −3 0
2 −2 8 7
−5 0 16 0

1 0 4 1



2. Use Cramer’s Rule to solve the system of linear equations.

(a)

{
3x+ 7y = 26

5x+ 12y = 39

(b)

{
x+ y = 8000

0.03x+ 0.05y = 250

(c)

{
x
2 −

y
5 = 1

6x+ 7y = 3

(d)


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

(e)


3x+ y − 2z = 10
4x− y + z = 5
x− 3y − 4z = −1

3. Use Cramer’s Rule to solve for x4 in the following systems of linear equations.

(a)


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

(b)


4x1 + x2 = 4
x2 − 3x3 = 1

10x1 + x3 + x4 = 0
−x2 + x3 = −3

4. Find the inverse of the following matrices using their determinants and adjoints.

(a) B =

[
12 −7
−5 3

]
(b) F =

 4 6 −3
3 4 −3
1 2 6


5. Carl’s Sasquatch Attack! Game Card Collection is a mixture of common and rare cards.

Each common card is worth $0.25 while each rare card is worth $0.75. If his entire 117 card
collection is worth $48.75, how many of each kind of card does he own?
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6. How much of a 5 gallon 40% salt solution should be replaced with pure water to obtain 5
gallons of a 15% solution?

7. How much of a 10 liter 30% acid solution must be replaced with pure acid to obtain 10 liters
of a 50% solution?

8. Daniel’s Exotic Animal Rescue houses snakes, tarantulas, and scorpions. When asked how
many animals of each kind he boards, Daniel answered: ‘We board 49 total animals, and I
am responsible for each of their 272 legs and 28 tails.’ How many of each animal does the
Rescue board? (Recall: tarantulas have 8 legs and no tails, scorpions have 8 legs and one
tail, and snakes have no legs and one tail.)

9. This exercise is a continuation of Exercise 5 in Section 8.4. Just because a system is consistent
independent doesn’t mean it will admit a solution that makes sense in an applied setting.
Using the nutrient values given for Ippizuti Fish, Misty Mushrooms, and Sun Berries, use
Cramer’s Rule to determine the number of servings of Ippizuti Fish needed to meet the needs
of a daily diet which requires 2500 calories, 1000 grams of protein, and 400 milligrams of
Vitamin X. Now use Cramer’s Rule to find the number of servings of Misty Mushrooms
required. Does a solution to this diet problem exist?

10. Let R =

[
−7 3
11 2

]
, S =

[
1 −5
6 9

]
T =

[
11 2
−7 3

]
, and U =

[
−3 15

6 9

]
(a) Show that det(RS) = det(R) det(S)

(b) Show that det(T ) = −det(R)

(c) Show that det(U) = −3 det(S)

11. For M and N below, show that det(M) = 0 and det(N) = 0.

M =

 1 2 3
1 2 3
4 5 6

 , N =

 1 2 3
4 5 6
0 0 0


12. Let A be an arbitrary invertible 3× 3 matrix.

(a) Show that det(I3) = 1.8

(b) Using the facts that AA−1 = I3 and det(AA−1) = det(A) det(A−1), show that

det(A−1) =
1

det(A)

8If you think about it for just a moment, you’ll see that det(In) = 1 for any natural number n. The formal proof
of this fact requires the Principle of Mathematical Induction (Section 9.3) so we’ll stick with n = 3 for the time being.
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13. The purpose of this exercise is to introduce you to the eigenvalues and eigenvectors of a
matrix.9 We begin with an example using a 2 × 2 matrix and then guide you through some
exercises using a 3× 3 matrix.

Consider the matrix

C =

[
6 15

14 35

]
from Exercise 1 above. We know that det(C) = 0 which means that CX = 02×2 does not
have a unique solution. So there is a nonzero matrix Y such that CY = 02×2. In fact, every
matrix of the form

Y =

[
−5

2 t

t

]
is a solution to CX = 02×2, so there are infinitely many matrices such that CX = 02×2. But
consider the matrix

X41 =

[
3
7

]
It is NOT a solution to CX = 02×2, but rather,

CX41 =

[
6 15

14 35

] [
3
7

]
=

[
123
287

]
= 41

[
3
7

]
In fact, if Z is of the form

Z =

[
3
7 t

t

]
then

CZ =

[
6 15

14 35

][ 3
7 t

t

]
=

[
123
7 t

41t

]
= 41

[
3
7 t

t

]
= 41Z

for all t. The big question is “How did we know to use 41?”

We need a number λ such that CX = λX has nonzero solutions. We have demonstrated that
λ = 0 and λ = 41 both worked. Are there others? If we look at the matrix equation more
closely, what we really wanted was a nonzero solution to (C − λI2)X = 02×2 which we know
exists if and only if the determinant of C − λI2 is zero.10 So we computed

det(C − λI2) = det

([
6− λ 15

14 35− λ

])
= (6− λ)(35− λ)− 14 · 15 = λ2 − 41λ

This is called the characteristic polynomial of the matrix C and it has two zeros: λ = 0
and λ = 41. That’s how we knew to use 41 in our work above. The fact that λ = 0

9This material is usually given its own chapter in a Linear Algebra book so clearly we’re not able to tell you
everything you need to know about eigenvalues and eigenvectors. They are a nice application of determinants,
though, so we’re going to give you enough background so that you can start playing around with them.

10Think about this.
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showed up as one of the zeros of the characteristic polynomial just means that C itself had
determinant zero which we already knew. Those two numbers are called the eigenvalues of
C. The corresponding matrix solutions to CX = λX are called the eigenvectors of C and
the ‘vector’ portion of the name will make more sense after you’ve studied vectors.

Okay, you should be mostly ready to start on your own. In the following exercises, you’ll be
using the matrix

G =

 1 2 3
2 3 11
3 4 19


from Exercise 1 above.

(a) Show that the characteristic polynomial of G is p(λ) = −λ(λ − 1)(λ − 22). That is,
compute the determinant of G− λI3.

(b) Let G0 = G. Find the parametric description of the solution to the system of linear
equations given by GX = 03×3.

(c) Let G1 = G− I3. Find the parametric description of the solution to the system of linear
equations given by G1X = 03×3. Show that any solution to G1X = 03×3 also has the
property that GX = 1X.

(d) Let G22 = G − 22I3. Find the parametric description of the solution to the system of
linear equations given by G22X = 03×3. Show that any solution to G22X = 03×3 also has
the property that GX = 22X.
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8.5.4 Answers

1. (a) det(B) = 1

(b) det(C) = 0

(c) det(Q) = x2

(d) det(L) = 1
x7

(e) det(F ) = −12

(f) det(G) = 0

(g) det(V ) = 20i+ 43j + 4k

(h) det(H) = −2

2. (a) x = 39, y = −13

(b) x = 7500, y = 500

(c) x = 76
47 , y = −45

47

(d) x = 1, y = 2, z = 0

(e) x = 121
60 , y = 131

60 , z = −53
60

3. (a) x4 = 4 (b) x4 = −1

4. (a) B−1 =

[
3 7
5 12

]

(b) F−1 =

 −
5
2

7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6


5. Carl owns 78 common cards and 39 rare cards.

6. 3.125 gallons.

7. 20
7 ≈ 2.85 liters.

8. The rescue houses 15 snakes, 21 tarantulas, and 13 scorpions.

9. Using Cramer’s Rule, we find we need 53 servings of Ippizuti Fish to satisfy the dietary
requirements. The number of servings of Misty Mushrooms required, however, is −1120.
Since it’s impossible to have a negative number of servings, there is no solution to the applied
problem, despite there being a solution to the mathematical problem. A cautionary tale
about using Cramer’s Rule: just because you are guaranteed a mathematical answer for each
variable doesn’t mean the solution will make sense in the ‘real’ world.
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8.6 Partial Fraction Decomposition

This section uses systems of linear equations to rewrite rational functions in a form more palatable
to Calculus students. In College Algebra, the function

f(x) =
x2 − x− 6

x4 + x2
(1)

is written in the best form possible to construct a sign diagram and to find zeros and asymptotes,
but certain applications in Calculus require us to rewrite f(x) as

f(x) =
x+ 7

x2 + 1
− 1

x
− 6

x2
(2)

If we are given the form of f(x) in (2), it is a matter of Intermediate Algebra to determine a common
denominator to obtain the form of f(x) given in (1). The focus of this section is to develop a method
by which we start with f(x) in the form of (1) and ‘resolve it into partial fractions’ to obtain the
form in (2). Essentially, we need to reverse the least common denominator process. Starting with
the form of f(x) in (1), we begin by factoring the denominator

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)

We now think about which individual denominators could contribute to obtain x2
(
x2 + 1

)
as the

least common denominator. Certainly x2 and x2 + 1, but are there any other factors? Since
x2 + 1 is an irreducible quadratic1 there are no factors of it that have real coefficients which can
contribute to the denominator. The factor x2, however, is not irreducible, since we can think of it as
x2 = xx = (x− 0)(x− 0), a so-called ‘repeated’ linear factor.2 This means it’s possible that a term
with a denominator of just x contributed to the expression as well. What about something like
x
(
x2 + 1

)
? This, too, could contribute, but we would then wish to break down that denominator

into x and
(
x2 + 1

)
, so we leave out a term of that form. At this stage, we have guessed

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=

?

x
+

?

x2
+

?

x2 + 1

Our next task is to determine what form the unknown numerators take. It stands to reason that
since the expression x2−x−6

x4+x2 is ‘proper’ in the sense that the degree of the numerator is less than
the degree of the denominator, we are safe to make the ansatz that all of the partial fraction
resolvents are also. This means that the numerator of the fraction with x as its denominator is just
a constant and the numerators on the terms involving the denominators x2 and x2 + 1 are at most
linear polynomials. That is, we guess that there are real numbers A, B, C, D and E so that

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=
A

x
+
Bx+ C

x2
+
Dx+ E

x2 + 1

1Recall this means it has no real zeros; see Section 3.4.
2Recall this means x = 0 is a zero of multiplicity 2.

http://en.wikipedia.org/wiki/Ansatz
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However, if we look more closely at the term Bx+C
x2 , we see that Bx+C

x2 = Bx
x2 + C

x2 = B
x + C

x2 . The

term B
x has the same form as the term A

x which means it contributes nothing new to our expansion.
Hence, we drop it and, after re-labeling, we find ourselves with our new guess:

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=
A

x
+
B

x2
+
Cx+D

x2 + 1

Our next task is to determine the values of our unknowns. Clearing denominators gives

x2 − x− 6 = Ax
(
x2 + 1

)
+B

(
x2 + 1

)
+ (Cx+D)x2

Gathering the like powers of x we have

x2 − x− 6 = (A+ C)x3 + (B +D)x2 +Ax+B

In order for this to hold for all values of x in the domain of f , we equate the coefficients of
corresponding powers of x on each side of the equation3 and obtain the system of linear equations


(E1) A+ C = 0 From equating coefficients of x3

(E2) B +D = 1 From equating coefficients of x2

(E3) A = −1 From equating coefficients of x
(E4) B = −6 From equating the constant terms

To solve this system of equations, we could use any of the methods presented in Sections 8.1 through
8.5, but none of these methods are as efficient as the good old-fashioned substitution you learned
in Intermediate Algebra. From E3, we have A = −1 and we substitute this into E1 to get C = 1.
Similarly, since E4 gives us B = −6, we have from E2 that D = 7. Our final answer is

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
= −1

x
− 6

x2
+

x+ 7

x2 + 1

which matches the formula given in (2). As we have seen in this opening example, resolving a
rational function into partial fractions takes two steps: first, we need to determine the form of
the decomposition, and then we need to determine the unknown coefficients which appear in said
form. Theorem 3.16 guarantees that any polynomial with real coefficients can be factored over
the real numbers as a product of linear factors and irreducible quadratic factors. Once we have
this factorization of the denominator of a rational function, the next theorem tells us the form the
decomposition takes. The reader is encouraged to review the Factor Theorem (Theorem 3.6) and
its connection to the role of multiplicity to fully appreciate the statement of the following theorem.

3We will justify this shortly.
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Theorem 8.10. Suppose R(x) =
N(x)

D(x)
is a rational function where the degree of N(x) less than

the degree of D(x) a and N(x) and D(x) have no common factors.

• If c is a real zero of D of multiplicity m which corresponds to the linear factor ax + b, the
partial fraction decomposition includes

A1

ax+ b
+

A2

(ax+ b)2
+ . . .+

Am
(ax+ b)m

for real numbers A1, A2, . . .Am.

• If c is a non-real zero of D of multiplicity m which corresponds to the irreducible quadratic
ax2 + bx+ c, the partial fraction decomposition includes

B1x+ C1

ax2 + bx+ c
+

B2x+ C2

(ax2 + bx+ c)2 + . . .+
Bmx+ Cm

(ax2 + bx+ c)m

for real numbers B1, B2, . . .Bm and C1, C2, . . .Cm.

aIn other words, R(x) is a proper rational function.

The proof of Theorem 8.10 is best left to a course in Abstract Algebra. Notice that the theorem
provides for the general case, so we need to use subscripts, A1, A2, etc., to denote different unknown
coefficients as opposed to the usual convention of A, B, etc.. The stress on multiplicities is to help
us correctly group factors in the denominator. For example, consider the rational function

3x− 1

(x2 − 1) (2− x− x2)

Factoring the denominator to find the zeros, we get (x+ 1)(x− 1)(1− x)(2 + x). We find x = −1
and x = −2 are zeros of multiplicity one but that x = 1 is a zero of multiplicity two due to the two
different factors (x− 1) and (1− x). One way to handle this is to note that (1− x) = −(x− 1) so

3x− 1

(x+ 1)(x− 1)(1− x)(2 + x)
=

3x− 1

−(x− 1)2(x+ 1)(x+ 2)
=

1− 3x

(x− 1)2(x+ 1)(x+ 2)

from which we proceed with the partial fraction decomposition

1− 3x

(x− 1)2(x+ 1)(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1
+

D

x+ 2

Turning our attention to non-real zeros, we note that the tool of choice to determine the irreducibil-
ity of a quadratic ax2 + bx+ c is the discriminant, b2− 4ac. If b2− 4ac < 0, the quadratic admits a
pair of non-real complex conjugate zeros. Even though one irreducible quadratic gives two distinct
non-real zeros, we list the terms with denominators involving a given irreducible quadratic only
once to avoid duplication in the form of the decomposition. The trick, of course, is factoring the
denominator or otherwise finding the zeros and their multiplicities in order to apply Theorem 8.10.
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We recommend that the reader review the techniques set forth in Sections 3.3 and 3.4. Next, we
state a theorem that if two polynomials are equal, the corresponding coefficients of the like powers
of x are equal. This is the principal by which we shall determine the unknown coefficients in our
partial fraction decomposition.

Theorem 8.11. Suppose

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = bmx

m +mm−1x
m−1 + · · ·+ b2x

2 + b1x+ b0

for all x in an open interval I. Then n = m and ai = bi for all i = 1 . . . n.

Believe it or not, the proof of Theorem 8.11 is a consequence of Theorem 3.14. Define p(x) to be
the difference of the left hand side of the equation in Theorem 8.11 and the right hand side. Then
p(x) = 0 for all x in the open interval I. If p(x) were a nonzero polynomial of degree k, then, by
Theorem 3.14, p could have at most k zeros in I, and k is a finite number. Since p(x) = 0 for all
the x in I, p has infinitely many zeros, and hence, p is the zero polynomial. This means there can
be no nonzero terms in p(x) and the theorem follows. Arguably, the best way to make sense of
either of the two preceding theorems is to work some examples.

Example 8.6.1. Resolve the following rational functions into partial fractions.

1. R(x) =
x+ 5

2x2 − x− 1

2. R(x) =
3

x3 − 2x2 + x

3. R(x) =
3

x3 − x2 + x

4. R(x) =
4x3

x2 − 2

5. R(x) =
x3 + 5x− 1

x4 + 6x2 + 9

6. R(x) =
8x2

x4 + 16

Solution.

1. We begin by factoring the denominator to find 2x2−x− 1 = (2x+ 1)(x− 1). We get x = −1
2

and x = 1 are both zeros of multiplicity one and thus we know

x+ 5

2x2 − x− 1
=

x+ 5

(2x+ 1)(x− 1)
=

A

2x+ 1
+

B

x− 1

Clearing denominators, we get x+5 = A(x−1)+B(2x+1) so that x+5 = (A+2B)x+B−A.
Equating coefficients, we get the system{

A+ 2B = 1
−A+B = 5

This system is readily handled using the Addition Method from Section 8.1, and after adding
both equations, we get 3B = 6 so B = 2. Using back substitution, we find A = −3. Our
answer is easily checked by getting a common denominator and adding the fractions.

x+ 5

2x2 − x− 1
=

2

x− 1
− 3

2x+ 1
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2. Factoring the denominator gives x3−2x2 +x = x
(
x2 − 2x+ 1

)
= x(x−1)2 which gives x = 0

as a zero of multiplicity one and x = 1 as a zero of multiplicity two. We have

3

x3 − 2x2 + x
=

3

x(x− 1)2
=
A

x
+

B

x− 1
+

C

(x− 1)2

Clearing denominators, we get 3 = A(x − 1)2 + Bx(x − 1) + Cx, which, after gathering up
the like terms becomes 3 = (A+B)x2 + (−2A−B + C)x+A. Our system is

A+B = 0
−2A−B + C = 0

A = 3

Substituting A = 3 into A + B = 0 gives B = −3, and substituting both for A and B in
−2A−B + C = 0 gives C = 3. Our final answer is

3

x3 − 2x2 + x
=

3

x
− 3

x− 1
+

3

(x− 1)2

3. The denominator factors as x
(
x2 − x+ 1

)
. We see immediately that x = 0 is a zero of

multiplicity one, but the zeros of x2 − x+ 1 aren’t as easy to discern. The quadratic doesn’t
factor easily, so we check the discriminant and find it to be (−1)2 − 4(1)(1) = −3 < 0. We
find its zeros are not real so it is an irreducible quadratic. The form of the partial fraction
decomposition is then

3

x3 − x2 + x
=

3

x (x2 − x+ 1)
=
A

x
+

Bx+ C

x2 − x+ 1

Proceeding as usual, we clear denominators and get 3 = A
(
x2 − x+ 1

)
+ (Bx + C)x or

3 = (A+B)x2 + (−A+ C)x+A. We get
A+B = 0
−A+ C = 0

A = 3

From A = 3 and A+B = 0, we get B = −3. From −A+ C = 0, we get C = A = 3. We get

3

x3 − x2 + x
=

3

x
+

3− 3x

x2 − x+ 1

4. Since 4x3

x2−2
isn’t proper, we use long division and we get a quotient of 4x with a remainder of

8x. That is, 4x3

x2−2
= 4x+ 8x

x2−2
so we now work on resolving 8x

x2−2
into partial fractions. The

quadratic x2−2, though it doesn’t factor nicely, is, nevertheless, reducible. Solving x2−2 = 0
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gives us x = ±
√

2, and each of these zeros must be of multiplicity one since Theorem 3.14
enables us to now factor x2 − 2 =

(
x−
√

2
) (
x+
√

2
)
. Hence,

8x

x2 − 2
=

8x(
x−
√

2
) (
x+
√

2
) =

A

x−
√

2
+

B

x+
√

2

Clearing fractions, we get 8x = A
(
x+
√

2
)

+ B
(
x−
√

2
)

or 8x = (A + B)x + (A − B)
√

2.
We get the system {

A+B = 8

(A−B)
√

2 = 0

From (A − B)
√

2 = 0, we get A = B, which, when substituted into A + B = 8 gives B = 4.
Hence, A = B = 4 and we get

4x3

x2 − 2
= 4x+

8x

x2 − 2
= 4x+

4

x+
√

2
+

4

x−
√

2

5. At first glance, the denominator D(x) = x4 + 6x2 + 9 appears irreducible. However, D(x) has
three terms, and the exponent on the first term is exactly twice that of the second. Rewriting
D(x) =

(
x2
)2

+ 6x2 + 9, we see it is a quadratic in disguise and factor D(x) =
(
x2 + 3

)2
.

Since x2 + 3 clearly has no real zeros, it is irreducible and the form of the decomposition is

x3 + 5x− 1

x4 + 6x2 + 9
=
x3 + 5x− 1

(x2 + 3)2 =
Ax+B

x2 + 3
+

Cx+D

(x2 + 3)2

When we clear denominators, we find x3 + 5x− 1 = (Ax+B)
(
x2 + 3

)
+Cx+D which yields

x3 + 5x− 1 = Ax3 +Bx2 + (3A+ C)x+ 3B +D. Our system is
A = 1
B = 0

3A+ C = 5
3B +D = −1

We have A = 1 and B = 0 from which we get C = 2 and D = −1. Our final answer is

x3 + 5x− 1

x4 + 6x2 + 9
=

x

x2 + 3
+

2x− 1

(x2 + 3)2

6. Once again, the difficulty in our last example is factoring the denominator. In an attempt to
get a quadratic in disguise, we write

x4 + 16 =
(
x2
)2

+ 42 =
(
x2
)2

+ 8x2 + 42 − 8x2 =
(
x2 + 4

)2 − 8x2
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and obtain a difference of two squares:
(
x2 + 4

)2
and 8x2 =

(
2x
√

2
)2

. Hence,

x4 + 16 =
(
x2 + 4− 2x

√
2
)(

x2 + 4 + 2x
√

2
)

=
(
x2 − 2x

√
2 + 4

)(
x2 + 2x

√
2 + 4

)
The discrimant of both of these quadratics works out to be −8 < 0, which means they are
irreducible. We leave it to the reader to verify that, despite having the same discriminant,
these quadratics have different zeros. The partial fraction decomposition takes the form

8x2

x4 + 16
=

8x2(
x2 − 2x

√
2 + 4

) (
x2 + 2x

√
2 + 4

) =
Ax+B

x2 − 2x
√

2 + 4
+

Cx+D

x2 + 2x
√

2 + 4

We get 8x2 = (Ax+B)
(
x2 + 2x

√
2 + 4

)
+ (Cx+D)

(
x2 − 2x

√
2 + 4

)
or

8x2 = (A+ C)x3 + (2A
√

2 +B − 2C
√

2 +D)x2 + (4A+ 2B
√

2 + 4C − 2D
√

2)x+ 4B + 4D

which gives the system 
A+ C = 0

2A
√

2 +B − 2C
√

2 +D = 8

4A+ 2B
√

2 + 4C − 2D
√

2 = 0
4B + 4D = 0

We choose substitution as the weapon of choice to solve this system. From A + C = 0, we
get A = −C; from 4B + 4D = 0, we get B = −D. Substituting these into the remaining two
equations, we get {

−2C
√

2−D − 2C
√

2 +D = 8

−4C − 2D
√

2 + 4C − 2D
√

2 = 0

or {
−4C

√
2 = 8

−4D
√

2 = 0

We get C = −
√

2 so that A = −C =
√

2 and D = 0 which means B = −D = 0. Our final
answer is

8x2

x4 + 16
=

x
√

2

x2 − 2x
√

2 + 4
− x

√
2

x2 + 2x
√

2 + 4
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As we stated at the beginning of this section, the technique of resolving a rational function into
partial fractions is a skill needed for Calculus. However, we hope to have shown you that it is worth
doing if, for no other reason, it reinforces a hefty amount of algebra. In the end, if you take only
one thing away from this section, it’s that

8

x2 − 9
6= 8

x2
− 8

9

For if the above were true, this section wouldn’t be here.
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8.6.1 Exercises

1. Find only the form needed to begin the process of partial fraction decomposition. Do not
create the system of linear equations or attempt to find the actual decomposition.

(a)
7

(x− 3)(x+ 5)

(b)
5x+ 4

x(x− 2)(2− x)

(c)
m

(7x− 6)(x2 + 9)

(d)
ax2 + bx+ c

x3(5x+ 9)(3x2 + 7x+ 9)

(e)
A polynomial of degree < 9

(x+ 4)5(x2 + 1)2

(f)
A polynomial of degree < 7

x(4x− 1)2(x2 + 5)(9x2 + 16)

2. Find the partial fraction decomposition of the following rational expressions.

(a)
2x

x2 − 1

(b)
−7x+ 43

3x2 + 19x− 14

(c)
11x2 − 5x− 10

5x3 − 5x2

(d)
−2x2 + 20x− 68

x3 + 4x2 + 4x+ 16

(e)
−x2 + 15

4x4 + 40x2 + 36

(f)
−21x2 + x− 16

3x3 + 4x2 − 3x+ 2

(g)
5x4 − 34x3 + 70x2 − 33x− 19

(x− 3)2

(h)
x6 + 5x5 + 16x4 + 80x3 − 2x2 + 6x− 43

x3 + 5x2 + 16x+ 80

(i)
−7x2 − 76x− 208

x3 + 18x2 + 108x+ 216

(j)
−10x4 + x3 − 19x2 + x− 10

x5 + 2x3 + x

(k)
4x3 − 9x2 + 12x+ 12

x4 − 4x3 + 8x2 − 16x+ 16

(l)
2x2 + 3x+ 14

(x2 + 2x+ 9)(x2 + x+ 5)
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8.6.2 Answers

1. (a)
A

x− 3
+

B

x+ 5

(b)
A

x
+

B

x− 2
+

C

(x− 2)2

(c)
A

7x− 6
+
Bx+ C

x2 + 9

(d)
A

x
+
B

x2
+
C

x3
+

D

5x+ 9
+

Ex+ F

3x2 + 7x+ 9

(e)
A

x+ 4
+

B

(x+ 4)2
+

C

(x+ 4)3
+

D

(x+ 4)4
+

E

(x+ 4)5
+
Fx+G

x2 + 1
+

Hx+ I

(x2 + 1)2

(f)
A

x
+

B

4x− 1
+

C

(4x− 1)2
+
Dx+ E

x2 + 5
+
Fx+G

9x2 + 16

2. (a)
2x

x2 − 1
=

1

x+ 1
+

1

x− 1

(b)
−7x+ 43

3x2 + 19x− 14
=

5

3x− 2
− 4

x+ 7

(c)
11x2 − 5x− 10

5x3 − 5x2
=

3

x
+

2

x2
− 4

5(x− 1)

(d)
−2x2 + 20x− 68

x3 + 4x2 + 4x+ 16
= − 9

x+ 4
+

7x− 8

x2 + 4

(e)
−x2 + 15

4x4 + 40x2 + 36
=

1

2(x2 + 1)
− 3

4(x2 + 9)

(f)
−21x2 + x− 16

3x3 + 4x2 − 3x+ 2
= − 6

x+ 2
− 3x+ 5

3x2 − 2x+ 1

(g)
5x4 − 34x3 + 70x2 − 33x− 19

(x− 3)2
= 5x2 − 4x+ 1 +

9

x− 3
− 1

(x− 3)2

(h)
x6 + 5x5 + 16x4 + 80x3 − 2x2 + 6x− 43

x3 + 5x2 + 16x+ 80
= x3 +

x+ 1

x2 + 16
− 3

x+ 5

(i)
−7x2 − 76x− 208

x3 + 18x2 + 108x+ 216
= − 7

x+ 6
+

8

(x+ 6)2
− 4

(x+ 6)3

(j)
−10x4 + x3 − 19x2 + x− 10

x5 + 2x3 + x
= −10

x
+

1

x2 + 1
+

x

(x2 + 1)2

(k)
4x3 − 9x2 + 12x+ 12

x4 − 4x3 + 8x2 − 16x+ 16
=

1

x− 2
+

4

(x− 2)2
+

3x+ 1

x2 + 4

(l)
2x2 + 3x+ 14

(x2 + 2x+ 9)(x2 + x+ 5)
=

1

x2 + 2x+ 9
+

1

x2 + x+ 5
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8.7 Systems of Non-Linear Equations and Inequalities

In this section, we study systems of non-linear equations and inequalities. Unlike the systems of
linear equations for which we have developed several algorithmic solution techniques, there is no
general algorithm to solve systems of non-linear equations. Moreover, all of the usual hazards of
non-linear equations like extraneous solutions and unusual function domains are once again present.
Along with the tried and true techniques of substitution and elimination, we shall often need equal
parts tenacity and ingenuity to see a problem through to the end. You may find it necessary to
review topics throughout the text which pertain to solving equations involving the various functions
we have studied thus far. To get the section rolling we begin with a fairly routine example.

Example 8.7.1. Solve the following systems of equations. Verify your answers algebraically and
graphically.

1.

{
x2 + y2 = 4

4x2 + 9y2 = 36

2.

{
x2 + y2 = 4

4x2 − 9y2 = 36

3.

{
x2 + y2 = 4
y − 2x = 0

4.

{
x2 + y2 = 4
y − x2 = 0

Solution:

1. Since both equations contain x2 and y2 only, we can eliminate one of the variables as we did
in Section 8.1.

{
(E1) x2 + y2 = 4
(E2) 4x2 + 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) 5y2 = 20

From 5y2 = 20, we get y2 = 4 or y = ±2. To find the associated x values, we substitute each
value of y into one of the equations to find the resulting value of x. Choosing x2 + y2 = 4,
we find that for both y = −2 and y = 2, we get x = 0. Our solution is thus {(0, 2), (0,−2)}.
To check this algebraically, we need to show that both points satisfy both of the original
equations. We leave it to the reader to verify this. To check our answer graphically, we sketch
both equations and look for their points of intersection. The graph of x2 + y2 = 4 is a circle
centered at (0, 0) with a radius of 2, whereas the graph of 4x2 +9y2 = 36, when written in the

standard form x2

9 + y2

4 = 1 is easily recognized as an ellipse centered at (0, 0) with a major
axis along the x-axis of length 6 and a minor axis along the y-axis of length 4. We see from
the graph that the two curves intersect at their y-intercepts only, (0,±2).

2. We proceed as before to eliminate one of the variables

{
(E1) x2 + y2 = 4
(E2) 4x2 − 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) −13y2 = 20
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Since the equation −13y2 = 20 admits no real solution, the system is inconsistent. To verify
this graphically, we note that x2 + y2 = 4 is the same circle as before, but when writing the

second equation in standard form, x
2

9 −
y2

4 = 1, we find a hyperbola centered at (0, 0) opening
to the left and right with a transverse axis of length 6 and a conjugate axis of length 4. We
see that the circle and the hyperbola have no points in common.

x

y

−3 −2 −1 1 2 3

−1

1

x

y

−3 −2 −1 1 2 3

−1

1

Graphs for

{
x2 + y2 = 4

4x2 + 9y2 = 36
Graphs for

{
x2 + y2 = 4

4x2 − 9y2 = 36

3. Since there are no like terms among the two equations, elimination won’t do us any good.
We turn to substitution and from the equation y − 2x = 0, we get y = 2x. Substituting this

into x2 + y2 = 4 gives x2 + (2x)2 = 4. Solving, we find 5x2 = 4 or x = ±2
√

5
5 . Returning

to the equation we used for the substitution, y = 2x, we find y = 4
√

5
5 when x = 2

√
5

5 , so

one solution is
(

2
√

5
5 , 4

√
5

5

)
. Similarly, we find the other solution to be

(
−2
√

5
5 ,−4

√
5

5

)
. We

leave it to the reader that both points satisfy both equations, so that our final answer is{(
2
√

5
5 , 4

√
5

5

)
,
(
−2
√

5
5 ,−4

√
5

5

)}
. The graph of x2 + y2 = 4 is our circle from before and the

graph of y − 2x = 0 is a line through the origin with slope 2. Though we cannot verify the
numerical values of the points of intersection from our sketch, we do see that we have two
solutions: one in Quadrant I and one in Quadrant III as required.

4. While it may be tempting to solve y − x2 = 0 as y = x2 and substitute, we note that this
system is set up for elimination.1

{
(E1) x2 + y2 = 4
(E2) y − x2 = 0

Replace E2 with−−−−−−−−−−→
E1 + E2

{
(E1) x2 + y2 = 4
(E2) y2 + y = 4

From y2 + y = 4 we get y2 + y − 4 = 0 which gives y = −1±
√

17
2 . Due to the complicated

nature of these answers, it is worth our time to make a quick sketch of both equations to head
off any extraneous solutions we may encounter. We see that the circle x2 + y2 = 4 intersects
the parabola y = x2 exactly twice, and both of these points have a positive y value. Of the

two solutions for y, only y = −1+
√

17
2 is positive, so to get our solution, we substitute this

1We encourage the reader to solve the system using substitution to see that you get the same solution.
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into y − x2 = 0 and solve for x. We get x = ±
√
−1+

√
17

2 = ±
√
−2+2

√
17

2 . Our solution is{(√
−2+2

√
17

2 , −1+
√

17
2

)
,

(
−
√
−2+2

√
17

2 , −1+
√

17
2

)}
, which we leave to the reader to verify.
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y

−3 −2 −1 1 2 3

1

x

y

−3 −2 −1 1 2 3

−1

1

Graphs for

{
x2 + y2 = 4
y − 2x = 0

Graphs for

{
x2 + y2 = 4
y − x2 = 36

A couple of remarks about Example 8.7.1 are in order. First note that, unlike systems of linear
equations, it is possible for a system of non-linear equations to have more than one solution without
having infinitely many solutions. In fact, while we characterize systems of nonlinear equations as
being ‘consistent’ or ‘inconsistent,’ we generally don’t use the labels ‘dependent’ or ‘independent’.
Secondly, as we saw with number 4, sometimes making a quick sketch of the problem situation can
save a lot of time and effort. While in general the curves in a system of non-linear equations may
not be easily visualized, it sometimes pays to take advantage when they are. Our next example
provides some considerable review of many of the topics introduced in this text.

Example 8.7.2. Solve the following systems of equations. Verify your answers algebraically and
graphically, as appropriate.

1.

{
x2 + 2xy − 16 = 0
y2 + 2xy − 16 = 0

2.

{
y + 4e2x = 1
y2 + 2ex = 1 3.


z(x− 2) = x

yz = y
(x− 2)2 + y2 = 1

Solution.

1. At first glance, it doesn’t appear as though elimination will do us any good since it’s clear
that we cannot completely eliminate one of the variables. The alternative, solving one of
the equations for one variable and substituting it into the other, is full of unpleasantness.
Returning to elimination, we note that it is possible to eliminate the troublesome xy term,
and the constant term as well, by elimination and doing so we get a more tractable relationship
between x and y

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 + 2xy − 16 = 0

Replace E2 with−−−−−−−−−−→
−E1 + E2

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 − x2 = 0
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We get y2 − x2 = 0 or y = ±x. Substituting y = x into E1 we get x2 + 2x2 − 16 = 0 so

that x2 = 16
3 or x = ±4

√
3

3 . On the other hand, when we substitute y = −x into E1, we get

x2 − 2x2 − 16 = 0 or x2 = −16 which gives no real solutions. Substituting each of x = ±4
√

3
3

into the substitution equation y = x yields the solution
{(

4
√

3
3 , 4

√
3

3

)
,
(
−4
√

3
3 ,−4

√
3

3

)}
. We

leave it to the reader to show that both points satisfy both equations and now turn to verifying
our solution graphically. We begin by solving x2+2xy−16 = 0 for y to obtain y = 16−x2

2x . This
function is easily graphed using the techniques of Section 4.2. Solving the second equation,
y2 + 2xy − 16 = 0, for y, however, is more complicated. We use the quadratic formula to
obtain y = −x±

√
x2 + 16 which would require the use of Calculus or a calculator to graph.

Believe it or not, we don’t need either because the equation y2 +2xy−16 = 0 can be obtained
from the equation x2 + 2xy − 16 = 0 by interchanging y and x. Thinking back to Section
5.2, this means we can obtain the graph of y2 + 2xy − 16 = 0 by reflecting the graph of
x2 + 2xy − 16 = 0 across the line y = x. Doing so confirms that the two graphs intersect
twice: once in Quadrant I, and once in Quadrant III as required.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graphs of x2 + 2xy − 16 = 0 and y2 + 2xy − 16 = 0

2. Unlike the previous problem, there seems to be no avoiding substitution and a bit of algebraic
unpleasantness. Solving y+ 4e2x = 1 for y, we get y = 1− 4e2x which, when substituted into
the second equation, yields

(
1− 4e2x

)2
+ 2ex = 1. After expanding and gathering like terms,

we get 16e4x− 8e2x + 2ex = 0. Factoring gives us 2ex
(
8e3x − 4ex + 1

)
= 0, and since 2ex 6= 0

for any real x, we are left with solving 8e3x − 4ex + 1 = 0. We have three terms, and even
though this is not a ‘quadratic in disguise’, we can benefit from the substitution u = ex. The
equation becomes 8u3−4u+1 = 0. Using the techniques set forth in Section 3.3, we find u = 1

2
is a zero and use synthetic division to factor the left hand side as

(
u− 1

2

) (
8u2 + 4u− 2

)
. We

use the quadratic formula to solve 8u2 + 4u − 2 = 0 and find u = −1±
√

5
4 . Since u = ex, we

now must solve ex = 1
2 and ex = −1±

√
5

4 . From ex = 1
2 , we get x = ln

(
1
2

)
= − ln(2). As

for ex = −1±
√

5
4 , we first note that −1−

√
5

4 < 0, so ex = −1−
√

5
4 has no real solutions. We are
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left with ex = −1+
√

5
4 , so that x = ln

(
−1+

√
5

4

)
. We now return to y = 1 − 4e2x to find the

accompanying y values for each of our solutions for x. For x = − ln(2), we get

y = 1− 4e2x

= 1− 4e−2 ln(2)

= 1− 4eln(1/4)

= 1− 4
(

1
4

)
= 0

For x = ln
(
−1+

√
5

4

)
, we have

y = 1− 4e2x

= 1− 4e
2 ln
(
−1+

√
5

4

)
= 1− 4e

ln
(
−1+

√
5

4

)2

= 1− 4
(
−1+

√
5

4

)2

= 1− 4
(

3−
√

5
8

)
= −1+

√
5

2

We get two solutions,
{

(0,− ln(2)),
(

ln
(
−1+

√
5

4

)
, −1+

√
5

2

)}
. It is a good review of the prop-

erties of logarithms to verify both solutions, so we leave that to the reader. We are able to
sketch y = 1 − 4e2x using transformations, but the second equation is more difficult and we
resort to the calculator. We note that to graph y2 + 2ex = 1, we need to graph both the
positive and negative roots, y = ±

√
1− 2ex. After some careful zooming,2 we confirm our

solutions.

The graphs of y = 1− 4e2x and y = ±
√

1− 2ex.

3. Our last system involves three variables and gives some insight on how to keep such systems
organized. Labeling the equations as before, we have

2The calculator has trouble confirming the solution (− ln(2), 0) due to its issues in graphing square root functions.
If we mentally connect the two branches of the thicker curve, we see the intersection.
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E1 z(x− 2) = x
E2 yz = y
E3 (x− 2)2 + y2 = 1

The easiest equation to start with appears to be E2. While it may be tempting to divide
both sides of E2 by y, we caution against this practice because it presupposes y 6= 0. Instead,
we take E2 and rewrite it as yz − y = 0 so y(z − 1) = 0. From this, we get two cases: y = 0
or z = 1. We take each case in turn.

Case 1: y = 0. Substituting y = 0 into E1 and E3, we get{
E1 z(x− 2) = x
E3 (x− 2)2 = 1

Solving E3 for x gives x = 1 or x = 3. Substituting these values into E1 gives z = −1 when
x = 1 and z = 3 when x = 3. We obtain two solutions, (1, 0,−1) and (3, 0, 3).

Case 2: z = 1. Substituting z = 1 into E1 and E3 gives us{
E1 (1)(x− 2) = x
E3 (1− 2)2 + y2 = 1

Equation E1 gives us x − 2 = x or −2 = 0, which is a contradiction. This means we have
no solution to the system in this case, even though E3 is solvable and gives y = 0. Hence,
our final answer is {(1, 0,−1), (3, 0, 3)}. These points are easy enough to check algebraically
in our three original equations, so that is left to the reader. As for verifying these solutions
graphically, they require plotting surfaces in three dimensions and looking for intersection
points. While this is beyond the scope of this book, we provide a snapshot of the graphs of
our three equations near one of the solution points, (1, 0,−1).

Example 8.7.2 showcases some of the ingenuity and tenacity mentioned at the beginning of the
section. Sometimes you just have to look at a system the right way to find the most efficient
method to solve it. Sometimes you just have to try something.
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Next, we use systems of nonlinear equations to solve some classic application problems. Though
systems of equations are not necessarily needed to solve these problems,3 we feel using systems is
a more intuitive approach.

Example 8.7.3. Carl decides to explore the Meander River, the location of several recent Sasquatch
sightings. From camp, he canoes downstream five miles to check out a purported Sasquatch nest.
Finding nothing, he immediately turns around, retraces his route (this time traveling upstream),
and returns to camp 3 hours after he left. If Carl canoes at a rate of 6 miles per hour in still water,
how fast was the Meander River flowing on that day?

Solution. We are given information about distances, rates (speeds), and times. The basic principle
relating these quantities is:

distance = rate · time

The first observation to make, however, is that the distance, rate, and time given to us aren’t
‘compatible’: the distance given is the distance for only part of the trip, the rate given is the speed
Carl can canoe in still water, not in a flowing river, and the time given is the duration of the entire
trip. Ultimately, we are after the speed of the river, so let’s call that R (measured in miles per hour
to be consistent with the other rate given to us.) To get started, let’s divide the trip into its two
parts: the initial trip downstream and the return trip upstream. For the downstream trip, all we
know is that the distance traveled is 5 miles.

distance downstream = rate traveling downstream · time traveling downstream
5 miles = rate traveling downstream · time traveling downstream

Since the return trip upstream followed the same route as the trip downstream, we know the
distance traveled upstream is also 5 miles.

distance upstream = rate traveling upstream · time traveling upstream
5 miles = rate traveling upstream · time traveling upstream

We are told Carl can canoe at a rate of 6 miles per hour in still water. How does this figure
into the rates traveling upstream and downstream? The speed the canoe travels in the river is a
combination of the speed at which Carl can propel the canoe in still water, 6 miles per hour, and
the speed of the river, which we’re calling R. When traveling downstream, the river is helping Carl
along, so we add these two speeds:

rate traveling downstream = rate Carl propels the canoe + speed of the river

= 6miles
hour +Rmiles

hour

So our downstream speed is (6 + R)miles
hour . Substituting this into our ‘distance-rate-time’ equation

for the downstream part of the trip, we get:

5 miles = rate traveling downstream · time traveling downstream

5 miles = (6 +R)miles
hour · time traveling downstream

3In most textbooks, for example, they are handled by setting up one equation. Getting to that one equation,
however, essentially uses systems of equations.
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When traveling upstream, Carl works against the current. Since the canoe manages to travel
upstream, the speed Carl can canoe in still water is greater than the river’s speed, so we subtract
the river’s speed from Carl’s canoing speed to get:

rate traveling upstream = rate Carl propels the canoe− river speed

= 6miles
hour −R

miles
hour

Proceeding as before, we get

5 miles = rate traveling upstream · time traveling upstream

5 miles = (6−R)miles
hour · time traveling upstream

The last piece of information given to us is the total trip lasted 3 hours. If we let tdown denote the
time of the downstream trip and tup the time of the upstream trip, we have: tdown + tup = 3 hours.
Substituting tdown and tup into the ‘distance-rate-time’ equations, we get (suppressing the units)
the following system of three equations and three unknowns:

E1 (6 +R) tdown = 5
E2 (6−R) tup = 5
E3 tdown + tup = 3

We begin by solving E1 for tdown by dividing both sides by the quantity (6 +R). While we usually
discourage dividing both sides of an equation by a variable expression, we know (6 +R) 6= 0 since
otherwise we couldn’t possibly multiply it by tdown and get 5. Hence, tdown = 5

6+R . Similarly, we

solve E2 for tup and get tup = 5
6−R . Substituting these into E3, we get:4

5

6 +R
+

5

6−R
= 3.

Clearing denominators, we get 5(6− R) + 5(6 + R) = 3(6 + R)(6− R) which reduces to R2 = 16.
We find R = ±4, and since R represents the speed of the river, we choose R = 4. On the day in
question, the Meander River is flowing at a rate of 4 miles per hour.

One of the important lessons to learn from Example 8.7.3 is that speeds, and, more generally, rates,
are additive. As we see in our next example, the concept of rate and its associated principles can
be applied to a wide variety of problems - not just ‘distance-rate-time’ scenarios.

Example 8.7.4. Working alone, Taylor can weed the garden in 4 hours. If Carl helps, they can
weed the garden in 3 hours. How long would it take for Carl to weed the garden on his own?

Solution. The key relationship between work and time we use in this problem is:

amount of work done = rate of work · time spent working

We are told that, working alone, Taylor can weed the garden in 4 hours. In Taylor’s case, then:

4The reader is encouraged to check the units in this equation are the same on both sides. To get you started, the
units on the ‘3’ is ‘hours.’
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amount of work Taylor does = rate of Taylor working · time Taylor spent working
1 garden = (rate of Taylor working) · (4 hours)

So we have that the rate Taylor works is 1 garden
4 hours = 1

4
garden
hour . We are also told that when working

together, Taylor and Carl can weed the garden in just 3 hours. We have:

amount of work done together = rate of working together · time spent working together
1 garden = (rate of working together) · (3 hours)

From this, we find the rate of Taylor and Carl working together is 1 garden
3 hours = 1

3
garden
hour . We are asked

to find out how long it would take for Carl to weed the garden on his own. Let us call this unknown
t, measured in hours (to be consistent with the other times given to us in the problem.) Then:

amount of work Carl does = rate of Carl working · time Carl spent working
1 garden = (rate of Carl working) · (t hours)

In order to find t, we need to find the rate of Carl working, so let’s call this quantity R, with units
garden
hour . Using the fact that rates are additive, we have:

rate working together = rate of Taylor working + rate of Carl working

1
3

garden
hour = 1

4
garden
hour +R garden

hour

so that R = 1
12

garden
hour . Substituting this into our ‘work-rate-time’ equation for Carl, we get:

1 garden = (rate of Carl working) · (t hours)

1 garden =
(

1
12

garden
hour

)
· (t hours)

Solving 1 = 1
12 t, we get t = 12, so it takes Carl 12 hours to weed the garden on his own.5

Even though a system of equations wasn’t formally used in Example 8.7.4, the notion of using two
variables and two unknowns is there, albeit it more subtly than in Example 8.7.3. As is common
with ‘word problems’ like Examples 8.7.3 and 8.7.4, there is no ‘short-cut’ to the answer. We
encourage the reader to carefully think through and apply the basic principles of rate to each
(potentially different!) situation. It is time well spent. We also encourage keeping track of units,
especially in the early stages of the problem. Not only does this promote uniformity in the units,
it also serves as a quick means to check if an equation makes sense.6

We close this section discussing how non-linear inequalities can be used to describe regions in
the plane which we first introduced in Section 2.4. Before we embark on some examples, a little
motivation is in order. Suppose we wish to solve x2 < 4−y2. If we mimic the algorithms for solving
nonlinear inequalities in one variable, we would gather all of the terms on one side and leave a 0

5Carl would much rather spend his time writing open-source mathematics than gardening anyway.
6In other words, make sure you don’t try to add apples to oranges!
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on the other to obtain x2 + y2 − 4 < 0. Then we would find the zeros of the left hand side, that
is, where is x2 + y2 − 4 = 0, or x2 + y2 = 4. Instead of obtaining a few numbers which divide the
real number line into intervals, we get an equation of a curve, in this case, a circle, which divides
the plane into two regions - the ‘inside’ and ‘outside’ of the circle - with the circle itself as the
boundary between the two. Just like we used test values to determine whether or not an interval
belongs to the solution of the inequality, we use test points in the each of the regions to see which
of these belong to our solution set.7 We choose (0, 0) to represent the region inside the circle and
(0, 3) to represent the points outside of the circle. When we substitute (0, 0) into x2 + y2 − 4 < 0,
we get −4 < 4 which is true. This means (0, 0) and all the other points inside the circle are part of
the solution. On the other hand, when we substitute (0, 3) into the same inequality, we get 5 < 0
which is false. This means (0, 3) along with all other points outside the circle are not part of the
solution. What about points on the circle itself? Choosing a point on the circle, say (0, 2), we get
0 < 0, which means the circle itself does not satisfy the inequality.8 As a result, we leave the circle
dashed in the final diagram.

x

y

2

−2

−2 2

The solution to x2 < 4− y2

We put this technique to good use in the following example.

Example 8.7.5. Sketch the solution to the following nonlinear inequalities in the plane.

1. y2 − 4 ≤ x < y + 2 2.

{
x2 + y2 ≥ 4

x2 − 2x+ y2 − 2y ≤ 0

Solution.

1. The inequality y2 − 4 ≤ x < y + 2 is a compound inequality. It translates as y2 − 4 ≤ x
and x < y + 2. As usual, we solve each inequality and take the set theoretic intersection
to determine the region which satisfies both inequalities. To solve y2 − 4 ≤ x, we write
y2 − x − 4 ≤ 0. The curve y2 − x − 4 = 0 describes a parabola since exactly one of the
variables is squared. Rewriting this in standard form, we get y2 = x+ 4 and we see that the
vertex is (−4, 0) and the parabola opens to the right. Using the test points (−5, 0) and (0, 0),
we find that the solution to the inequality includes the region to the right of, or ‘inside’, the

7The theory behind why all this works is, surprisingly, the same theory which guarantees that sign diagrams work
the way they do - continuity and the Intermediate Value Theorem - but in this case, applied to functions of more
than one variable.

8Another way to see this is that points on the circle satisfy x2 + y2− 4 = 0, so they do not satisfy x2 + y2− 4 < 0.
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parabola. The points on the parabola itself are also part of the solution, since the vertex
(−4, 0) satisfies the inequality. We now turn our attention to x < y+2. Proceeding as before,
we write x− y − 2 < 0 and focus our attention on x− y − 2 = 0, which is the line y = x− 2.
Using the test points (0, 0) and (0,−4), we find points in the region above the line y = x− 2
satisfy the inequality. The points on the line y = x − 2 do not satisfy the inequality, since
the y-intercept (0,−2) does not. We see that these two regions do overlap, and to make the
graph more precise, we seek the intersection of these two curves. That is, we need to solve
the system of nonlinear equations{

(E1) y2 = x+ 4
(E2) y = x− 2

Solving E1 for x, we get x = y2 − 4. Substituting this into E2 gives y = y2 − 4 − 2, or
y2 − y − 6 = 0. We find y = −2 and y = 3 and since x = y2 − 4, we get that the graphs
intersect at (0,−2) and (5, 3). Putting all of this together, we get our final answer below.

x

y

−5−4

−3

3

x

y

2 3 4 5

−3

x

y

−5−4 2 3 4 5

−3

y2 − 4 ≤ x x < y + 2 y2 − 4 ≤ x < y + 2

2. To solve this system of inequalities, we need to find all of the points (x, y) which satisfy
both inequalities. To do this, we solve each inequality separately and take the set theoretic
intersection of the solution sets. We begin with the inequality x2 +y2 ≥ 4 which we rewrite as
x2 + y2− 4 ≥ 0. The points which satisfy x2 + y2− 4 = 0 form our friendly circle x2 + y2 = 4.
Using test points (0, 0) and (0, 3) we find that our solution comprises the region outside the
circle. As far as the circle itself, the point (0, 2) satisfies the inequality, so the circle itself
is part of the solution set. Moving to the inequality x2 − 2x + y2 − 2y ≤ 0, we start with
x2 − 2x + y2 − 2y = 0. Completing the squares, we obtain (x − 1)2 + (y − 1)2 = 2, which is
a circle centered at (1, 1) with a radius of

√
2. Choosing (1, 1) to represent the inside of the

circle, (1, 3) as a point outside of the circle and (0, 0) as a point on the circle, we find that
the solution to the inequality is the inside of the circle, including the circle itself. Our final
answer, then, consists of the points on or outside of the circle x2 + y2 = 4 which lie on or
inside the circle (x− 1)2 + (y− 1)2 = 2. To produce the most accurate graph, we need to find
where these circles intersect. To that end, we solve the system{

(E1) x2 + y2 = 4
(E2) x2 − 2x+ y2 − 2y = 0
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We can eliminate both the x2 and y2 by replacing E2 with −E1 + E2. Doing so produces
−2x − 2y = −4. Solving this for y, we get y = 2 − x. Substituting this into E1 gives
x2 + (2− x)2 = 4 which simplifies to x2 + 4− 4x+ x2 = 4 or 2x2 − 4x = 0. Factoring yields
2x(x − 2) which gives x = 0 or x = 2. Substituting these values into y = 2 − x gives the
points (0, 2) and (2, 0). The intermediate graphs and final solution are below.

x

y

1

−1

1

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x2 + y2 ≥ 4 x2 − 2x+ y2 − 2y ≤ 0 Solution to the system.
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8.7.1 Exercises

1. Solve the following systems of nonlinear equations. Sketch the graph of both equations on
the same set of axes to verify the solution set.

(a)

{
x2 − y = 4
x2 + y2 = 4

(b)

{
x2 + y2 = 4
x2 − y = 5

(c)

{
x2 + y2 = 16

16x2 + 4y2 = 64

(d)

{
x2 + y2 = 16

9x2 − 16y2 = 144

(e)

{
x2 + y2 = 16

1
9y

2 − 1
16x

2 = 1

(f)

{
x2 + y2 = 16
x− y = 2

2. Solve the following systems of nonlinear equations. Use a graph to help you avoid any potential
extraneous solutions.

(a)

{
x2 − y2 = 1
x2 + 4y2 = 4

(b)

{ √
x+ 1− y = 0
x2 + 4y2 = 4

(c)

{
x+ 2y2 = 2
x2 + 4y2 = 4

(d)

{
(x− 2)2 + y2 = 1

x2 + 4y2 = 4

(e)

{
x2 + y2 = 25
y − x = 1

(f)

{
x2 + y2 = 25

x2 + (y − 3)2 = 10

(g)

{
y = x3 + 8
y = 10x− x2

(h)


x2 + y2 = 25

4x2 − 9y = 0
3y2 − 16x = 0

3. Carl and Mike start a 3 mile race at the same time. If Mike ran the race at 6 miles per hour
and finishes the race 10 minutes before Carl, how fast does Carl run?

4. On a certain day, Donnie observes the wind is blowing at 6 miles per hour. A unladen swallow
nesting near Donnie’s house flies three quarters of a mile down the road (in the direction of
the wind), turns around, and returns exactly 4 minutes later. What is the airspeed of the
unladen swallow? (Here, ‘airspeed’ is the speed the swallow can fly in still air.)

5. In order remove water from a flooded basement, two pumps, each rated at 40 gallons per
minute, are used. After half an hour, the one pump burns out, and the second pump finishes
removing the water half an hour later. How many gallons of water were removed from the
basement?

6. A faucet can fill a sink in 5 minutes while a drain will empty the same sink in 8 minutes. If
the faucet is turned on and the drain is left open, how long will it take to fill the sink?

7. Working together, Daniel and Donnie can clean the llama pen in 45 minutes. On his own,
Daniel can clean the pen in an hour. How long does it take Donnie to clean the llama pen on
his own?

8. A certain bacteria culture follows the Law of Uninbited Growth, Equation 6.4. After 10
minutes, there are 10,000 bacteria. Five minutes later, there are 14,000 bacteria. How many
bacteria were present initially? How long before there are 50,000 bacteria?
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9. Consider the system of nonlinear equations below
4

x
+

3

y
= 1

3

x
+

2

y
= −1

If we let u = 1
x and v = 1

y then the system becomes{
4u+ 3v = 1
3u+ 2v = −1

This associated system of linear equations can then be solved using any of the techniques
presented earlier in the chapter to find that u = −5 and v = 7. Thus x = 1

u = −1
5 and

y = 1
v = 1

7 .

We say that the original system is linear in form because its equations are not linear but a
few basic substitutions reveal a structure that we can treat like a system of linear equations.
Each system given below is linear in form. Make the appropriate substitutions to help you
solve for x and y.

(a)

{
4x3 + 3

√
y = 1

3x3 + 2
√
y = −1

(b)

{
4ex + 3e−y = 1
3ex + 2e−y = −1

(c)

{
4 ln(x) + 3y2 = 1
3 ln(x) + 2y2 = −1

10. Solve the following system 
x2 +

√
y + log2(z) = 6

3x2 − 2
√
y + 2 log2(z) = 5

−4x2 +
√
y − 3 log2(z) = 11

11. Sketch the solution to each system of nonlinear inequalities in the plane.

(a)

{
x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

(b)

{
x2 + y2 < 25

x2 + (y − 3)2 ≥ 10

(c)

{
(x− 2)2 + y2 < 1

x2 + 4y2 < 4

(d)

{
y > 10x− x2

y < x3 + 8

(e)

{
x+ 2y2 > 2
x2 + 4y2 ≤ 4

(f)

{
x2 + y2 ≥ 25
y − x ≤ 1
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12. Systems of nonlinear equations show up in third semester Calculus in the midst of some really
cool problems. The system below came from a problem in which we were asked to find the
dimensions of a rectangular box with a volume of 1000 cubic inches that has minimal surface
area. The variables x, y and z are the dimensions of the box and λ is called a Lagrange
multiplier. With the help of your classmates, solve the system.9

2y + 2z = λyz
2x+ 2z = λxz
2y + 2x = λxy

xyz = 1000

13. According to Theorem 3.16 in Section 3.4, the polynomial p(x) = x4 + 4 can be factored into
the product linear and irreducible quadratic factors. In this exercise, we present a method
for obtaining that factorization.

(a) Show that p has no real zeros.

(b) Because p has no real zeros, its factorization must be of the form (x2+ax+b)(x2+cx+d)
where each factor is an irreducible quadratic. Expand this quantity and gather like terms
together.

(c) Create and solve the system of nonlinear equations which results from equating the
coefficients of the expansion found above with those of x4 + 4. You should get four
equations in the four unknowns a, b, c and d. Write p(x) in factored form.

14. Factor q(x) = x4 + 6x2 − 5x+ 6.

9If using λ bothers you, change it to w when you solve the system.
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8.7.2 Answers

1. (a) (±2, 0),
(
±
√

3,−1
)

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

(b) No solution

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

(c) (0,±4)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(d) (±4, 0)

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

(e)
(
±4
√

7
5 ,±12

√
2

5

)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(f)
(
1 +
√

7,−1 +
√

7
)
,
(
1−
√

7,−1−
√

7
)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

2. (a)
(
±2
√

10
5 ,±

√
15
5

)
(b) (0, 1)

(c) (0,±1), (2, 0)

(d)
(

4
3 ,±

√
5

9

)
(e) (3, 4), (−4,−3)

(f) (±3, 4)

(g) (−4,−56), (1, 9), (2, 16)

(h) (3, 4)
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3. 4.5 miles per hour

4. 24 miles per hour

5. 3600 gallons

6. 40
3 ≈ 13.33 minutes

7. 3 hours

8. Initially, there are 250000
49 ≈ 5102 bacteria. It will take 5 ln(49/5)

ln(7/5) ≈ 33.92 minutes for the colony
to grow to 50,000 bacteria.

9. (a)
(
− 3
√

5, 49
)

(b) No solution (c)
(
e−5,
√

7
)

10. (1, 4, 8), (−1, 4, 8)

11. (a)

{
x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

x

y

−2 −1 1 2

−2

−1

1

2

(b)

{
x2 + y2 < 25

x2 + (y − 3)2 ≥ 10

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

(c)

{
(x− 2)2 + y2 < 1

x2 + 4y2 < 4

x

y

1 2

−1

1
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(d)

{
y > 10x− x2

y < x3 + 8

x

y

−4−3−2−1 1 2

−56

9
16

(e)

{
x+ 2y2 > 2
x2 + 4y2 ≤ 4

x

y

1 2

−1

1

(f)

{
x2 + y2 ≥ 25
y − x ≤ 1

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

12. x = 10, y = 10, z = 10, λ = 2
5

13. (c) x4 + 4 = (x2 − 2x+ 2)(x2 + 2x+ 2)

14. x4 + 6x2 − 5x+ 6 = (x2 − x+ 1)(x2 + x+ 6)
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Chapter 9

Sequences and the Binomial
Theorem

9.1 Sequences

When we first introduced a function as a special type of relation in Section 1.4, we did not put
any restrictions on the domain of the function. All we said was that the set of x-coordinates of the
points in the function F is called the domain, and it turns out that any subset of the real numbers,
regardless of how weird that subset may be, can be the domain of a function. As our exploration
of functions continued beyond Section 1.4, we saw fewer and fewer functions with ‘weird’ domains.
It is worth your time to go back through the text to see that the domains of the polynomial,
rational, exponential, logarithmic and algebraic functions discussed thus far have fairly predictable
domains which almost always consist of just a collection of intervals on the real line. This may lead
some readers to believe that the only important functions in a College Algebra text have domains
which consist of intervals and everything else was just introductory nonsense. In this section, we
introduce sequences which are an important class of functions whose domains are the set of natural
numbers.1 Before we get to far ahead of ourselves, let’s look at what the term ‘sequence’ means
mathematically. Informally, we can think of a sequence as an infinite list of numbers. For example,
consider the sequence

1

2
,−3

4
,
9

8
,−27

16
, . . . (1)

As usual, the periods of ellipsis, . . ., indicate that the proposed pattern continues forever. Each of
the numbers in the list is called a term, and we call 1

2 the ‘first term’, −3
4 the ‘second term’, 9

8 the
‘third term’ and so forth. In numbering them this way, we are setting up a function, which we’ll
call a per tradition, between the natural numbers and the terms in the sequence.

1Recall that this is the set {1, 2, 3, . . .}.
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n a(n)

1 1
2

2 −3
4

3 9
8

4 −27
16

...
...

In other words, a(n) is the nth term in the sequence. We formalize these ideas in our definition of
a sequence and introduce some accompanying notation.

Definition 9.1. A sequence is a function a whose domain is the natural numbers. The value
a(n) is often written as an and is called the nth term of the sequence. The sequence itself is
usually denoted using the notation: an, n ≥ 1 or the notation: {an}∞n=1.

Applying the notation provided in Definition 9.1 to the sequence given (1), we have a1 = 1
2 , a2 = −3

4 ,
a3 = 9

8 and so forth. Now suppose we wanted to know a117, that is, the 117th term in the sequence.
While the pattern of the sequence is apparent, it would benefit us greatly to have an explicit formula
for an. Unfortunately, there is no general algorithm that will produce a formula for every sequence,
so any formulas we do develop will come from that greatest of teachers, experience. In other words,
it is time for an example.

Example 9.1.1. Write the first four terms of the following sequences.

1. an =
5n−1

3n
, n ≥ 1

2. bk =
(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1

4.

{
1 + (−1)j

j

}∞
j=2

5. a1 = 7, an+1 = 2− an, n ≥ 1

6. f0 = 1, fn = n · fn−1, n ≥ 1

Solution.

1. Since we are given n ≥ 1, the first four terms of the sequence are a1, a2, a3 and a4. Since
the notation a1 means the same thing as a(1), we obtain our first term by replacing every

occurrence of n in the formula for an with n = 1 to get a1 = 51−1

31 = 1
3 . Proceeding similarly,

we get a2 = 52−1

32 = 5
9 , a3 = 53−1

33 = 25
27 and a4 = 54−1

34 = 125
81 .

2. For this sequence we have k ≥ 0, so the first four terms are b0, b1, b2 and b3. Proceeding as
before, replacing in this case the variable k with the appropriate whole number, beginning

with 0, we get b0 = (−1)0

2(0)+1 = 1, b1 = (−1)1

2(1)+1 = −1
3 , b2 = (−1)2

2(2)+1 = 1
5 and b3 = (−1)3

2(3)+1 = −1
7 .

(This sequence is called an alternating sequence since the signs alternate between + and −.
The reader is encouraged to think what component of the formula is producing this effect.)
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3. From {2n− 1}∞n=1, we have that an = 2n − 1, n ≥ 1. We get a1 = 1, a2 = 3, a3 = 5 and
a4 = 7. (The first four terms are the first four odd natural numbers. The reader is encouraged
to examine whether or not this pattern continues indefinitely.)

4. Proceeding as in the previous problem, we set aj = 1+(−1)j

j , j ≥ 2. We find a2 = 1, a3 = 0,

a4 = 1
2 and a5 = 0.

5. To obtain the terms of this sequence, we start with a1 = 7 and use the equation an+1 = 2−an
for n ≥ 1 to generate successive terms. When n = 1, this equation becomes a1 + 1 = 2 − a1

which simplifies to a2 = 2−a1 = 2−7 = −5. When n = 2, the equation becomes a2 + 1 = 2−a2

so we get a3 = 2 − a2 = 2 − (−5) = 7. Finally, when n = 3, we get a3 + 1 = 2 − a3 so
a4 = 2− a3 = 2− 7 = −5.

6. As with the problem above, we are given a place to start with f0 = 1 and given a formula
to build other terms of the sequence. Substituting n = 1 into the equation fn = n · fn−1,
we get f1 = 1 · f0 = 1 · 1 = 1. Advancing to n = 2, we get f2 = 2 · f1 = 2 · 1 = 2. Finally,
f3 = 3 · f2 = 3 · 2 = 6.

Some remarks about Example 9.1.1 are in order. We first note that since sequences are functions,
we can graph them in the same way we graph functions. For example, if we wish to graph the
sequence {bk}∞k=0 from Example 9.1.1, we graph the equation y = b(k) for the values k ≥ 0. That
is, we plot the points (k, b(k)) for the values of k in the domain, k = 0, 1, 2, . . .. The resulting
collection of points is the graph of the sequence. Note that we do not connect the dots in a pleasing
fashion as we are used to doing, because the domain is just the whole numbers in this case, not a
collection of intervals of real numbers. If you feel a sense of nostalgia, you should see Section 1.2.

x

y

1 2 3

− 3
2

−1

− 1
2

1
2

1

3
2

Graphing y = bk =
(−1)k

2k + 1
, k ≥ 0

Speaking of {bk}∞k=0, the astute and mathematically minded reader will correctly note that this
technically isn’t a sequence, since according to Definition 9.1, sequences are functions whose domains
are the natural numbers, not the whole numbers, as is the case with {bk}∞k=0. In other words, to
satisfy Definition 9.1, we need to shift the variable k so it starts at k = 1 instead of k = 0. To
see how we can do this, it helps to think of the problem graphically. What we want is to shift
the graph of y = b(k) to the right one unit, and thinking back to Section 1.8, we can accomplish
this by replacing k with k − 1 in the definition of {bk}∞k=0. Specifically, let ck = bk−1 where

k − 1 ≥ 0. We get ck = (−1)k−1

2(k−1)+1 = (−1)k−1

2k−1 , where now k ≥ 1. We leave to the reader to verify

that {ck}∞k=1 generates the same list of numbers as does {bk}∞k=0, but the former satisfies Definition
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9.1, while the latter does not. Like so many things in this text, we acknowledge that this point
is pedantic and join the vast majority of authors who adopt a more relaxed view of Definition 9.1
to include any function which generates a list of numbers which can then be matched up with
the natural numbers.2 Finally, we wish to note the sequences in parts 5 and 6 are examples of
sequences described recursively. In each instance, an initial value of the sequence is given which
is then followed by a recursion equation − a formula which enables us to use known terms of
the sequence to determine other terms. The terms of the sequence in part 6 are given a special
name: fn = n! is called n-factorial. Using the ‘!’ notation, we can describe the factorial sequence
as: 0! = 1 and n! = n(n− 1)! for n ≥ 1. After 0! = 1 the next four terms, written out in detail, are
1! = 1 · 0! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 · 1 = 6 and 4! = 4 · 3! = 4 · 3 · 2 · 1 = 24.
From this, we see a more informal way of computing n!, which is n! = n · (n − 1) · (n − 2) · · · 2 · 1
with 0! = 1 as a special case. (We will study factorials in greater detail in Section 9.4.) The world
famous Fibonacci Numbers are defined recursively and are explored in the exercises. While none
of the sequences worked out to be the sequence in (1), they do give us some insight into what kinds
of patterns to look for. Two patterns in particular are given in the next definition.

Definition 9.2. Arithmetic and Geometric Sequences: Suppose {an}∞n=k is a sequencea

• If there is a number d so that an+1 = an + d for all n ≥ k, then {an}∞n=k is called an
arithmetic sequence. The number d is called the common difference.

• If there is a number r so that an+1 = ran for all n ≥ k, then {an}∞n=k is called an geometric
sequence. The number r is called the common ratio.

aNote that we have adjusted for the fact that not all ‘sequences’ begin at n = 1.

Both arithmetic and geometric sequences are defined in terms of recursion equations. In English,
an arithmetic sequence is one in which we proceed from one term to the next by always adding
the fixed number d. The name ‘common difference’ comes from a slight rewrite of the recursion
equation from an+1 = an + d to an+1 − an = d. Analogously, a geometric sequence is one in which
we proceed from one term to the next by always multiplying by the same fixed number r. If r 6= 0,
we can rearrange the recursion equation to get an+1

an
= r, hence the name ‘common ratio.’ Some

sequences are arithmetic, some are geometric and some are neither as the next example illustrates.3

Example 9.1.2. Determine if the following sequences are arithmetic, geometric or neither. If
arithmetic, find the common difference d; if geometric, find the common ratio r.

1. an =
5n−1

3n
, n ≥ 1

2. bk =
(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1

4.
1

2
,−3

4
,
9

8
,−27

16
, . . .

2Math fans will delight to know we are basically talking about the ‘countably infinite’ subsets of the real number
line when we do this.

3Sequences which are both arithmetic and geometric are discussed in the Exercises.

http://en.wikipedia.org/wiki/Fibonacci_number
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Solution. A good rule of thumb to keep in mind when working with sequences is “When in doubt,
write it out!” Writing out the first several terms can help you identify the pattern of the sequence
should one exist.

1. From Example 9.1.1, we know that the first four terms of this sequence are 1
3 ,

5
9 ,

25
27 and 125

81 .
To see if this is an arithmetic sequence, we look at the successive differences of terms. We
find that a2 − a1 = 5

9 −
1
3 = 2

9 and a3 − a2 = 25
27 −

5
9 = 10

27 . Since we get different numbers,
there is no ‘common difference’ and we have established that the sequence is not arithmetic.
To investigate whether or not it is geometric, we compute the ratios of successive terms. The
first three ratios

a2

a1

=
5
9
1
3

=
5

3
,

a3

a2

=
25
27
5
9

=
5

3
and

a4

a3

=
125
81
25
27

=
5

3

suggest that the sequence is geometric. To prove it, we must show that an+1

an
= r for all n.

an+1

an
=

5(n+1)−1

3n+1

5n−1

3n

=
5n

3n+1
· 3n

5n−1
=

5

3

This sequence is geometric with common ratio r = 5
3 .

2. Again, we have Example 9.1.1 to thank for providing the first four terms of this sequence:
1, −1

3 ,
1
5 and −1

7 . We find b1 − b0 = −4
3 and b2 − b1 = 8

15 . Hence, the sequence is not

arithmetic. To see if it is geometric, we compute b1
b0

= −1
3 and b2

b1
= −3

5 . Since there is no
‘common ratio,’ we conclude the sequence is not geometric, either.

3. As we saw in Example 9.1.1, the sequence {2n− 1}∞n=1 generates the odd numbers: 1, 3, 5, 7, . . ..
Computing the first few differences, we find a2 − a1 = 2, a3 − a2 = 2, and a4 − a3 = 2. This
suggests that the sequence is arithmetic. To verify this, we find

an+1 − an = (2(n+ 1)− 1)− (2n− 1) = 2n+ 2− 1− 2n+ 1 = 2

This establishes that the sequence is arithmetic with common difference d = 2. To see if it is
geometric, we compute a2

a1
= 3 and a3

a2
= 5

3 . Since these ratios are different, we conclude the
sequence is not geometric.

4. We met our last sequence at the beginning of the section. Given that a2 − a1 = −5
4 and

a3−a2 = 15
8 , the sequence is not arithmetic. Computing the first few ratios, however, gives us

a2
a1

= −3
2 , a3

a2
= −3

2 and a4
a3

= −3
2 . Since these are the only terms given to us, we assume that

the pattern of ratios continue in this fashion and conclude that the sequence is geometric.

We are now one step away from determining an explicit formula for the sequence given in (1). We
know that it is a geometric sequence and our next result gives us the explicit formula we require.
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Equation 9.1. Formulas for Arithmetic and Geometric Sequences:

• An arithmetic sequence with first term a and common difference d is given by

an = a+ (n− 1)d, n ≥ 1

• A geometric sequence with first term a and common ratio r 6= 0 is given by

an = arn−1, n ≥ 1

While the formal proofs of the formulas in Equation 9.1 require the techniques set forth in Section
9.3, we attempt to motivate them here. According to Definition 9.2, given an arithmetic sequence
with first term a and common difference d, the way we get from one term to the next is by adding
d. Hence, the terms of the sequence are: a, a+ d, a+ 2d, a+ 3d, . . . . We see that to reach the nth
term, we add d to a exactly (n − 1) times, which is what the formula says. The derivation of the
formula for geometric series follows similarly. Here, we start with a and go from one term to the
next by multiplying by r. We get a, ar, ar2, ar3 and so forth. The nth term results from multiplying
a by r exactly (n− 1) times. We note here that the reason r = 0 is excluded from Equation 9.1 is
to avoid an instance of 00 which is an indeterminant form.4 With Equation 9.1 in place, we finally
have the tools required to find an explicit formula for the nth term of the sequence given in (1).
We know from Example 9.1.2 that it is geometric with common ratio r = −3

2 . The first term is

a = 1
2 so by Equation 9.1 we get an = arn−1 = 1

2

(
−3

2

)n−1
for n ≥ 1. After a touch of simplifying,

we get an = (−3)n−1

2n for n ≥ 1. Note that we can easily check our answer by substituting in values
of n and seeing that the formula generates the sequence given in (1). We leave this to the reader.
Our next example gives us more practice finding patterns.

Example 9.1.3. Find an explicit formula for the nth term of the following sequences.

1. 0.9, 0.09, 0.009, 0.0009, . . .

2.
2

5
, 2,−2

3
,−2

7
, . . .

3. 1,−2

7
,

4

13
,− 8

19
, . . .

Solution.

1. Although this sequence may seem strange, the reader can verify it is actually a geometric
sequence with common ratio r = 0.1 = 1

10 . With a = 0.9 = 9
10 , we get an = 9

10

(
1
10

)n−1
for

n ≥ 0. Simplifying, we get an = 9
10n , n ≥ 1. There is more to this sequence than meets the

eye and we shall return to this example in the next section.

2. As the reader can verify, this sequence is neither arithmetic nor geometric. In an attempt
to find a pattern, we rewrite the second term with a denominator to make all the terms

4See the footnotes on page 181 in Section 3.1 and page 330 of Section 6.1.
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appear as fractions. We have 2
5 ,

2
1 ,−

2
3 ,−

2
7 , . . .. If we associate the negative ‘−’ of the last two

terms with the denominators we get 2
5 ,

2
1 ,

2
−3 ,

2
−7 , . . .. This tells us that we can tentatively

sketch out the formula for the sequence as an = 2
dn

where dn is the sequence of denominators.
Looking at the denominators 5, 1,−3,−7, . . ., we find that they go from one term to the next
by subtracting 4 which is the same as adding −4. This means we have an arithmetic sequence
on our hands. Using Equation 9.1 with a = 5 and d = −4, we get the nth denominator by
the formula dn = 5 + (n− 1)(−4) = 9− 4n for n ≥ 1. Our final answer is an = 2

9−4n , n ≥ 1.

3. The sequence as given is neither arithmetic nor geometric, so we proceed as in the last problem
to try to get patterns individually for the numerator and denominator. Letting cn and dn
denote the sequence of numerators and denominators, respectively, we have an = cn

dn
. After

some experimentation,5 we choose to write the first term as a fraction and associate the
negatives ‘−’ with the numerators. This yields 1

1 ,
−2
7 ,

4
13 ,
−8
19 , . . .. The numerators form the

sequence 1,−2, 4,−8, . . . which is geometric with a = 1 and r = −2, so we get cn = (−2)n−1,
for n ≥ 1. The denominators 1, 7, 13, 19, . . . form an arithmetic sequence with a = 1 and
d = 6. Hence, we get dn = 1 + 6(n − 1) = 6n − 5, for n ≥ 1. We obtain our formula for

an = cn
dn

= (−2)n−1

6n−5 , for n ≥ 1. We leave it to the reader to show that this checks out.

While the last problem in Example 9.1.3 was neither geometric nor arithmetic, it did resolve into
a combination of these two kinds of sequences. If handed the sequence 2, 5, 10, 17, . . ., we would
be hard-pressed to find a formula for an if we restrict our attention to these two archetypes. We
said before that there is no general algorithm for finding the explicit formula for the nth term of
a given sequence, and it is only through experience gained from evaluating sequences from explicit
formulas that we learn to begin to recognize number patterns. The pattern 1, 4, 9, 16, . . . is rather
recognizable as the squares, so the formula an = n2, n ≥ 1 may not be too hard to determine.
With this in mind, it’s possible to see 2, 5, 10, 17, . . . as the sequence 1 + 1, 4 + 1, 9 + 1, 16 + 1, . . .,
so that an = n2 + 1, n ≥ 1. Of course, since we are given only a small sample of the sequence, we
shouldn’t be too disappointed to find out this isn’t the only formula which generates this sequence.
For example, consider the sequence defined by bn = −1

4n
4 + 5

2n
3 − 31

4 n
2 + 25

2 n − 5, n ≥ 1. The
reader is encouraged to verify that it also produces the terms 2, 5, 10, 17. In fact, it can be shown
that given any finite sample of a sequence, there are infinitely many explicit formulas all of which
generate those same finite points. This means that there will be infinitely many correct answers to
some of the exercises in this section.6 Just because your answer doesn’t match ours doesn’t mean
it’s wrong. As always, when in doubt, write your answer out. As long as it produces the same
terms in the same order as what the problem wants, your answer is correct.

We would be remiss to close this section without mention of the utility of sequences in everyday
life. Indeed, sequences play a major role in the Mathematics of Finance, as we have already seen
with Equation 6.2 in Section 6.5. Recall that if we invest P dollars at an annual percentage rate r
and compound the interest n times per year, the formula for Ak, the amount in the account after k

5Here we take ‘experimentation’ to mean a frustrating guess-and-check session.
6For more on this, see When Every Answer is Correct: Why Sequences and Number Patterns Fail the Test by

Professor Don White of Kent State University.

http://www.math.kent.edu/~white/papers/pattern.pdf
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compounding periods, is Ak = P
(
1 + r

n

)k
=
[
P
(
1 + r

n

)] (
1 + r

n

)k−1
, k ≥ 1. We now spot this as a

geometric sequence with first term P
(
1 + r

n

)
and common ratio

(
1 + r

n

)
. In retirement planning,

it is seldom the case that an investor deposits a set amount of money into an account and waits for
it to grow. Usually, additional payments of principal are made at regular intervals and the value
of the investment grows accordingly. This kind of investment is called an annuity and will be
discussed in the next section once we have developed more mathematical machinery.
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9.1.1 Exercises

1. Write out the four terms of the following sequences.

(a) an = 2n − 1, n ≥ 0

(b) dj = (−1)
j(j+1)

2 , j ≥ 1

(c) {5k − 2}∞k=1

(d)
{
n2+1
n+1

}∞
n=0

(e)
{
xn

n2

}∞
n=1

(f)
{

ln(n)
n

}∞
n=1

(g) a1 = 3, an+1 = an − 1, n ≥ 1

(h) d0 = 12, dm = dm-1
100 , m ≥ 1

(i) b1 = 2, bk+1 = 3bk + 1, k ≥ 1

(j) c0 = −2, cj =
cj-1

(j+1)(j+2) , m ≥ 1

(k) a1 = 117, an+1 = 1
an

, n ≥ 1

(l) s0 = 1, sn+1 = xn+1 + sn, n ≥ 0

(m) F0 = 1, F1 = 1, Fn = Fn-1 + Fn-2, n ≥ 2 (This is the famous Fibonacci Sequence )

2. Determine if the following sequences are arithmetic, geometric or neither. If arithmetic, find
the common difference d; if geometric, find the common ratio r.

(a) {3n− 5}∞n=1

(b) an = n2 + 3n+ 2, n ≥ 1

(c) 1
3 , 1

6 , 1
12 , 1

24 , . . .

(d)
{

3
(

1
5

)n−1
}∞
n=1

(e) 17, 5, −7, −19, . . .

(f) 2, 22, 222, 2222, . . .

(g) 0.9, 9, 90, 900, . . .

(h) an = n!
2 , n ≥ 0.

3. Find an explicit formula for the nth term of the following sequences. Use the formulas in
Equation 9.1 as needed.

(a) 3, 5, 7, 9, . . .

(b) 1, −1
2 , 1

4 , −1
8 , . . .

(c) 1, 2
3 , 4

5 , 8
7 , . . .

(d) 1, 2
3 , 1

3 , 4
27 , . . .

(e) 1, 1
4 , 1

9 , 1
16 , . . .

(f) x, −x3

3 , x5

5 , −x7

7 , . . .

(g) 0.9, 0.99, 0.999, 0.9999, . . .

(h) 27, 64, 125, 216, . . .

(i) 1, 0, 1, 0, . . .

4. Find a sequence which is both arithmetic and geometric. (Hint: Start with an = c for all n.)

5. Show that a geometric sequence can be transformed into an arithmetic sequence by taking
the natural logarithm of the terms.

6. Thomas Robert Malthus is credited with saying, “The power of population is indefinitely
greater than the power in the earth to produce subsistence for man. Population, when
unchecked, increases in a geometrical ratio. Subsistence increases only in an arithmetical
ratio. A slight acquaintance with numbers will show the immensity of the first power in
comparison with the second.” (See this webpage for more information.) Discuss this quote
with your classmates from a sequences point of view.

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Malthus
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7. This classic problem involving sequences shows the power of geometric sequences. Suppose
that a wealthy benefactor agrees to give you one penny today and then double the amount
she gives you each day for 30 days. So, for example, you get two pennies on the second day
and four pennies on the third day. How many pennies do you get on the 30th day? What is
the total dollar value of the gift you have received?

8. Research the terms ‘arithmetic mean’ and ‘geometric mean.’ With the help of your classmates,
show that a given term of a arithmetic sequence ak, k ≥ 2 is the arithmetic mean of the
term immediately preceding, ak−1 it and immediately following it, ak+1. State and prove an
analogous result for geometric sequences.

9. Discuss with your classmates how the results of this section might change if we were to
examine sequences of other mathematical things like complex numbers or matrices. Find an
explicit formula for the nth term of the sequence i,−1,−i, 1, i, . . .. List out the first four terms
of the matrix sequences we discussed in Exercise 3 in Section 8.3.
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9.1.2 Answers

1. (a) 0, 1, 3, 7

(b) −1,−1, 1, 1

(c) 3, 8, 13, 18

(d) 1, 1, 5
3 ,

5
2

(e) x, x
2

4 ,
x3

9 ,
x4

16

(f) 0, ln(2)
2 , ln(3)

3 , ln(4)
4

(g) 3, 2, 1, 0

(h) 12, 0.12, 0.0012, 0.000012

(i) 2, 7, 22, 67

(j) −2,−1
3 ,−

1
36 ,−

1
720

(k) 117, 1
117 , 117, 1

117

(l) 1, x+ 1, x2 + x+ 1, x3 + x2 + x+ 1

(m) 1, 1, 2, 3

2. (a) arithmetic, d = 3

(b) neither

(c) geometric, r = 1
2

(d) geometric, r = 1
5

(e) arithmetic, d = −12

(f) neither

(g) geometric, r = 10

(h) neither

3. (a) an = 1 + 2n, n ≥ 1

(b) an =
(
−1

2

)n−1
, n ≥ 1

(c) an = 2n−1

2n−1 , n ≥ 1

(d) an = n
3n−1 , n ≥ 1

(e) an = 1
n2 , n ≥ 1

(f) (−1)n−1x2n−1

2n−1 , n ≥ 1

(g) an = 10n−1
10n , n ≥ 1

(h) an = (n+ 2)3, n ≥ 1

(i) an = 1+(−1)n−1

2 , n ≥ 1
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9.2 Summation Notation

In the previous section, we introduced sequences and now we shall present notation and theorems
concerning the sum of terms of a sequence. We begin with a definition, which, while intimidating,
is meant to make our lives easier.

Definition 9.3. Summation Notation: Given a sequence {an}∞n=k and numbers m and p
satisfying k ≤ m ≤ p, the summation from m to p of the sequence {an} is written

p∑
n=m

an = am + am+1 + . . .+ ap

The variable n is called the index of summation. The number m is called the lower limit of
summation while the number p is called the upper limit of summation.

In English, Definition 9.3 is simply defining a short-hand notation for adding up the terms of the
sequence {an}∞n=k from am through ap. The symbol Σ is the capital Greek letter sigma and is
shorthand for ‘sum’. The index of summation tells us which term to start with and which term
to end with. For example, using the sequence an = 2n − 1 for n ≥ 1, we can write the sum
a3 + a4 + a5 + a6 as

6∑
n=3

(2n− 1) = (2(3)− 1) + (2(4)− 1) + (2(5)− 1) + (2(6)− 1)

= 5 + 7 + 9 + 11
= 32

The index variable is considered a ‘dummy variable’ in the sense that it may be changed to any
letter without affecting the value of the summation. For instance,

6∑
n=3

(2n− 1) =
6∑

k=3

(2k − 1) =
6∑
j=3

(2j − 1)

One place you may encounter summation notation is in mathematical definitions. For example,
summation notation allows us to define polynomials as functions of the form

f(x) =

n∑
k=0

akx
k

for real numbers ak, k = 0, 1, . . . n. The reader is invited to compare this with what is given in
Definition 3.1. Summation notation is particularly useful when talking about matrix operations.
For example, we can write the product of the ith row Ri of a matrix A = [aij ]m×n and the jth

column Cj of a matrix B = [bij ]n×r as

Ri · Cj =

n∑
k=1

aikbkj
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Again, the reader is encouraged to write out the sum and compare it to Definition 8.9. Our next
example gives us practice with this new notation.

Example 9.2.1.

1. Find the following sums.

(a)
4∑

k=1

13

100k
(b)

4∑
n=0

n!

2
(c)

5∑
n=1

(−1)n+1

n
(x− 1)n

2. Write the following sums using summation notation.

(a) 1 + 3 + 5 + . . .+ 117

(b) 1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117

(c) 0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9

Solution.

1. (a) We substitute k = 1 into the formula 13
100k

and add successive terms until we reach k = 4.

4∑
k=1

13

100k
=

13

1001
+

13

1002
+

13

1003
+

13

1004

= 0.13 + 0.0013 + 0.000013 + 0.00000013
= 0.13131313

(b) Proceeding as in (a), we replace every occurrence of n with the values 0 through 4. We
recall the factorials, n! as defined in number Example 9.1.1, number 6 and get:

4∑
n=0

n!

2
=

0!

2
+

1!

2
+

2!

2
+

3!

2
=

4!

2

=
1

2
+

1

2
+

2 · 1
2

+
3 · 2 · 1

2
+

4 · 3 · 2 · 1
2

=
1

2
+

1

2
+ 1 + 3 + 12

= 17

(c) We proceed as before, replacing the index n, but not the variable x, with the values 1
through 5 and adding the resulting terms.
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5∑
n=1

(−1)n+1

n
(x− 1)n =

(−1)1+1

1
(x− 1)1 +

(−1)2+1

2
(x− 1)2 +

(−1)3+1

3
(x− 1)3

+
(−1)1+4

4
(x− 1)4 +

(−1)1+5

5
(x− 1)5

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+

(x− 1)5

5

2. The key to writing these sums with summation notation is to find the pattern of the terms.
To that end, we make good use of the techniques presented in Section 9.1.

(a) The terms of the sum 1, 3, 5, etc., form an arithmetic sequence with first term a = 1
and common difference d = 2. We get a formula for the nth term of the sequence using
Equation 9.1 to get an = 1+(n−1)2 = 2n−1, n ≥ 1. At this stage, we have the formula
for the terms, namely 2n − 1, and the lower limit of the summation, n = 1. To finish
the problem, we need to determine the upper limit of the summation. In other words,
we need to determine which value of n produces the term 117. Setting an = 117, we get
2n− 1 = 117 or n = 59. Our final answer is

1 + 3 + 5 + . . .+ 117 =

59∑
n=1

(2n− 1)

(b) We rewrite all of the terms as fractions, the subtraction as addition, and associate the
negatives ‘−’ with the numerators to get

1

1
+
−1

2
+

1

3
+
−1

4
+ . . .+

1

117

The numerators, 1, −1, etc. can be described by the geometric sequence1 cn = (−1)n−1

for n ≥ 1, while the denominators are given by the arithmetic sequence2 dn = n for

n ≥ 1. Hence, we get the formula an = (−1)n−1

n for our terms, and we find the lower and
upper limits of summation to be n = 1 and n = 117, respectively. Thus

1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117
=

117∑
n=1

(−1)n−1

n

(c) Thanks to Example 9.1.3, we know that one formula for the nth term is an = 9
10n for

n ≥ 1. This gives us a formula for the summation as well as a lower limit of summation.
To determine the upper limit of summation, we note that to produce the n− 1 zeros to
the right of the decimal point before the 9, we need a denominator of 10n. Hence, n is

1This is indeed a geometric sequence with first term a = 1 and common ratio r = −1.
2It is an arithmetic sequence with first term a = 1 and common difference d = 1.
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the upper limit of summation. Since n is used in the limits of the summation, we need
to choose a different letter for the index of summation.3 We choose k and get

0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =
n∑
k=1

9

10k

The following theorem presents some general properties of summation notation. While we shall not
have much need of these properties in Algebra, they do play a great role in Calculus. Moreover,
there is much to be learned by thinking about why the properties hold. We invite the reader to
prove these results. To get started, remember, “When in doubt, write it out!”

Theorem 9.1. Properties of Summation Notation: Suppose {an} and {bn} are sequences
so that the following sums are defined.

•
p∑

n=m

(an ± bn) =

p∑
n=m

an ±
p∑

n=m

bn

•
p∑

n=m

c an = c

p∑
n=m

an, for any real number c.

•
p∑

n=m

an =

j∑
n=m

an +

p∑
n=j+1

an, for any natural number m ≤ j < j + 1 ≤ p.

•
p∑

n=m

an =

p+r∑
n=m+r

an−r, for any whole number r.

We now turn our attention to the sums involving arithmetic and geometric sequences. Given an
arithmetic sequence ak = a+ (k − 1)d for k ≥ 1, we let S denote the sum of the first n terms. To
derive a formula for S, we write it out in two different ways

S = a + (a+ d) + . . . + (a+ (n− 2)d) + (a+ (n− 1)d)
S = (a+ (n− 1)d) + (a+ (n− 2)d) + . . . + (a+ d) + a

If we add these two equations and combine the terms which are aligned vertically, we get

2S = (2a+ (n− 1)d) + (2a+ (n− 1)d) + . . .+ (2a+ (n− 1)d) + (2a+ (n− 1)d)

The right hand side of this equation contains n terms, all of which are equal to (2a+ (n− 1)d) so
we get 2S = n(2a+ (n− 1)d). Dividing both sides of this equation by 2, we obtain the formula

S =
n

2
(2a+ (n− 1)d)

3To see why, try writing the summation using ‘n’ as the index.
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If we rewrite the quantity 2a+ (n− 1)d as a+ (a+ (n− 1)d) = a1 + an, we get the formula

S = n

(
a1 + an

2

)
A helpful way to remember this last formula is to recognize that we have expressed the sum as the
product of the number of terms n and the average of the first and nth terms.

To derive the formula for the geometric sum, we start with a geometric sequence ak = ark−1, k ≥ 1,
and let S once again denote the sum of the first n terms. Comparing S and rS, we get

S = a + ar + ar2 + . . . + arn−2 + arn−1

rS = ar + ar2 + . . . + arn−2 + arn−1 + arn

Subtracting the second equation from the first forces all of the terms except a and arn to cancel
out and we get S− rS = a− arn. Factoring, we get S(1− r) = a (1− rn). Assuming r 6= 1, we can
divide both sides by the quantity (1− r) to obtain

S = a

(
1− rn

1− r

)
If we distribute a through the numerator, we get a− arn = a1 − an+1 which yields the formula

S =
a1 − an+1

1− r
In the case when r = 1, we get the formula

S = a+ a+ . . .+ a︸ ︷︷ ︸
n times

= na

Our results are summarized below.

Equation 9.2. Sums of Arithmetic and Geometric Sequences:

• The sum S of the first n terms of an arithmetic sequence ak = a+ (k − 1)d for k ≥ 1 is

S =
n∑
k=1

ak = n

(
a1 + an

2

)
=
n

2
(2a+ (n− 1)d)

• The sum S of the first n terms of a geometric sequence ak = ark−1 for k ≥ 1 is

1. S =

n∑
k=1

ak =
a1 − an+1

1− r
= a

(
1− rn

1− r

)
, if r 6= 1.

2. S =
n∑
k=1

ak =
n∑
k=1

a = na, if r = 1.
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While we have made an honest effort to derive the formulas in Equation 9.2, formal proofs require
the machinery in Section 9.3. An application of the arithmetic sum formula which proves useful
in Calculus results in formula for the sum of the first n natural numbers. The natural numbers
themselves are a sequence4 1, 2, 3, . . . which is arithmetic with a = d = 1. Applying Equation 9.2,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2

So, for example, the sum of the first 100 natural numbers is 100(101)
2 = 5050.5

An important application of the geometric sum formula is the investment plan called an annuity.
Annuities differ from the kind of investments we studied in Section 6.5 in that payments are
deposited into the account on an on-going basis, and this complicates the mathematics a little.6

Suppose you have an account with annual interest rate r which is compounded n times per year.
We let i = r

n denote the interest rate per period. Suppose we wish to make ongoing deposits of P
dollars at the end of each compounding period. Let Ak denote the amount in the account after k
compounding periods. Then A1 = P , because we have made our first deposit at the end of the first
compounding period and no interest has been earned. During the second compounding period, we
earn interest on A1 so that our initial investment has grown to A1(1 + i) = P (1 + i) in accordance
with Equation 6.1. When we add our second payment at the end of the second period, we get

A2 = A1(1 + i) + P = P (1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
The reason for factoring out the P (1 + i) will become apparent in short order. During the third
compounding period, we earn interest on A2 which then grows to A2(1 + i). We add our third
payment at the end of the third compounding period to obtain

A3 = A2(1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
(1 + i) + P = P (1 + i)2

(
1 +

1

1 + i
+

1

(1 + i)2

)
During the fourth compounding period, A3 grows to A3(1+i), and when we add the fourth payment,
we factor out P (1 + i)3 to get

A4 = P (1 + i)3

(
1 +

1

1 + i
+

1

(1 + i)2
+

1

(1 + i)3

)
This pattern continues so that at the end of the kth compounding, we get

Ak = P (1 + i)k−1

(
1 +

1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1

)
4This is the identity function on the natural numbers!
5There is an interesting anecdote which says that the famous mathematician Carl Friedrich Gauss was given this

problem in primary school and devised a very clever solution.
6The reader may wish to re-read the discussion on compound interest in Section 6.5 before proceeding.

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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The sum in the parentheses above is the sum of the first k terms of a geometric sequence with
a = 1 and r = 1

1+i . Using Equation 9.2, we get

1 +
1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1
= 1

1− 1

(1 + i)k

1− 1

1 + i

 =
(1 + i)

(
1− (1 + i)−k

)
i

Hence, we get

Ak = P (1 + i)k−1

(
(1 + i)

(
1− (1 + i)−k

)
i

)
=
P
(
(1 + i)k − 1

)
i

If we let t be the number of years this investment strategy is followed, then k = nt, and we get the
formula for the future value of an ordinary annuity.

Equation 9.3. Future Value of an Ordinary Annuity: Suppose an annuity offers an annual
interest rate r compounded n times per year. Let i = r

n be the interest rate per compounding
period. If a deposit P is made at the end of each compounding period, the amount A in the
account after t years is given by

A =
P
(
(1 + i)nt − 1

)
i

The reader is encouraged to substitute i = r
n into Equation 9.3 and simplify. Some familiar

equations arise which are cause for pause and meditation. One last note: if the deposit P is made
a the beginning of the compounding period instead of at the end, the annuity is called an annuity-
due. We leave the derivation of the formula for the future value of an annuity-due as an exercise
for the reader.

Example 9.2.2. An ordinary annuity offers a 6% annual interest rate, compounded monthly.

1. If monthly payments of $50 are made, find the value of the annuity in 30 years.

2. How many years will it take for the annuity to grow to $100,000?

Solution.

1. We have r = 0.06 and n = 12 so that i = r
n = 0.06

12 = 0.005. With P = 50 and t = 30,

A =
50
(
(1 + 0.005)(12)(30) − 1

)
0.005

≈ 50225.75

Our final answer is $50,225.75.
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2. To find how long it will take for the annuity to grow to $100,000, we set A = 100000 and
solve for t. We isolate the exponential and take the natural logarithm of both sides of the
equation.

100000 =
50
(
(1 + 0.005)12t − 1

)
0.005

10 = (1.005)12t − 1

(1.005)12t = 11

ln
(
(1.005)12t

)
= ln(11)

12t ln(1.005) = ln(11)

t = ln(11)
12 ln(1.005) ≈ 40.06

This means that it takes just over 40 years for the investment to grow to $100,000. Comparing
this with our answer to part 1, we see that in just 10 additional years, the value of the annuity
nearly doubles. This is a lesson worth remembering.

We close this section with a peek into Calculus by considering infinite sums, called series. Consider
the number 0.9. We can write this number as

0.9 = 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009 + . . .

From Example 9.2.1, we know we can write the sum of the first n of these terms as

0. 9 · · · 9︸ ︷︷ ︸
n nines

= .9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =
n∑
k=1

9

10k

Using Equation 9.2, we have

n∑
k=1

9

10k
=

9

10

1− 1

10n+1

1− 1

10

 = 1− 1

10n+1

It stands to reason that 0.9 is the same value of 1− 1
10n+1 as n→∞. Our knowledge of exponential

expressions from Section 6.1 tells us that 1
10n+1 → 0 as n → ∞, so 1 − 1

10n+1 → 1. We have
just argued that 0.9 = 1, which may cause some distress for some readers.7 Any non-terminating
decimal can be thought of as an infinite sum whose denominators are the powers of 10, so the
phenomenon of adding up infinitely many terms and arriving at a finite number is not as foreign
of a concept as it may appear. We end this section with a theorem concerning geometric series.

7To make this more palatable, it is usually accepted that 0.3 = 1
3

so that 0.9 = 3
(
0.3
)

= 3
(

1
3

)
= 1. Feel better?
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Theorem 9.2. Geometric Series: Given the sequence ak = ark−1 for k ≥ 1, where |r| < 1,

a+ ar + ar2 + . . . =
∞∑
k=1

ark−1 =
a

1− r

If |r| ≥ 1, the sum a+ ar + ar2 + . . . is not defined.

The justification of the result in Theorem 9.2 comes from taking the formula in Equation 9.2 for the
sum of the first n terms of a geometric sequence and examining the formula as n→∞. Assuming
|r| < 1 means −1 < r < 1, so rn → 0 as n→∞. Hence as n→∞,

n∑
k=1

ark−1 = a

(
1− rn

1− r

)
→ a

1− r

As to what goes wrong when |r| ≥ 1, we leave that to Calculus as well, but will explore some cases
in the exercises.
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9.2.1 Exercises

1. Find the following sums.

(a)

9∑
g=4

(5g + 3)

(b)
8∑

k=3

1

k

(c)

5∑
j=0

2j

(d)
2∑

k=0

(3k − 5)xk

(e)

4∑
i=1

1

4
(i2 + 1)

(f)

100∑
n=1

(−1)n

(g)

5∑
n=1

(n+ 1)!

n!

(h)
3∑
j=1

5!

j! (5− j)!

2. Rewrite the sum using summation notation.

(a) 8 + 11 + 14 + 17 + 20

(b) 1− 2 + 3− 4 + 5− 6 + 7− 8

(c) x− x3

3
+
x5

5
− x7

7
(d) 1 + 2 + 4 + · · ·+ 229

(e) 2 + 3
2 + 4

3 + 5
4 + 6

5

(f) − ln(3) + ln(4)− ln(5) + · · ·+ ln(20)

(g) 1− 1
4 + 1

9 −
1
16 + 1

25 −
1
36

(h) 1
2(x−5)+ 1

4(x−5)2+ 1
6(x−5)3+ 1

8(x−5)4

3. Find the sum of the first 10 terms of the following sequences.

(a) an = 3 + 5n (b) bn =
(

1
2

)n
(c) cn = −2n+

(
5
3

)n
4. Express the following repeating decimals as a fraction of integers.

(a) 0.7 (b) 0.13 (c) 10.159 (d) −5.867

5. If monthly payments of $300 are made to an ordinary annuity with an APR of 2.5% com-
pounded monthly what is the value of the annuity after 17 years?

6. Prove the properties listed in Theorem 9.1.

7. Show that the formula for the future value of an annuity due is

A = P (1 + i)

[
(1 + i)nt − 1

i

]
8. Discuss with your classmates the problems which arise in trying to find the sum of the

following geometric series. When in doubt, write them out!

(a)
∞∑
k=1

2k−1 (b)

∞∑
k=1

(1.0001)k−1 (c)

∞∑
k=1

(−1)k−1
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9.2.2 Answers

1. (a) 213

(b) 341
280

(c) 63

(d) −5− 2x+ x2

(e) 17
2

(f) 0

(g) 20

(h) 25

2. (a)

5∑
k=1

(3k + 5)

(b)

8∑
k=1

(−1)k−1k

(c)

4∑
k=1

(−1)k−1 x

2k − 1

(d)

29∑
k=1

2k−1

(e)

5∑
k=1

k + 1

k

(f)

20∑
k=3

(−1)k ln(k)

(g)

6∑
k=1

(−1)k−1

k2

(h)

4∑
k=1

1

2k
(x− 5)k

3. (a) 305 (b)
1023

1024
(c)

17771050

59049

4. (a)
7

9

(b)
13

99

(c)
3383

333

(d) −5809

990

5. $76,163.67
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9.3 Mathematical Induction

The Chinese philosopher Confucius is credited with the saying, “A journey of a thousand miles
begins with a single step.” In many ways, this is the central theme of this section. Here we introduce
a method of proof, Mathematical Induction, which allows us to prove many of the formulas we have
merely motivated in Sections 9.1 and 9.2 by starting with just a single step. A good example is
the formula for arithmetic sequences we touted in Equation 9.1. Arithmetic sequences are defined
recursively, starting with a1 = a and then an+1 = an + d for n ≥ 1. This tells us that we start the
sequence with a and we go from one term to the next by successively adding d. In symbols,

a, a+ d, a+ 2d, a+ 3d, a+ 4d+ . . .

The pattern suggested here is that to reach the nth term, we start with a and add d to it exactly
n− 1 times, which lead us to our formula an = a+ (n− 1)d for n ≥ 1. But how do we prove this
to be the case? We have the following.

The Principle of Mathematical Induction (PMI): Suppose P (n) is a sentence involving the
natural number n.

IF

1. P (1) is true and

2. whenever P (k) is true, it follows that P (k + 1) is also true

THEN the sentence P (n) is true for all natural numbers n.

The Principle of Mathematical Induction, or PMI for short, is exactly that - a principle.1 It is a
property of the natural numbers we either choose to accept or reject. In English, it says that if we
want to prove that a formula works for all natural numbers n, we start by showing it is true for
n = 1 (the ‘base step’) and then show that if it is true for a generic natural number k, it must be
true for the next natural number, k + 1 (the ‘inductive step’). The notation P (n) acts just like
function notation. For example, if P (n) is the sentence (formula) ‘n2 + 1 = 3’, then P (1) would
be ‘12 + 1 = 3’, which is false. The construction P (k + 1) would be ‘(k + 1)2 + 1 = 3’. As usual,
this new concept is best illustrated with an example. Returning to our quest to prove the formula
for an arithmetic sequence, we first identify P (n) as the formula an = a+ (n− 1)d. To prove this
formula is valid for all natural numbers n, we need to do two things. First, we need to establish
that P (1) is true. In other words, is it true that a1 = a + (1 − 1)d? The answer is yes, since this
simplifies to a1 = a, which is part of the definition of the arithmetic sequence. The second thing
we need to show is that whenever P (k) is true, it follows that P (k+ 1) is true. In other words, we
assume P (k) is true (this is called the ‘induction hypothesis’) and deduce that P (k + 1) is also
true. Assuming P (k) to be true seems to invite disaster - after all, isn’t this essentially what we’re
trying to prove in the first place? To help explain this step a little better, we show how this works
for specific values of n. We’ve already established P (1) is true, and we now want to show that P (2)

1Another word for this you may have seen is ‘axiom.’

http://en.wikipedia.org/wiki/Confucius
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is true. Thus we need to show that a2 = a+(2−1)d. Since P (1) is true, we have a1 = a, and by the
definition of an arithmetic sequence, a2 = a1 +d = a+d = a+(2−1)d. So P (2) is true. We now use
the fact that P (2) is true to show that P (3) is true. Using the fact that a2 = a+ (2− 1)d, we show
a3 = a+(3−1)d. Since a3 = a2 +d, we get a3 = (a+(2−1)d)+d = a+2d = a+(3−1)d, so we have
shown P (3) is true. Similarly, we can use the fact that P (3) is true to show that P (4) is true, and so
forth. In general, if P (k) is true (i.e., ak = a+(k−1)d) we set out to show that P (k+1) is true (i.e.,
ak+1 = a+ ((k+ 1)− 1)d). Assuming ak = a+ (k− 1)d, we have by the definition of an arithmetic
sequence that ak+1 = ak + d so we get ak+1 = (a + (k − 1)d) + d = a + kd = a + ((k + 1) − 1)d.
Hence, P (k + 1) is true.

In essence, by showing that P (k + 1) must always be true when P (k) is true, we are showing that
the formula P (1) can be used to get the formula P (2), which in turn can be used to derive the
formula P (3), which in turn can be used to establish the formula P (4), and so on. Thus as long
as P (k) is true for some natural number k, P (n) is true for all of the natural numbers n which
follow k. Coupling this with the fact P (1) is true, we have established P (k) is true for all natural
numbers which follow n = 1, in other words, all natural numbers n. One might liken Mathematical
Induction to a repetitive process like climbing stairs.2 If you are sure that (1) you can get on the
stairs (the base case) and (2) you can climb from any one step to the next step (the inductive step),
then presumably you can climb the entire staircase.3 We get some more practice with induction in
the following example.

Example 9.3.1. Prove the following assertions using the Principle of Mathematical Induction.

1. The sum formula for arithmetic sequences:

n∑
j=1

(a+ (j − 1)d) =
n

2
(2a+ (n− 1)d).

2. For a complex number z, (z)n = zn for n ≥ 1.

3. 3n > 100n for n > 5.

4. Let A be an n× n matrix and let A′ be the matrix obtained by replacing a row R of A with
cR for some real number c. Use the definition of determinant to show det(A′) = cdet(A).

Solution.

1. We set P (n) to be the equation we are asked to prove. For n = 1, we compare both sides of
the equation given in P (n)

1∑
j=1

(a+ (j − 1)d)
?
=

1

2
(2a+ (1− 1)d)

a+ (1− 1)d
?
=

1

2
(2a)

a = aX

2Falling dominoes is the most widely used metaphor in the mainstream College Algebra books.
3This is how Carl climbed the stairs in the Cologne Cathedral. Well, that, and encouragement from Kai.
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This shows the base case P (1) is true. Next we assume P (k) is true, that is, we assume

k∑
j=1

(a+ (j − 1)d) =
k

2
(2a+ (k − 1)d)

and attempt to use this to show P (k + 1) is true. Namely, we must show

k+1∑
j=1

(a+ (j − 1)d) =
k + 1

2
(2a+ (k + 1− 1)d)

To see how we can use P (k) in this case to prove P (k+ 1), we note that the sum in P (k+ 1)
is the sum of the first k + 1 terms of the sequence ak = a+ (k − 1)d for k ≥ 1 while the sum
in P (k) is the sum of the first k terms. We compare both side of the equation in P (k + 1).

k+1∑
j=1

(a+ (j − 1)d)︸ ︷︷ ︸
summing the first k + 1 terms

?
=

k + 1

2
(2a+ (k + 1− 1)d)

k∑
j=1

(a+ (j − 1)d)︸ ︷︷ ︸
summing the first k terms

+ (a+ (k + 1− 1)d)︸ ︷︷ ︸
adding the (k + 1)st term

?
=

k + 1

2
(2a+ kd)

k

2
(2a+ (k − 1)d)︸ ︷︷ ︸

Using P (k)

+(a+ kd)
?
=

(k + 1)(2a+ kd)

2

k(2a+ (k − 1)d) + 2(a+ kd)

2

?
=

2ka+ k2d+ 2a+ kd

2

2ka+ 2a+ k2d+ kd

2
=

2ka+ 2a+ k2d+ kd

2
X

Since all of our steps on both sides of the string of equations are reversible, we conclude that
the two sides of the equation are equivalent and hence, P (k + 1) is true. By the Principle of
Mathematical Induction, we have that P (n) is true for all natural numbers n.

2. We let P (n) be the formula (z)n = zn. The base case P (1) is (z)1 = z1, which reduces to

z = z which is true. We now assume P (k) is true, that is, we assume (z)k = zk and attempt
to show that P (k+1) is true. Since (z)k+1 = (z)k z, we can use the induction hypothesis and
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write (z)k = zk. Hence, (z)k+1 = (z)k z = zk z. We now use the product rule for conjugates4

to write zk z = zkz = zk+1. This establishes (z)k+1 = zk+1, so that P (k + 1) is true. Hence,
by the Principle of Mathematical Induction, (z)n = zn for all n ≥ 1.

3. The first wrinkle we encounter in this problem is that we are asked to prove this formula for
n > 5 instead of n ≥ 1. Since n is a natural number, this means our base step occurs at
n = 6. We can still use the PMI in this case, but our conclusion will be that the formula is
valid for all n ≥ 6. We let P (n) be the inequality 3n > 100n, and check that P (6) is true.
Comparing 36 = 729 and 100(6) = 600, we see 36 > 100(6) as required. Next, we assume
that P (k) is true, that is we assume 3k > 100k. We need to show that P (k + 1) is true, that
is, we need to show 3k+1 > 100(k + 1). Since 3k+1 = 3 · 3k, the induction hypothesis gives
3k+1 = 3 · 3k > 3(100k) = 300k. We are done if we can show 300k > 100(k + 1) for k ≥ 6.
Solving 300k > 100(k + 1) we get k > 1

2 . Since k ≥ 6, we know this is true. Putting all of
this together, we have 3k+1 = 3 · 3k > 3(100k) = 300k > 100(k + 1), and hence P (k + 1) is
true. By induction, 3n > 100n for all n ≥ 6.

4. To prove this determinant property, we use induction on n, where we take P (n) to be that
the property we wish to prove is true for all n×n matrices. For the base case, we note that if
A is a 1× 1 matrix, then A = [a] so A′ = [ca]. By definition, det(A) = a and det(A′) = ca so
we have det(A′) = cdet(A) as required. Now suppose that the property we wish to prove is
true for all k×k matrices. Let A be a (k+1)× (k+1) matrix. We have two cases, depending
on whether or not the row R being replaced is the first row of A.

Case 1: The row R being replaced is the first row of A. By definition,

det(A′) =
n∑
p=1

a′1pC
′
1p

where the 1p cofactor of A′ is C ′1p = (−1)(1+p) det
(
A′1p
)

and A′1p is the k× k matrix obtained
by deleting the 1st row and pth column of A′.5 Since the first row of A′ is c times the first
row of A, we have a′1p = c a1p. In addition, since the remaining rows of A′ are identical to
those of A, A′1p = A1p. (To obtain these matrices, the first row of A′ is removed.) Hence
det
(
A′1p
)

= det (A1p), so that C ′1p = C1p. As a result, we get

det(A′) =
n∑
p=1

a′1pC
′
1p =

n∑
p=1

c a1pC1p = c
n∑
p=1

a1pC1p = c det(A),

as required. Hence, P (k + 1) is true in this case, which means the result is true in this case
for all natural numbers n ≥ 1. (You’ll note that we did not use the induction hypothesis at
all in this case. It is possible to restructure the proof so that induction is only used where

4See Exercise 6 in Section 3.4.
5See Section 8.5 for a review of this notation.
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it is needed. While mathematically more elegant, it is less intuitive, and we stand by our
approach because of its pedagogical value.)

Case 2: The row R being replaced is the not the first row of A. By definition,

det(A′) =
n∑
p=1

a′1pC
′
1p,

where in this case, a′1p = a1p, since the first rows of A and A′ are the same. The matrices
A′1p and A1p, on the other hand, are different but in a very predictable way − the row in A′1p
which corresponds to the row cR in A′ is exactly c times the row in A1p which corresponds to
the row R in A. In other words, A′1p and A1p are k × k matrices which satisfy the induction
hypothesis. Hence, we know det

(
A′1p
)

= cdet (A1p) and C ′1p = cC1p. We get

det(A′) =

n∑
p=1

a′1pC
′
1p =

n∑
p=1

a1pcC1p = c
n∑
p=1

a1pC1p = cdet(A),

which establishes P (k + 1) to be true. Hence by induction, we have shown that the result
holds in this case for n ≥ 1 and we are done.

While we have used the Principle of Mathematical Induction to prove some of the formulas we have
merely motivated in the text, our main use of this result comes in Section 9.4 to prove the celebrated
Binomial Theorem. The ardent Mathematics student will no doubt see the PMI in many courses
yet to come. Sometimes it is explicitly stated and sometimes it remains hidden in the background.
If ever you see a property stated as being true ‘for all natural numbers n’, it’s a solid bet that the
formal proof requires the Principle of Mathematical Induction.
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9.3.1 Exercises

1. Prove the following assertions using the Principle of Mathematical Induction.

(a)
n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6

(b)
n∑
j=1

j3 =
n2(n+ 1)2

4

(c) 2n > 500n for n > 12

(d) 3n ≥ n3 for n ≥ 4

(e) Use the Product Rule for Absolute Value to show |xn| = |x|n for all real numbers x and
all natural numbers n ≥ 1

(f) Use the Product Rule for Logarithms to show log (xn) = n log(x) for all real numbers
x > 0 and all natural numbers n ≥ 1.

(g)

[
a 0
0 b

]n
=

[
an 0
0 bn

]
for n ≥ 1.

2. Prove Equations 9.1 and 9.2 for the case of geometric sequences. That is:

(a) For the sequence a1 = a, an+1 = ran, n ≥ 1, prove an = arn−1, n ≥ 1.

(b)
n∑
j=1

arn−1 = a

(
1− rn

1− r

)
, if r 6= 1,

n∑
j=1

arn−1 = na, if r = 1.

3. Prove that the determinant of a lower triangular matrix is the product of the entries on the
main diagonal. (See Exercise 5 in Section 8.3.) Use this result to then show det (In) = 1
where In is the n× n identity matrix.

4. Discuss the classic ‘paradox’ All Horses are the Same Color problem with your classmates.

http://en.wikipedia.org/wiki/All_horses_are_the_same_color
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9.3.2 Selected Answers

1. (a) Let P (n) be the sentence
n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
. For the base case, n = 1, we get

1∑
j=1

j2 ?
=

(1)(1 + 1)(2(1) + 1)

6

12 = 1X

We now assume P (k) is true and use it to show P (k + 1) is true. We have

k+1∑
j=1

j2 ?
=

(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

k∑
j=1

j2 + (k + 1)2 ?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1)

6︸ ︷︷ ︸
Using P (k)

+(k + 1)2 ?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1)

6
+

6(k + 1)2

6

?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1) + 6(k + 1)2

6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)(k(2k + 1) + 6(k + 1))

6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)
(
2k2 + 7k + 6

)
6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)(k + 2)(2k + 3)

6
=

(k + 1)(k + 2)(2k + 3)

6
X

By induction,

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
is true for all natural numbers n ≥ 1.

(d) Let P (n) be the sentence 3n > n3. Our base case is n = 4 and we check 34 = 81 and
43 = 64 so that 34 > 43 as required. We now assume P (k) is true, that is 3k > k3, and
try to show P (k + 1) is true. We note that 3k+1 = 3 · 3k > 3k3 and so we are done if
we can show 3k3 > (k + 1)3 for k ≥ 4. We can solve the inequality 3x3 > (x+ 1)3 using
the techniques of Section 5.3, and doing so gives us x > 1

3√3−1
≈ 2.26. Hence, for k ≥ 4,

3k+1 = 3 · 3k > 3k3 > (k+ 1)3 so that 3k+1 > (k+ 1)3. By induction, 3n > n3 is true for
all natural numbers n ≥ 4.
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(f) Let P (n) be the sentence log (xn) = n log(x). For the duration of this argument, we
assume x > 0. The base case P (1) amounts checking that log

(
x1
)

= 1 log(x) which
is clearly true. Next we assume P (k) is true, that is log

(
xk
)

= k log(x) and try to
show P (k+ 1) is true. Using the Product Rule for Logarithms along with the induction
hypothesis, we get

log
(
xk+1

)
= log

(
xk · x

)
= log

(
xk
)

+ log(x) = k log(x) + log(x) = (k + 1) log(x)

Hence, log
(
xk+1

)
= (k+ 1) log(x). By induction log (xn) = n log(x) is true for all x > 0

and all natural numbers n ≥ 1.

3. Let A be an n×n lower triangular matrix. We proceed to prove the det(A) is the product of
the entries along the main diagonal by inducting on n. For n = 1, A = [a] and det(A) = a,
so the result is (trivially) true. Next suppose the result is true for k × k lower triangular
matrices. Let A be a (k + 1)× (k + 1) lower triangular matrix. Expanding det(A) along the
first row, we have

det(A) =
n∑
p=1

a1pC1p

Since a1p = 0 for 2 ≤ p ≤ k + 1, this simplifies det(A) = a11C11. By definition, we know that
C11 = (−1)1+1 det (A11) = det (A11) where A11 is k × k matrix obtained by deleting the first
row and first column of A. Since A is lower triangular, so is A11 and, as such, the induction
hypothesis applies to A11. In other words, det (A11) is the product of the entries along A11’s
main diagonal. Now, the entries on the main diagonal of A11 are the entries a22, a33, . . . ,
a(k+1)(k+1) from the main diagonal of A. Hence,

det(A) = a11 det (A11) = a11

(
a22a33 · · · a(k+1)(k+1)

)
= a11a22a33 · · · a(k+1)(k+1)

We have det(A) is the product of the entries along its main diagonal. This shows P (k+ 1) is
true, and, hence, by induction, the result holds for all n× n upper triangular matrices. The
n× n identity matrix In is a lower triangular matrix whose main diagonal consists of all 1’s.
Hence, det (In) = 1, as required.
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9.4 The Binomial Theorem

In this section, we aim to prove the celebrated Binomial Theorem. Simply stated, the Binomial
Theorem is a formula for the expansion of quantities (a+b)n for natural numbers n. In Elementary
and Intermediate Algebra, you should have seen specific instances of the formula, namely

(a+ b)1 = a+ b
(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

If we wanted the expansion for (a+b)4 we would write (a+b)4 = (a+b)(a+b)3 and use the formula
that we have for (a+b)3 to get (a+b)4 = (a+b)

(
a3 + 3a2b+ 3ab2 + b3

)
= a4+4a3b+6a2b2+4ab3+b4.

Generalizing this a bit, we see that if we have a formula for (a + b)k, we can obtain a formula for
(a+ b)k+1 by rewriting the latter as (a+ b)k+1 = (a+ b)(a+ b)k. Clearly this means Mathematical
Induction plays a major role in the proof of the Binomial Theorem.1 Before we can state the
theorem we need to revisit the sequence of factorials which were introduced in Example 9.1.1
number 6 in Section 9.1.

Definition 9.4. Factorials: For a whole number n, n factorial, denoted n!, is the term fn of
the sequence f0 = 1, fn = n · fn−1, n ≥ 1.

Recall this means 0! = 1 and n! = n(n − 1)! for n ≥ 1. Using the recursive definition, we get:
1! = 1 · 0! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 · 1 = 6 and 4! = 4 · 3! = 4 · 3 · 2 · 1 = 24.
Informally, n! = n · (n − 1) · (n − 2) · · · 2 · 1 with 0! = 1 as our ‘base case.’ Our first example
familiarizes us with some of the basic computations involving factorials.

Example 9.4.1.

1. Simplify the following expressions.

(a)
3! 2!

0!
(b)

7!

5!
(c)

1000!

998! 2!
(d)

(k + 2)!

(k − 1)!
, k ≥ 1

2. Prove n! > 3n for all n ≥ 7.

Solution:

1. We keep in mind the mantra, “When in doubt, write it out!” as we simplify the following.

(a) We have been programmed to react with alarm to the presence of a 0 in the denominator,
but in this case 0! = 1, so the fraction is defined after all. As for the numerator,
3! = 3 · 2 · 1 = 6 and 2! = 2 · 1 = 2, so we have 3! 2!

0! = (6)(2)
1 = 12.

1It’s pretty much the reason Section 9.3 is in the book.
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(b) We have 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 while 5! = 5 · 4 · 3 · 2 · 1 = 120. Dividing, we get
7!
5! = 5040

120 = 42. While this is correct, we note that we could have saved ourselves some
of time had we proceeded as follows

7!

5!
=

7 · 6 · 5 · 4 · 3 · 2 · 1
5 · 4 · 3 · 2 · 1

=
7 · 6 · �5 · �4 · �3 · �2 · �1
�5 · �4 · �3 · �2 · �1

= 7 · 6 = 42

In fact, should we want to fully exploit the recursive nature of the factorial, we can write

7!

5!
=

7 · 6 · 5!

5!
=

7 · 6 ·��5!

��5!
= 42

(c) Keeping in mind the lesson we learned from the previous problem, we have

1000!

998! 2!
=

1000 · 999 · 998!

998! · 2!
=

1000 · 999 ·���998!

���998! · 2!
=

999000

2
= 499500

(d) This problem continues the theme which we have seen in the previous two problems.
We first note that since k + 2 is larger than k − 1, (k + 2)! contains all of the factors
of (k − 1)! and as a result we can get the (k − 1)! to cancel from the denominator. To
see this, we begin by writing out (k+ 2)! starting with (k+ 2) and multiplying it by the
numbers which precede it until we reach (k − 1): (k + 2)! = (k + 2)(k + 1)(k)(k − 1)!.
As a result, we have

(k + 2)!

(k − 1)!
=

(k + 2)(k + 1)(k)(k − 1)!

(k − 1)!
=

(k + 2)(k + 1)(k)���
�(k − 1)!

���
�(k − 1)!

= k(k + 1)(k + 2)

The stipulation k ≥ 1 is there to ensure that all of the factorials involved are defined.

2. We proceed by induction and let P (n) be the inequality n! > 3n. The base case here is n = 7
and we see that 7! = 5040 is larger than 37 = 2187, so P (7) is true. Next, we assume that P (k)
is true, that is, we assume k! > 3k and attempt to show P (k+1) follows. Using the properties
of the factorial, we have (k + 1)! = (k + 1)k! and since k! > 3k, we have (k + 1)! > (k + 1)3k.
Since k ≥ 7, k + 1 ≥ 8, so (k + 1)3k ≥ 8 · 3k > 3 · 3k = 3k+1. Putting all of this together, we
have (k + 1)! = (k + 1)k! > (k + 1)3k > 3k+1 which shows P (k + 1) is true. By the Principle
of Mathematical Induction, we have n! > 3n for all n ≥ 7.

Of all of the mathematical animals we have discussed in the text, factorials grow most quickly. In
problem 2 of Example 9.4.1, we proved that n! overtakes 3n at n = 7. ‘Overtakes’ may be too
polite a word, since n! thoroughly trounces 3n for n ≥ 7, as any reasonable set of data will show.
It can be shown that for any real number x > 0, not only does n! eventually overtake xn, but the
ratio xn

n! → 0 as n→∞.2

Applications of factorials in the wild often involve counting arrangements. For example, if you have
fifty songs on your mp3 player and wish arrange these songs in a playlist in which the order of the

2This fact is far more important than you could ever possibly imagine.
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songs matters, it turns out that there are 50! different possible playlists. If you wish to select only
ten of the songs to create a playlist, then there are 50!

40! such playlists. If, on the other hand, you just
want to select ten song files out of the fifty to put on a flash memory card so that now the order
no longer matters, there are 50!

40!10! ways to achieve this.3 While some of these ideas are explored
in the Exercises, the authors encourage you to take courses such as Finite Mathematics, Discrete
Mathematics and Statistics. We introduce these concepts here because this is how the factorials
make their way into the Binomial Theorem, as our next definition indicates.

Definition 9.5. Binomial Coefficients: Given two whole numbers n and j with n ≥ j, the

binomial coefficient

(
n

j

)
(read, n choose j) is the whole number given by(

n

j

)
=

n!

j!(n− j)!

The name ‘binomial coefficient’ will be justified shortly. For now, we can physically interpret(
n
j

)
as the number of ways to select j items from n items where the order of the items selected is

unimportant. For example, suppose you won two free tickets to a special screening of the latest
Hollywood blockbuster and have five good friends each of whom would love to accompany you to
the movies. There are

(
5
2

)
ways to choose who goes with you. Applying Definition 9.5, we get

(
5

2

)
=

5!

2!(5− 2)!
=

5!

2!3!
=

5 · 4
2

= 10

So there are 10 different ways to distribute those two tickets among five friends. (Some will see it
as 10 ways to decide which three friends have to stay home.) The reader is encouraged to verify
this by actually taking the time to list all of the possibilities.

We now state anf prove a theorem which is crucial to the proof of the Binomial Theorem.

Theorem 9.3. For natural numbers n and j with n ≥ j,(
n

j − 1

)
+

(
n

j

)
=

(
n+ 1

j

)
The proof of Theorem 9.3 is purely computational and uses the definition of binomial coefficients,
the recursive property of factorials and common denominators.

3For reference,

50! = 30414093201713378043612608166064768844377641568960512000000000000,
50!

40!
= 37276043023296000, and

50!

40!10!
= 10272278170
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(
n

j − 1

)
+

(
n

j

)
=

n!

(j − 1)!(n− (j − 1))!
+

n!

j!(n− j)!

=
n!

(j − 1)!(n− j + 1)!
+

n!

j!(n− j)!

=
n!

(j − 1)!(n− j + 1)(n− j)!
+

n!

j(j − 1)!(n− j)!

=
n! j

j(j − 1)!(n− j + 1)(n− j)!
+

n!(n− j + 1)

j(j − 1)!(n− j + 1)(n− j)!

=
n! j

j!(n− j + 1)!
+
n!(n− j + 1)

j!(n− j + 1)!

=
n! j + n!(n− j + 1)

j!(n− j + 1)!

=
n! (j + (n− j + 1))

j!(n− j + 1)!

=
(n+ 1)n!

j!(n+ 1− j))!

=
(n+ 1)!

j!((n+ 1)− j))!

=

(
n+ 1

j

)
X

We are now in position to state and prove the Binomial Theorem where we see that binomial
coefficients are just that - coefficients in the binomial expansion.

Theorem 9.4. Binomial Theorem: For nonzero real numbers a and b and natural numbers n,

(a+ b)n =

n∑
j=0

(
n

j

)
an−jbj

To get a feel of what this theorem is saying and how it really isn’t as hard to remember as it may
first appear, let’s consider the specific case of n = 4. According to the theorem, we have

(a+ b)4 =

4∑
j=0

(
4

j

)
a4−jbj

=

(
4

0

)
a4−0b0 +

(
4

1

)
a4−1b1 +

(
4

2

)
a4−2b2 +

(
4

3

)
a4−3b3 +

(
4

4

)
a4−4b4

=

(
4

0

)
a4 +

(
4

1

)
a3b+

(
4

2

)
a2b2 +

(
4

3

)
ab3 +

(
4

4

)
b4
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We forgo the simplification of the coefficients in order to note the pattern in the expansion. First
note that in each term, the total of the exponents is 4 which matched the exponent of the binomial
(a+b)4. The exponent on a begins at 4 and decreases by one as we move from one term to the next
while the exponent on b starts at 0 and increases by one each time. Also note that the binomial
coefficients themselves have a pattern. The upper number, 4, matches the exponent on the binomial
(a + b)4 whereas the lower number changes from term to term and matches the exponent of b in
that term. This is no coincidence and corresponds to the kind of counting we discussed earlier. If
we think of obtaining (a+ b)4 by multiplying (a+ b)(a+ b)(a+ b)(a+ b), our answer is the sum of
all possible products with exactly four factors - some a, some b. If we wish to count, for instance,
the number of ways we obtain 1 factor of b out of a total of 4 possible factors, thereby forcing the
remaining 3 factors to be a, the answer is

(
4
1

)
. Hence, the term

(
4
1

)
a3b is in the expansion. The

other terms which appear cover the remaining cases. While this discussion gives an indication as
to why the theorem is true, a formal proof requires Mathematical Induction.4

To prove the Binomial Theorem, we let P (n) be the expansion formula given in the statement of
the theorem and we note that P (1) is true since

(a+ b)1 ?
=

1∑
j=0

(
1

j

)
a1−jbj

a+ b
?
=

(
1

0

)
a1−0b0 +

(
1

1

)
a1−1b1

a+ b = a+ bX

Now we assume that P (k) is true. That is, we assume that we can expand (a + b)k using the
formula given in Theorem 9.4 and attempt to show that P (k + 1) is true.

(a+ b)k+1 = (a+ b)(a+ b)k

= (a+ b)
k∑
j=0

(
k

j

)
ak−jbj

= a

k∑
j=0

(
k

j

)
ak−jbj + b

k∑
j=0

(
k

j

)
ak−jbj

=

k∑
j=0

(
k

j

)
ak+1−jbj +

k∑
j=0

(
k

j

)
ak−jbj+1

Our goal is to combine as many of the terms as possible within the two summations. As the counter
j in the first summation runs from 0 through k, we get terms involving ak+1, akb, ak−1b2, . . . , abk.
In the second summation, we get terms involving akb, ak−1b2, . . . , abk, bk+1. In other words, apart
from the first term in the first summation and the last term in the second summation, we have

4and a fair amount of tenacity and attention to detail.
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terms common to both summations. Our next move is to ‘kick out’ the terms which we cannot
combine and rewrite the summations so that we can combine them. To that end, we note

k∑
j=0

(
k

j

)
ak+1−jbj = ak+1 +

k∑
j=1

(
k

j

)
ak+1−jbj

and

k∑
j=0

(
k

j

)
ak−jbj+1 =

k−1∑
j=0

(
k

j

)
ak−jbj+1 + bk+1

so that

(a+ b)k+1 = ak+1 +

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1 + bk+1

We now wish to write

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1

as a single summation. The wrinkle is that the first summation starts with j = 1, while the second
starts with j = 0. Even though the sums produce terms with the same powers of a and b, they do
so for different values of j. To resolve this, we need to shift the index on the second summation so
that the index j starts at j = 1 instead of j = 0 and we make use of Theorem 9.1 in the process.

k−1∑
j=0

(
k

j

)
ak−jbj+1 =

k−1+1∑
j=0+1

(
k

j − 1

)
ak−(j−1)b(j−1)+1

=

k∑
j=1

(
k

j − 1

)
ak+1−jbj

We can now combine our two sums using Theorem 9.1 and simplify using Theorem 9.3

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1 =

k∑
j=1

(
k

j

)
ak+1−jbj +

k∑
j=1

(
k

j − 1

)
ak+1−jbj

=

k∑
j=1

[(
k

j

)
+

(
k

j − 1

)]
ak+1−jbj

=
k∑
j=1

(
k + 1

j

)
ak+1−jbj

Using this and the fact that
(
k+1

0

)
= 1 and

(
k+1
k+1

)
= 1, we get
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(a+ b)k+1 = ak+1 +

k∑
j=1

(
k + 1

j

)
ak+1−jbj + bk+1

=

(
k + 1

0

)
ak+1b0 +

k∑
j=1

(
k + 1

j

)
ak+1−jbj +

(
k + 1

k + 1

)
a0bk+1

=
k+1∑
j=0

(
k + 1

j

)
a(k+1)−jbj

which shows that P (k + 1) is true. Hence, by induction, we have established that the Binomial
Theorem holds for all natural numbers n.

Example 9.4.2. Use the Binomial Theorem to find the following.

1. (x− 2)4 2. 2.13

3. The term containing x3 in the expansion (2x+ y)5

Solution.

1. Since (x− 2)4 = (x+ (−2))4, we identify a = x, b = −2 and n = 4 and obtain

(x− 2)4 =
4∑
j=0

(
4

j

)
x4−j(−2)j

=

(
4

0

)
x4−0(−2)0+

(
4

1

)
x4−1(−2)1+

(
4

2

)
x4−2(−2)2+

(
4

3

)
x4−3(−2)3+

(
4

4

)
x4−4(−2)4

= x4 − 8x3 + 24x2 − 32x+ 16

2. At first this problem seem misplaced, but we can write 2.13 = (2 + 0.1)3. Identifying a = 2,
b = 0.1 = 1

10 and n = 3, we get

(
2 +

1

10

)3

=

3∑
j=0

(
3

j

)
23−j

(
1

10

)j
=

(
3

0

)
23−0

(
1

10

)0

+

(
3

1

)
23−1

(
1

10

)1

+

(
3

2

)
23−2

(
1

10

)2

+

(
3

3

)
23−3

(
1

10

)3

= 8 +
12

10
+

6

100
+

1

1000

= 8 + 1.2 + 0.06 + 0.001
= 9.261
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3. Identifying a = 2x, b = y and n = 5, the Binomial Theorem gives

(2x+ y)5 =

5∑
j=0

(
5

j

)
(2x)5−jyj

Since we are concerned with only the term containing x3, there is no need to expand the
entire sum. The exponents on each term must add to 5 and if the exponent on x is 3, the
exponent on y must be 2. Plucking out the term j = 2, we get

(
5

2

)
(2x)5−2y2 = 10(2x)3y2 = 80x3y2

We close this section with Pascal’s Triangle, named in honor of the mathematician Blaise Pascal.
Pascal’s Triangle is obtained by arranging the binomial coefficients in the triangular fashion below.(

0

0

)
(

1

0

) (
1

1

)
↘↙(

2

0

) (
2

1

) (
2

2

)
↘↙ ↘↙(

3

0

) (
3

1

) (
3

2

) (
3

3

)
↘↙ ↘↙ ↘↙(

4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)
...

Since
(
n
0

)
= 1 and

(
n
n

)
= 1 for all whole numbers n, we get that each row of Pascal’s Triangle

begins and ends with 1. To generate the numbers in the middle of the rows (from the third row
onwards), we take advantage of the additive relationship expressed in Theorem 9.3. For instance,(

1
0

)
+
(

1
1

)
=
(

2
1

)
,
(

2
0

)
+
(

2
1

)
=
(

3
1

)
and so forth. This relationship is indicated by the arrows in the

array above. With these two facts in hand, we can quickly generate Pascal’s Triangle. We start
with the first two rows, 1 and 1 1. From that point on, each successive row begins and ends with
1 and the middle numbers are generated using Theorem 9.3. Below we attempt to demonstrate
this building process to generate the first five rows of Pascal’s Triangle.

http://en.wikipedia.org/wiki/Pascal's_triangle
http://en.wikipedia.org/wiki/Blaise_Pascal
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1
1 1
↘↙

1 1 + 1 1

−−−−−−→
1

1 1
1 2 1

1
1 1

1 2 1
↘↙ ↘↙

1 1 + 2 2 + 1 1

−−−−−−→

1
1 1

1 2 1
1 3 3 1

1
1 1

1 2 1
1 3 3 1
↘↙ ↘↙ ↘↙

1 1 + 3 3 + 3 3 + 1 1

−−−−−−→

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

To see how we can use Pascal’s Triangle to expedite the Binomial Theorem, suppose we wish to
expand (3x − y)4. The coefficients we need are

(
4
j

)
for j = 0, 1, 2, 3, 4 and are the numbers which

form the fifth row of Pascal’s Triangle. Since we know that the exponent of 3x in the first term is
4 and then decreases by one as we go from left to right while the exponent of −y starts at 0 in the
first term and then increases by one as we move from left to right, we quickly obtain

(3x− y)4 = (1)(3x)4 + (4)(3x)3(−y) + (6)(3x)2(−y)2 + 4(3x)(−y)3 + 1(−y)4

= 81x4 − 108x3y + 54x2y2 − 12xy3 + y4

We would like to stress that Pascal’s Triangle is a very quick method to expand an entire binomial.
If only a term (or two or three) is required, then the Binomial Theorem is definitely the way to go.
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9.4.1 Exercises

1. Simplify the following expressions.

(a) (3!)2

(b)
10!

7!

(c)
7!

233!

(d)
9!

4!3!2!

(e)
(n+ 1)!

n!
, n ≥ 0.

(f)
(k − 1)!

(k + 2)!
, k ≥ 1.

(g)

(
8

3

)

(h)

(
117

0

)

(i)

(
n

n− 2

)
, n ≥ 2

2. Use Pascal’s Triangle to expand the following.

(a) (x+ 2)5 (b) (2x− 1)4 (c)
(

1
3x+ y2

)3
(d)

(
x− x−1

)4
3. Use Pascal’s Triangle to simplify the following powers of complex numbers.

(a) (1 + 2i)4

(b)
(
−1 + i

√
3
)3 (c)

(√
2

2
− i
√

2

2

)4

4. Use the Binomial Theorem to find the indicated term in the following expansions.

(a) The term containing x3 in the expansion (2x− y)5

(b) The term containing x117 in the expansion (x+ 2)118

(c) The term containing x
7
2 in the expansion (

√
x− 3)

8

(d) The term containing x−7 in the expansion
(
2x− x−3

)5
(e) The constant term in the expansion

(
x+ x−1

)8
5. Use the Prinicple of Mathematical Induction to prove n! > 2n for n ≥ 4.

6. Prove

n∑
j=0

(
n

j

)
= 2n for all natural numbers n. (HINT: Use the Binomial Theorem!)

7. With the help of your classmates, research Patterns and Properties of Pascal’s Triangle.

8. You’ve just won three tickets to see the new film, ‘8.9.’ Five of your friends, Albert, Beth,
Chuck, Dan, and Eugene, are interested in seeing it with you. With the help of your class-
mates, list all the possible ways to distribute your two extra tickets among your five friends.
Now suppose you’ve come down with the flu. List all the different ways you can distribute the
three tickets among these five friends. How does this compare with the first list you made?
What does this have to do with the fact that

(
5
2

)
=
(

5
3

)
?

http://en.wikipedia.org/wiki/Pascal's_triangle#Patterns_and_properties
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9.4.2 Answers

1. (a) 36

(b) 720

(c) 105

(d) 1260

(e) n+ 1

(f) 1
k(k+1)(k+2)

(g) 56

(h) 1

(i) n(n−1)
2

2. (a) (x+ 2)5 = x5 + 10x4 + 40x3 + 80x2 + 80x+ 32

(b) (2x− 1)4 = 16x4 − 32x3 + 24x2 − 8x+ 1

(c)
(

1
3x+ y2

)3
= 1

27x
3 + 1

3x
2y2 + xy4 + y6

(d)
(
x− x−1

)4
= x4 − 4x2 + 6− 4x−2 + x−4

3. (a) −7− 24i (b) 8 (c) −1

4. (a) 80x3y2 (b) 236x117 (c) −24x
7
2 (d) −40x−7 (e) 70
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Chapter 10

Foundations of Trigonometry

10.1 Angles and their Measure

This section begins our study of Trigonometry and to get started, we recall some basic definitions
from Geometry. A ray is usually described as a ‘half-line’ and can be thought of as a line segment
in which one of the two endpoints is pushed off infinitely distant from the other, as pictured below.
The point from which the ray originates is called the initial point of the ray.

P

A ray with initial point P .

When two rays share a common initial point they form an angle and the common initial point is
called the vertex of the angle. Two examples of what are commonly thought of as angles are

P

An angle with vertex P .

Q

An angle with vertex Q.

However, the two figures below also depict angles - albeit these are, in some sense, extreme cases.
In the first case, the two rays are directly opposite each other forming what is known as a straight
angle; in the second, the rays are identical so the ‘angle’ is indistinguishable from the ray itself.

P

A straight angle.

Q

The measure of an angle is a number which indicates the amount of rotation that separates the
rays of the angle. There is one immediate problem with this, as pictured below.



594 Foundations of Trigonometry

Which amount of rotation are we attempting to quantify? What we have just discovered is that
we have at least two angles described by this diagram.1 Clearly these two angles have different
measures because one appears to represent a larger rotation than the other, so we must label them
differently. In this book, we use lower case Greek letters such as α (alpha), β (beta), γ (gamma)
and θ (theta) to label angles. So, for instance, we have

αβ

One commonly used system to measure angles is degree measure. Quantities measured in degrees
are denoted by the familiar ‘◦’ symbol. One complete revolution as shown below is 360◦, and parts
of a revolution are measured proportionately.2 Thus half of a revolution (a straight angle) measures
1
2 (360◦) = 180◦, a quarter of a revolution (a right angle) measures 1

4 (360◦) = 90◦ and so on.

One revolution ↔ 360◦ 180◦ 90◦

Note that in the above figure, we have used the small square ‘ ’ to denote a right angle, as is
commonplace in Geometry. Recall that if an angle measures strictly between 0◦ and 90◦ it is called
an acute angle and if it measures strictly between 90◦ and 180◦ it is called an obtuse angle.
It is important to note that, theoretically, we can know the measure of any angle as long as we

1The phrase ‘at least’ will be justified in short order.
2The choice of ‘360’ is most often attributed to the Babylonians.

http://en.wikipedia.org/wiki/Degree_(angle)


10.1 Angles and their Measure 595

know the proportion it represents of entire revolution.3 For instance, the measure of an angle which
represents a rotation of 2

3 of a revolution would measure 2
3 (360◦) = 240◦, the measure of an angle

which constitutes only 1
12 of a revolution measures 1

12 (360◦) = 30◦ and an angle which indicates
no rotation at all is measured as 0◦.

240◦ 30◦ 0◦

Using our definition of degree measure, we have that 1◦ represents the measure of an angle which
constitutes 1

360 of a revolution. Even though it may be hard to draw, it is nonetheless not difficult
to imagine an angle with measure smaller than 1◦. There are two way subdivide degrees. The
first, and most familiar, is decimal degrees. For example, an angle with a measure of 30.5◦ would
represent a rotation halfway between 30◦ and 31◦, or equivalently, 30.5

360 = 61
720 of a full rotation. This

can be taken to the limit using Calculus so that measures like
√

2
◦

make sense.4 The second way
to divide degrees is the Degree - Minute - Second (DMS) system. In this system, one degree is
divided equally into sixty minutes, and in turn, each minute is divided equally into sixty seconds.5

In symbols, we write 1◦ = 60′ and 1′ = 60′′, from which it follows that 1◦ = 3600′′. To convert a
measure of 42.125◦ to the DMS system, we start by noting that 42.125◦ = 42◦+0.125◦. Converting

the partial amount of degrees to minutes, we find 0.125◦
(

60′

1◦

)
= 7.5′ = 7′ + 0.5′. Converting the

partial amount of minutes to seconds gives 0.5′
(

60′′

1′

)
= 30′′. Putting it all together yields

42.125◦ = 42◦ + 0.125◦

= 42◦ + 7.5′

= 42◦ + 7′ + 0.5′

= 42◦ + 7′ + 30′′

= 42◦7′30′′

On the other hand, to convert 117◦15′45′′ to decimal degrees, we first compute 15′
(

1◦

60′

)
= 1

4

◦
and

45′′
(

1◦

3600′′

)
= 1

80

◦
. Then we find

3This is how a protractor is graded.
4Awesome math pun aside, this is the same idea behind defining irrational exponents in Section 6.1.
5Does this kind of system seem familiar?
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117◦15′45′′ = 117◦ + 15′ + 45′′

= 117◦ + 1
4

◦
+ 1

80

◦

= 9381
80

◦

= 117.2625◦

Recall that two acute angles are called complementary angles if their measures add to 90◦.
Two angles, either a pair of right angles or one acute angle and one obtuse angle, are called
supplementary angles if their measures add to 180◦. In the diagram below, the angles α and β
are supplementary angles while the pair γ and θ are complementary angles.

α

β

Supplementary Angles

γ

θ

Complementary Angles

In practice, the distinction between the angle itself and its measure is blurred so that the sentence
‘α is an angle measuring 42◦’ is often abbreviated to ‘α = 42◦.’ It is now time for an example.

Example 10.1.1. Let α = 111.371◦ and β = 37◦28′17′′.

1. Convert α to the DMS system. Round your answer to the nearest second.

2. Convert β to decimal degrees. Round your answer to the nearest thousandth of a degree.

3. Sketch α and β.

4. Find a supplementary angle for α.

5. Find a complementary angle for β.

Solution.

1. To convert α to the DMS system, we start with 111.371◦ = 111◦ + 0.371◦. Next we convert

0.371◦
(

60′

1◦

)
= 22.26′. Writing 22.26′ = 22′ + 0.26′, we convert 0.26′

(
60′′

1′

)
= 15.6′′. Hence,

111.371◦ = 111◦ + 0.371◦

= 111◦ + 22.26′

= 111◦ + 22′ + 0.26′

= 111◦ + 22′ + 15.6′′

= 111◦22′15.6′′

Rounding to seconds, we obtain α ≈ 111◦22′16′′.
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2. To convert β to decimal degrees, we convert 28′
(

1◦

60′

)
= 7

15

◦
and 17′′

(
1◦

3600′

)
= 17

3600

◦
. Putting

it all together, we have

37◦28′17′′ = 37◦ + 28′ + 17′′

= 37◦ + 7
15

◦
+ 17

3600

◦

= 134897
3600

◦

≈ 37.471◦

3. To sketch α, we first note that 90◦ < α < 180◦. If we divide this range in half, we get
90◦ < α < 135◦, and once more, we have 90◦ < α < 112.5◦. This gives us a pretty good
estimate for α, as shown below.6 Proceeding similarly for β, we find 0◦ < β < 90◦, then
0◦ < β < 45◦, 22.5◦ < β < 45◦, and lastly, 33.75◦ < β < 45◦.

Angle α Angle β

4. To find a supplementary angle for α, we seek an angle θ so that α + θ = 180◦. We get
θ = 180◦ − α = 180◦ − 111.371◦ = 68.629◦.

5. To find a complementary angle for β, we seek an angle γ so that β + γ = 90◦. We get
γ = 90◦ − β = 90◦ − 37◦28′17′′. While we could reach for the calculator to obtain an
approximate answer, we choose instead to do a bit of sexagesimal7 arithmetic. We first
rewrite 90◦ = 90◦0′0′′ = 89◦60′0′′ = 89◦59′60′′. In essence, we are ‘borrowing’ 1◦ = 60′

from the degree place, and then borrowing 1′ = 60′′ from the minutes place.8 This yields,
γ = 90◦ − 37◦28′17′′ = 89◦59′60′′ − 37◦28′17′′ = 52◦31′43′′.

Up to this point, we have discussed only angles which measure between 0◦ and 360◦, inclusive.
Ultimately, we want to use the arsenal of Algebra which we have stockpiled in Chapters 1 through
9 to not only solve geometric problems involving angles, but to also extend their applicability to
other real-world phenomena. A first step in this direction is to extend our notion of ‘angle’ from
merely measuring an extent of rotation to quantities which can be associated with real numbers.
To that end, we introduce the concept of an oriented angle. As its name suggests, in an oriented

6If this process seems hauntingly familiar, it should. Compare this method to the Bisection Method introduced
in Section 3.3.

7Like ‘latus rectum,’ this is also a real math term.
8This is the exact same kind of ‘borrowing’ you used to do in Elementary School when trying to find 300 − 125.

Back then, you were working in a base ten system; here, it is base sixty.
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angle, the direction of the rotation is important. We imagine the angle being swept out starting
from an initial side and ending at a terminal side, as shown below. When the rotation is
counter-clockwise9 from initial side to terminal side, we say that the angle is positive; when the
rotation is clockwise, we say that the angle is negative.

Initial Side

T
er

m
in

al
Si

de

Initial Side

T
erm

inal
Side

A positive angle, 45◦ A negative angle, −45◦

At this point, we also extend our allowable rotations to include angles which encompass more than
one revolution. For example, to sketch an angle with measure 450◦ we start with an initial side,
rotate counter-clockwise one complete revolution (to take care of the ‘first’ 360◦) then continue
with an additional 90◦ counter-clockwise rotation, as seen below.

450◦

To further connect angles with the Algebra which has come before, we shall often overlay an angle
diagram on the coordinate plane. An angle is said to be in standard position if its vertex is
the origin and its initial side coincides with the positive x-axis. Angles in standard position are
classified according to where their terminal side lies. For instance, an angle in standard position
whose terminal side lies in Quadrant I is called a ‘Quadrant I angle’. If the terminal side of an
angle lies on one of the coordinate axes, it is called a quadrantal angle. Two angles in standard
position are called coterminal if they share the same terminal side.10 In the figure below, α = 120◦

and β = −240◦ are two coterminal Quadrant II angles drawn in standard position. Note that
α = β + 360◦, or equivalently, β = α− 360◦. We leave it as an exercise to the reader to verify that
coterminal angles always differ by a multiple of 360◦.11 More precisely, if α and β are coterminal
angles, then β = α+ 360◦ · k where k is an integer.12

9‘widdershins’
10Note that by being in standard position they automatically share the same initial side which is the positive x-axis.
11It is worth noting that all of the pathologies of Analytic Trigonometry result from this innocuous fact.
12Recall that this means k = 0,±1,±2, . . ..
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x

y

α = 120◦

β = −240◦

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

Two coterminal angles, α = 120◦ and β = −240◦, in standard position.

Example 10.1.2. Graph each of the (oriented) angles below in standard position and classify them
according to where their terminal side lies. Find three coterminal angles, at least one of which is
positive and one of which is negative.

1. α = 60◦ 2. β = −225◦ 3. γ = 540◦ 4. φ = −750◦

Solution.

1. To graph α = 60◦, we draw an angle with its initial side on the positive x-axis and rotate
counter-clockwise 60◦

360◦ = 1
6 of a revolution. We see that α is a Quadrant I angle. To find angles

which are coterminal, we look for angles θ of the form θ = α + 360◦ · k, for some integer k.
When k = 1, we get θ = 60◦+360◦ = 420◦. Substituting k = −1 gives θ = 60◦−360◦ = −300◦.
Finally, if we let k = 2, we get θ = 60◦ + 720◦ = 780◦.

2. Since β = −225◦ is negative, we start at the positive x-axis and rotate clockwise 225◦

360◦ = 5
8 of

a revolution. We see that β is a Quadrant II angle. To find coterminal angles, we proceed as
before and compute θ = −225◦ + 360◦ · k for integer values of k. We find 135◦, −585◦ and
495◦ are all coterminal with −225◦.

x

y

α = 60◦

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

x

y

β = −225◦

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

α = 60◦ in standard position. β = −225◦ in standard position.
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3. Since γ = 540◦ is positive, we rotate counter-clockwise from the positive x-axis. One full
revolution accounts for 360◦, with 180◦, or 1

2 of a revolution remaining. Since the terminal
side of γ lies on the negative x-axis, γ is a quadrantal angle. All angles coterminal with γ are
of the form θ = 540◦ + 360◦ · k, where k is an integer. Working through the arithmetic, we
find three such angles: 180◦, −180◦ and 900◦.

4. The Greek letter φ is pronounced ‘fee’ or ‘fie’ and since φ is negative, we begin our rotation
clockwise from the positive x-axis. Two full revolutions account for 720◦, with just 30◦ or 1

12
of a revolution to go. We find that φ is a Quadrant IV angle. To find coterminal angles, we
compute θ = −750◦ + 360◦ · k for a few integers k and obtain −390◦, −30◦ and 330◦.

x

y

γ = 540◦

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

x

y

φ = −750◦

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

γ = 540◦ in standard position. φ = −750◦ in standard position.

Note that since there are infinitely many integers, any given angle has infinitely many coterminal
angles, and the reader is encouraged to plot the few sets of coterminal angles found in Example
10.1.2 to see this. We are now just one step away from completely marrying angles with the real
numbers and the rest of Algebra. To that end, we recall this definition from Geometry.

Definition 10.1. The real number π is defined to be the ratio of a circle’s circumference to its
diameter. In symbols, given a circle of circumference C and diameter d,

π =
C

d

While Definition 10.1 is quite possibly the ‘standard’ definition of π, the authors would be remiss
if we didn’t mention that buried in this definition is actually a theorem. As the reader is probably
aware, the number π is a mathematical constant - that is, it doesn’t matter which circle is selected,
the ratio of its circumference to its diameter will have the same value as any other circle. While
this is indeed true, it is far from obvious and leads to a counterintuitive scenario which is explored
in the Exercises. Since the diameter of a circle is twice its radius, we can quickly rearrange the
equation in Definition 10.1 to get a formula more useful for our purposes, namely:
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2π =
C

r

This tells us that for any circle, the ratio of its circumference to its radius is also always constant;
in this case the constant is 2π. Suppose now we take a portion of the circle, so instead of comparing
the entire circumference C to the radius, we compare some arc measuring s units in length to the
radius, as depicted below. Let θ be the central angle subtended by this arc, that is, an angle
whose vertex is the center of the circle and whose determining rays pass through the endpoints
of the arc. Using proportionality arguments, it stands to reason that the ratio s

r should also be a
constant among all circles, and it is this ratio which defines the radian measure of an angle.

θ

s

r

r

The radian measure of θ is
s

r
.

Using this definition, one revolution has radian measure 2πr
r = 2π, and from this we can find

the radian measure of other central angles using proportions, just like we did with degrees. For
instance, half of a revolution has radian measure 1

2(2π) = π, a quarter revolution has radian
measure 1

4(2π) = π
2 , and so forth. Note that, by definition, the radian measure of an angle is a

length divided by another length so that these measurements are actually dimensionless and are
considered ‘pure’ numbers. For this reason, we do not use any symbols to denote radian measure,
but we use the word ‘radians’ to denote these dimensionless units as needed. For instance, we
say one revolution measures ‘2π radians,’ half of a revolution measures ‘π radians,’ and so forth.
As with degree measure, the distinction between the angle itself and its measure is often blurred
in practice, so when we write ‘θ = π

2 ’, we mean θ is an angle which measures π
2 radians.13 We

extend radian measure to oriented angles, just as we did with degrees beforehand, so that a positive
measure indicates counter-clockwise rotation and a negative measure indicates clockwise rotation.14

Two positive angles α and β are supplementary if α + β = π and complementary if α + β = π
2 .

Finally, we leave it to the reader to show that when using radian measure, two angles α and β are
coterminal if and only if β = α+ 2πk for some integer k.

13The authors are well aware that we are now identifying radians with real numbers. We will justify this shortly.
14This, in turn, endows the subtended arcs with an orientation as well. We address this in short order.
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Example 10.1.3. Graph each of the (oriented) angles below in standard position and classify them
according to where their terminal side lies. Find three coterminal angles, at least one of which is
positive and one of which is negative.

1. α = π
6 2. β = −4π

3 3. γ = 9π
4 4. φ = −5π

2

Solution.

1. The angle α = π
6 is positive, so we draw an angle with its initial side on the positive x-axis and

rotate counter-clockwise (π/6)
2π = 1

12 of a revolution. Thus α is a Quadrant I angle. Coterminal
angles θ are of the form θ = α + 2π · k, for some integer k. To make the arithmetic a bit
easier, we note that 2π = 12π

6 , thus when k = 1, we get θ = π
6 + 12π

6 = 13π
6 . Substituting

k = −1 gives θ = π
6 −

12π
6 = −11π

6 and when we let k = 2, we get θ = π
6 + 24π

6 = 25π
6 .

2. Since β = −4π
3 is negative, we start at the positive x-axis and rotate clockwise (4π/3)

2π = 2
3 of

a revolution. We find β to be a Quadrant II angle. To find coterminal angles, we proceed as
before using 2π = 6π

3 , and compute θ = −4π
3 + 6π

3 · k for integer values of k. We obtain 2π
3 ,

−10π
3 and 8π

3 as coterminal angles.

x

y

α = π
6

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1
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3

4

x

y

β = − 4π
3

−4 −3 −2 −1 1 2 3 4
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−3

−4
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3

4

α = π
6 in standard position. β = −4π

3 in standard position.

3. Since γ = 9π
4 is positive, we rotate counter-clockwise from the positive x-axis. One full

revolution accounts for 2π = 8π
4 of the radian measure with π

4 or 1
8 of a revolution remaining.

We have γ as a Quadrant I angle. All angles coterminal with γ are of the form θ = 9π
4 + 8π

4 ·k,
where k is an integer. Working through the arithmetic, we find: π

4 , −7π
4 and 17π

4 .

4. To graph φ = −5π
2 , we begin our rotation clockwise from the positive x-axis. As 2π = 4π

2 ,
after one full revolution clockwise, we have π

2 or 1
4 of a revolution remaining. Since the

terminal side of φ lies on the negative y-axis, φ is a quadrantal angle. To find coterminal
angles, we compute θ = −5π

2 + 4π
2 · k for a few integers k and obtain −π

2 , 3π
2 and 7π

2 .
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x

y

γ = 9π
4

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1
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4

x

y

φ = − 5π
2

−4 −3 −2 −1 1 2 3 4
−1
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−4
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4

γ = 9π
4 in standard position. φ = −5π

2 in standard position.

It is worth mentioning that we could have plotted the angles in Example 10.1.3 by first converting
them to degree measure and following the procedure set forth in Example 10.1.2. While converting
back and forth from degrees and radians is certainly a good skill to have, it is best that you
learn to ‘think in radians’ as well as you can ‘think in degrees.’ The authors would, however, be
derelict in our duties if we ignored the basic conversion between these systems altogether. Since
one revolution counter-clockwise measures 360◦ and the same angle measures 2π radians, we can
use the proportion 2π radians

360◦ , or its reduced equivalent, π radians
180◦ , as the conversion factor between

the two systems. For example, to convert 60◦ to radians we find 60◦
(
π radians

180◦

)
= π

3 radians, or

simply π
3 . To convert from radian measure back to degrees, we multiply by the ratio 180◦

π radian . For

example, −5π
6 radians is equal to

(
−5π

6 radians
) (

180◦

π radians

)
= −150◦.15 Of particular interest is the

fact that an angle which measures 1 in radian measure is equal to 180◦

π ≈ 57.2958◦. We summarize
these conversions below.

Equation 10.1. Degree - Radian Conversion:

• To convert degree measure to radian measure, multiply by π radians
180◦

• To convert radian measure to degree measure, multiply by 180◦

π radians

In light of Example 10.1.3 and Equation 10.1, the reader may well wonder what the allure of radian
measure is. The numbers involved are, admittedly, much more complicated than degree measure.
The answer lies in how easily angles in radian measure can be identified with real numbers. Consider
the Unit Circle, x2+y2 = 1, as drawn below, the angle θ in standard position and the corresponding
arc measuring s units in length. By definition, the radian measure of θ is s

r = s
1 = s so that, once

again blurring the distinction between an angle and its measure, we have θ = s. In order to
identify real numbers with oriented angles, we make good use of this fact by essentially ‘wrapping’
the real number line around the Unit Circle and associating to each real number t an oriented arc

15Note that the negative sign indicates clockwise rotation in both systems, and so it is carried along accordingly.
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on the Unit Circle with initial point (1, 0). Viewing the vertical line x = 1 as another real number
line demarcated like the y-axis, given a real number t > 0, we ‘wrap’ the (vertical) interval [0, t]
around the Unit Circle in a counter-clockwise fashion. The resulting arc has a length of t units and
therefore the corresponding angle has radian measure equal to t. If t < 0, we wrap the interval
[t, 0] clockwise around the Unit Circle. Since we have defined clockwise rotation as having negative
radian measure, the angle determined by this arc has radian measure equal to t. If t = 0, we are
at the point (1, 0) on the x-axis which corresponds to an angle with radian measure 0. In this way,
we identify each real number t with the corresponding angle with radian measure t.

x

y

1

1

θ
s

x

y

1

1

t
t

x

y

1

1

t
t

On the Unit Circle, θ = s. Identifying t > 0 with an angle. Identifying t < 0 with an angle.

Example 10.1.4. Sketch the oriented arc on the Unit Circle corresponding to each of the following
real numbers.

1. t = 3π
4 2. t = −2π 3. t = −2 4. t = 117

Solution.

1. The arc associated with t = 3π
4 is the arc on the Unit Circle which subtends the angle 3π

4 in
radian measure. Since 3π

4 is 3
8 of a revolution, we have an arc which begins at the point (1, 0)

proceeds counter-clockwise up to midway through Quadrant II.

2. Since one revolution is 2π radians, and t = −2π is negative, we graph the arc which begins
at (1, 0) and proceeds clockwise for one full revolution.

x

y

1

1

t = 3π
4

x

y

1

1

t = −2π
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3. Like t = −2π, t = −2 is negative, so we begin our arc at (1, 0) and proceed clockwise around
the unit circle. Since π ≈ 3.14 and π

2 ≈ 1.57, we find that rotating 2 radians clockwise from
the point (1, 0) lands us in Quadrant III. To more accurately place the endpoint, we proceed
as we did in Example 10.1.1, successively halving the angle measure until we find 5π

8 ≈ 1.96
which tells us our arc extends just a bit beyond the quarter mark into Quadrant III.

4. Since 117 is positive, the arc corresponding to t = 117 begins at (1, 0) and proceeds counter-
clockwise. As 117 is much greater than 2π, we wrap around the Unit Circle several times
before finally reaching our endpoint. We approximate 117

2π as 18.62 which tells us we complete
18 revolutions counter-clockwise with 0.62, or just shy of 5

8 of a revolution to spare. In other
words, the terminal side of the angle which measures 117 radians in standard position is just
short of being midway through Quadrant III.

x

y

1

1

t = −2

x

y

1

1

t = 117

10.1.1 Applications of Radian Measure: Circular Motion

Now that we have paired angles with real numbers via radian measure, a whole world of applications
await us. Our first excursion into this realm comes by way of circular motion. Suppose an object
is moving as pictured below along a circular path of radius r from the point P to the point Q in
an amount of time t.

P

Q

r

θ
s

Here s represents a displacement so that s > 0 means the object is traveling in a counter-clockwise
direction and s < 0 indicates movement in a clockwise direction. Note that with this convention
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the formula we used to define radian measure, namely θ = s
r , still holds since a negative value

of s incurred from a clockwise displacement matches the negative we assign to θ for a clockwise
rotation. In Physics, the average velocity of the object, denoted v and read as ‘v-bar’, is defined
as the average rate of change of the position of the object with respect to time.16 As a result, we
have v = displacement

time = s
t . The quantity v has units of length

time and conveys two ideas: the direction in
which the object is moving and how fast the position of the object is changing. The contribution
of direction in the quantity v is either to make it positive (in the case of counter-clockwise motion)
or negative (in the case of clockwise motion), so that the quantity |v| quantifies how fast the object
is moving - it is the speed of the object. Measuring θ in radians we have θ = s

r so that s = rθ and

v =
s

t
=
rθ

t
= r · θ

t

The quantity θ
t is called the average angular velocity of the object. It is denoted by ω and

read as ‘omega-bar’. The quantity ω is the average rate of change of the angle θ with respect to
time and thus has units radians

time . If ω is constant throughout the duration of the motion, then it
can be shown17 that the average velocities involved, v and ω are the same as their instantaneous
counterparts, v and ω, respectively. That is, v, simply called the ‘velocity’ of the object, is the
instantaneous rate of change of the position of the object with respect to time.18 Similarly, ω is
called the ‘angular velocity’ and is the instantaneous rate of change of the angle with respect to
time. If the path of the object were ‘uncurled’ from a circle to form a line segment, the velocity of
the object on that line segment would be the same as the velocity on the circle. For this reason,
the quantity v is often called the linear velocity of the object in order to distinguish it from the
angular velocity, ω. Putting together the ideas of the previous paragraph, we get the following.

Equation 10.2. Velocity for Circular Motion: For an object moving on a circular path of
radius r with constant angular velocity ω, the (linear) velocity of the object is given by v = rω.

Mention must be made of units here. The units of v are length
time , the units of r are length only, and

the units of ω are radians
time . Thus the left hand side of the equation v = rω has units length

time , whereas

the right hand side has units length · radians
time = length·radians

time . The supposed contradiction in units is
resolved by remembering that radians are a dimensionless quantity and angles in radian measure
are identified with real numbers so that the units length·radians

time reduce to the units length
time . We are

long overdue for an example.

Example 10.1.5. Assuming that the surface of the Earth is a sphere, any point on the Earth can
be thought of as an object traveling on a circle which completes one revolution in (approximately)
24 hours. The path traced out by the point during this 24 hour period is the Latitude of that point.
Lakeland Community College is at 41.628◦ north latitude, and it can be shown19 that the radius of
the earth at this Latitude is approximately 2960 miles. Find the linear velocity, in miles per hour,
of Lakeland Community College as the world turns.

16See Definition 2.3 in Section 2.1 for a review of this concept.
17You guessed it, using Calculus . . .
18See the discussion on Page 121 for more details on the idea of an ‘instantaneous’ rate of change.
19We will discuss how we arrived at this approximation in the next section.
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Solution. To use the formula v = rω, we first need to compute the angular velocity ω. The earth
makes one revolution in 24 hours, and one revolution is 2π radians, so ω = 2π radians

24 hours = π
12 hours ,

where, once again, we are using the fact that radians are real numbers and are dimensionless. (For
simplicity’s sake, we are also assuming that we are viewing the rotation of the earth as counter-
clockwise so ω > 0.) Hence, the linear velocity is

v = 2960 miles · π

12 hours
≈ 775

miles

hour

It is worth noting that the quantity 1 revolution
24 hours in Example 10.1.5 is called the ordinary frequency

of the motion and is usually denoted by the variable f . The ordinary frequency is a measure of
how often an object makes a complete cycle of the motion. The fact that ω = 2πf suggests that
ω is also a frequency. Indeed, it is called the angular frequency of the motion. On a related
note, the quantity T = 1

f is called the period of the motion and is the amount of time it takes for
the object to complete one cycle of the motion. In the scenario of Example 10.1.5, the period of
the motion is 24 hours, or one day. The concept of frequency and period help frame the equation
v = rω in a new light. That is, if ω is fixed, points which are farther from the center of rotation
need to travel faster to maintain the same angular frequency since they have farther to travel to
make one revolution in one period’s time. The distance of the object to the center of rotation is the
radius of the circle, r, and is the ‘magnification factor’ which relates ω and v. We will have more to
say about frequencies and periods in the sections to come. While we have exhaustively discussed
velocities associated with circular motion, we have yet to discuss a more natural question: if an
object is moving on a circular path of radius r with a fixed angular velocity (frequency) ω, what
is the position of the object at time t? The answer to this question is the very heart of college
Trigonometry and is answered in the next section.
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10.1.2 Exercises

1. Convert each angle to the DMS system. Round your answers to the nearest second.

(a) 63.75◦ (b) 200.325◦ (c) −317.06◦ (d) 179.999◦

2. Convert each angle to decimal degrees. Round your answers to three decimal places.

(a) 125◦50′ (b) −32◦10′12′′ (c) 502◦35′ (d) 237◦58′43′′

3. Graph each oriented angle in standard position. Classify each angle according to where its
terminal side lies and give two coterminal angles, one positive and one negative.

(a) 330◦

(b) −135◦

(c)
5π

6

(d) −11π

3

(e)
5π

4

(f)
3π

4

(g) −π
3

(h)
7π

2

4. Convert each angle from degree measure into radian measure.

(a) 0◦

(b) 240◦
(c) 135◦

(d) −270◦
(e) −315◦

(f) 150◦
(g) 45◦

(h) −225◦

5. Convert each angle from radian measure into degree measure.

(a) π

(b) −2π

3

(c)
7π

6

(d)
11π

6

(e)
π

3

(f)
5π

3

(g) −π
6

(h)
π

2

6. A computer hard drive contains a circular disk with diameter 2.5 inches and spins at a rate
of 7200 RPM (revolutions per minute). Find the linear speed of a point on the edge of the
disk in miles per hour.

7. A rock got stuck in the tread of my tire and when I was driving 70 miles per hour, the rock
came loose and hit the inside of the wheel well of the car. How fast, in miles per hour, was
the rock traveling when it came out of the tread? (The tire has a diameter of 23 inches.)

8. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot
tall platform making its overall height is 136 feet. (Remember this from Exercise 5 in Section
7.2?) It completes two revolutions in 2 minutes and 7 seconds.20 Assuming the riders are at
the edge of the circle, how fast are they traveling in miles per hour?

20Source: Cedar Point’s webpage.

http://www.cedarpoint.com/public/park/rides/tranquil/giant_wheel.cfm
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9. Consider the circle of radius r pictured below with central angle θ, measured in radians, and
subtended arc of length s. Prove that the area of the shaded sector is A = 1

2r
2θ.

θ

s

r

r

HINT: Use the proportion:
A

area of the circle
=

s

circumference of the circle
.

10. Use the result of Exercise 9 to compute the areas of the circular sectors with the given central
angles and radii.

(a) θ =
π

6
, r = 12 (b) θ =

5π

4
, r = 100 (c) θ = 330◦, r = 9.3

11. Imagine a rope tied around the Earth at the equator. Show that you need to add only 2π feet
of length to the rope in order to lift it one foot above the ground around the entire equator.
(You do NOT need to know the radius of the Earth to show this.)

12. With the help of your classmates, look for a proof that π is indeed a constant.
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10.1.3 Answers

1. (a) 63◦45′ (b) 200◦19′30′′ (c) −317◦3′36′′ (d) 179◦59′56′′

2. (a) 125.833◦ (b) −32.17◦ (c) 502.583◦ (d) 237.979◦

3. (a) 330◦ is a Quadrant IV angle
coterminal with 690◦ and −30◦

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

(b) −135◦ is a Quadrant III angle
coterminal with 225◦ and −495◦

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

(c)
5π

6
is a Quadrant II angle

coterminal with
17π

6
and −7π

6

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

(d) −11π

3
is a Quadrant I angle

coterminal with
π

3
and −5π

3

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4
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(e)
5π

4
is a Quadrant III angle

coterminal with
13π

4
and −3π

4

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

(f)
3π

4
is a Quadrant II angle

coterminal with
11π

4
and −5π

4

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

(g) −π
3

is a Quadrant IV angle

coterminal with
5π

3
and −7π

3

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

(h)
7π

2
lies on the negative y-axis

coterminal with
3π

2
and −π

2

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

−4

1

2

3

4

4. (a) 0

(b)
4π

3

(c)
3π

4

(d) −3π

2

(e) −7π

4

(f)
5π

6

(g)
π

4

(h) −5π

4

5. (a) 180◦

(b) −120◦
(c) 210◦

(d) 330◦
(e) 60◦

(f) 300◦
(g) −30◦

(h) 90◦

6. About 53.55 miles per hour

7. 70 miles per hour

8. About 4.32 miles per hour

10. (a) 12π

(b) 6250π

(c) 79.2825π ≈ 249.07
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10.2 The Unit Circle: Cosine and Sine

In Section 10.1.1, we introduced circular motion and derived a formula which describes the linear
velocity of an object moving on a circular path at a constant angular velocity. One of the goals of
this section is describe the position of such an object. To that end, consider an angle θ in standard
position and let P denote the point where the terminal side of θ intersects the Unit Circle. By
associating a point P with an angle θ, we are assigning a position P on the Unit Circle to each
angle θ. The x-coordinate of P is called the cosine of θ, written cos(θ), while the y-coordinate of
P is called the sine of θ, written sin(θ).1 The reader is encouraged to verify that the rules by which
we match an angle with its cosine and sine do, in fact, satisfy the definition of function. That is,
for each angle θ, there is only one associated value of cos(θ) and only one associated value of sin(θ).

x

y

1

1

θ

x

y

1

1

P (cos(θ), sin(θ))

θ

Example 10.2.1. Find the cosine and sine of the following angles.

1. θ = 270◦ 2. θ = −π 3. θ = 45◦ 4. θ = π
6 5. θ = 60◦

Solution.

1. To find cos (270◦) and sin (270◦), we plot the angle θ = 270◦ in standard position and find
the point on the terminal side of θ which lies on the Unit Circle. Since 270◦ represents 3

4 of a
counter-clockwise revolution, the terminal side of θ lies along the negative y-axis. Hence, the
point we seek is (0,−1) so that cos

(
3π
2

)
= 0 and sin

(
3π
2

)
= −1.

2. The angle θ = −π represents one half of a clockwise revolution so its terminal side lies on
the negative x-axis. The point on the Unit Circle which lies on the negative x-axis is (−1, 0)
which means cos(−π) = −1 and sin(−π) = 0.

1The etymology of the name ‘sine’ is quite colorful, and the interested reader is invited to research it; the ‘co’ in
‘cosine’ is explained in Section 10.4.
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x

y

1

1

P (0,−1)

θ = 270◦

Finding cos (270◦) and sin (270◦)

x

y

1

1

P (−1, 0)

θ = −π

Finding cos (−π) and sin (−π)

3. When we sketch θ = 45◦ in standard position, we see that its terminal does not lie along
any of the coordinate axes which makes our job of finding the cosine and sine values a bit
more difficult. Let P (x, y) denote the point on the terminal side of θ which lies on the Unit
Circle. By definition, x = cos (45◦) and y = sin (45◦). If we drop a perpendicular line segment
from P to the x-axis, we obtain a 45◦ − 45◦ − 90◦ right triangle whose legs have lengths x
and y units. From Geometry, we get y = x.2 Since P (x, y) lies on the Unit Circle, we have

x2 + y2 = 1. Substituting y = x into this equation yields 2x2 = 1, or x = ±
√

1
2 = ±

√
2

2 .

Since P (x, y) lies in the first quadrant, x > 0, so x = cos (45◦) =
√

2
2 and with y = x we have

y = sin (45◦) =
√

2
2 .

x

y

1

1

P (x, y)

θ = 45◦

θ = 45◦

45◦

x

y

P (x, y)

2Can you show this?
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4. As before, the terminal side of θ = π
6 does not lie on any of the coordinate axes, so we proceed

using a triangle approach. Letting P (x, y) denote the point on the terminal side of θ which
lies on the Unit Circle, we drop a perpendicular line segment from P to the x-axis to form a
30◦ − 60◦ − 90◦ right triangle. After a bit of Geometry3 we find x = y

√
3. Since P (x, y) lies

on the Unit Circle, we substitute x = y
√

3 into x2 + y2 = 1 to get 4y2 = 1, or y = ±1
2 . Here,

y > 0, so y = sin
(
π
6

)
= 1

2 , and since x = y
√

3, x = cos
(
π
6

)
=
√

3
2 .

x

y

1

1

P (x, y)

θ = π
6

θ = π
6 = 30◦

60◦

x

y

P (x, y)

5. Plotting θ = 60◦ in standard position, we find it is not a quadrantal angle and set about using
a triangle approach. Once again, we get a 30◦ − 60◦ − 90◦ right triangle and, after the usual

computations, find x = cos (60◦) = 1
2 and y = sin (60◦) =

√
3

2 .

x

y

1

1

P (x, y)

θ = 60◦

θ = 60◦

30◦

x

y

P (x, y)

3Again, can you show this?



10.2 The Unit Circle: Cosine and Sine 615

In Example 10.2.1, it was quite easy to find the cosine and sine of the quadrantal angles, but for
non-quadrantal angles, the task was much more involved. In these latter cases, we made good
use of the fact that the point P (x, y) = (cos(θ), sin(θ)) lies on the Unit Circle, x2 + y2 = 1. If
we substitute x = cos(θ) and y = sin(θ) into x2 + y2 = 1, we get (cos(θ))2 + (sin(θ))2 = 1. An
unfortunate4 convention, which the authors are compelled to perpetuate, is to write (cos(θ))2 as
cos2(θ) and (sin(θ))2 as sin2(θ). Rewriting the identity using this convention results in the following
theorem, which is without a doubt one of the most important results in Trigonometry.

Theorem 10.1. The Pythagorean Identity: For any angle θ, cos2(θ) + sin2(θ) = 1.

The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from which both the Distance
Formula and the equation for a circle are ultimately derived.5 The word ‘Identity’ reminds us that,
regardless of the angle θ, the equation in Theorem 10.1 is always true. If one of cos(θ) or sin(θ)
is known, Theorem 10.1 can be used to determine the other, up to a sign, (±). If, in addition, we
know where the terminal side of θ lies when in standard position, then we can remove the ambiguity
of the (±) and completely determine the missing value as the next example illustrates.

Example 10.2.2. Using the given information about θ, find the indicated value.

1. If θ is a Quadrant II angle with sin(θ) = 3
5 , find cos(θ).

2. If θ is a Quadrant III angle with cos(θ) = −
√

5
5 , find sin(θ).

3. If sin(θ) = 1, find cos(θ).

Solution.

1. When we substitute sin(θ) = 3
5 into The Pythagorean Identity, cos2(θ) + sin2(θ) = 1, we

obtain cos2(θ) + 9
25 = 1. Solving, we find cos(θ) = ±4

5 . Since θ is a Quadrant II angle, its
terminal side, when plotted in standard position, lies in Quadrant II. Since the x-coordinates
are negative in Quadrant II, cos(θ) is too. Hence, cos(θ) = −4

5 .

2. Substituting cos(θ) = −
√

5
5 into cos2(θ) + sin2(θ) = 1 gives sin(θ) = ± 2√

5
= ±2

√
5

5 . Since

θ is a Quadrant III angle, both its sine and cosine are negative (Can you see why?) so we

conclude sin(θ) = −2
√

5
5 .

3. When we substitute sin(θ) = 1 into cos2(θ) + sin2(θ) = 1, we find cos(θ) = 0.

Another tool which helps immensely in determining cosines and sines of angles is the symmetry
inherent in the Unit Circle. Suppose, for instance, we wish to know the cosine and sine of θ = 5π

6 .
We plot θ in standard position below and, as usual, let P (x, y) denote the point on the terminal
side of θ which lies on the Unit Circle. Note that the terminal side of θ lies π

6 radians short of one

half revolution. In Example 10.2.1, we determined that cos
(
π
6

)
=
√

3
2 and sin

(
π
6

)
= 1

2 . This means

4This is unfortunate from a ‘function notation’ perspective. See Section 10.6.
5See Sections 1.1 and 7.2 for details.
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that the point on the terminal side of the angle π
6 , when plotted in standard position, is

(√
3

2 ,
1
2

)
.

From the figure below, it is clear that the point P (x, y) we seek can be obtained by reflecting that

point about the y-axis. Hence, cos
(

5π
6

)
= −

√
3

2 and sin
(

5π
6

)
= 1

2 .

x

y

1

1

P (x, y) θ = 5π
6

π
6

x

y

1

1

(√
3

2
, 1

2

)
P
(
−
√

3
2
, 1

2

)
π
6

π
6

θ = 5π
6

In the above scenario, the angle π
6 is called the reference angle for the angle 5π

6 . In general, for
a non-quadrantal angle θ, the reference angle for θ (usually denoted α) is the acute angle made
between the terminal side of θ and the x-axis. If θ is a Quadrant I or IV angle, α is the angle
between the terminal side of θ and the positive x-axis; if θ is a Quadrant II or III angle, α is
the angle between the terminal side of θ and the negative x-axis. If we let P denote the point
(cos(θ), sin(θ)), then P lies on the Unit Circle. Since the Unit Circle possesses symmetry with
respect to the x-axis, y-axis and origin, regardless of where the terminal side of θ lies, there is a
point Q symmetric with P which determines θ’s reference angle, α as seen below.

x

y

1

1

P = Q

α

x

y

1

1

P Q

αα

Reference angle α for a Quadrant I angle Reference angle α for a Quadrant II angle
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x

y

1

1

P

Q

α

α
x

y

1

1

P

Q

α

α

Reference angle α for a Quadrant III angle Reference angle α for a Quadrant IV angle

We have just outlined the proof of the following theorem.

Theorem 10.2. Reference Angle Theorem. Suppose α is the reference angle for θ. Then
cos(θ) = ± cos(α) and sin(θ) = ± sin(α), where the choice of the (±) depends on the quadrant in
which the terminal side of θ lies.

In light of Theorem 10.2, it pays to know the cosine and sine values for certain common angles. In
the table below, we summarize the values which we consider essential and must be memorized.

Cosine and Sine Values of Common Angles

θ(degrees) θ(radians) cos(θ) sin(θ)

0◦ 0 1 0

30◦ π
6

√
3

2
1
2

45◦ π
4

√
2

2

√
2

2

60◦ π
3

1
2

√
3

2

90◦ π
2 0 1

Example 10.2.3. Find the cosine and sine of the following angles.

1. θ = 225◦ 2. θ = 11π
6 3. θ = −5π

4 4. θ = 7π
3

Solution.

1. We begin by plotting θ = 225◦ in standard position and find its terminal side overshoots the
negative x-axis to land in Quadrant III. Hence, we obtain θ’s reference angle α by subtracting:
α = θ − 180◦ = 225◦ − 180◦ = 45◦. Since θ is a Quadrant III angle, both cos(θ) < 0 and
sin(θ) < 0. Coupling this with the Reference Angle Theorem, we obtain: cos (225◦) =

− cos (45◦) = −
√

2
2 and sin (225◦) = − sin (45◦) = −

√
2

2 .
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2. The terminal side of θ = 11π
6 , when plotted in standard position, lies in Quadrant IV, just shy

of the positive x-axis. To find θ’s reference angle α, we subtract: α = 2π− θ = 2π− 11π
6 = π

6 .
Since θ is a Quadrant IV angle, cos(θ) > 0 and sin(θ) < 0, so the Reference Angle Theorem

gives: cos
(

11π
6

)
= cos

(
π
6

)
=
√

3
2 and sin

(
11π
6

)
= − sin

(
π
6

)
= −1

2 .

x

y

1

1

θ = 225◦

45◦

Finding cos (225◦) and sin (225◦)

x

y

1

1

θ = 11π
6

π
6

Finding cos
(

11π
6

)
and sin

(
11π
6

)
3. To plot θ = −5π

4 , we rotate clockwise an angle of 5π
4 from the positive x-axis. The terminal

side of θ, therefore, lies in Quadrant II making an angle of α = 5π
4 − π = π

4 radians with
respect to the negative x-axis. Since θ is a Quadrant II angle, the Reference Angle Theorem

gives: cos
(
−5π

4

)
= − cos

(
π
4

)
= −

√
2

2 and sin
(
−5π

4

)
= sin

(
π
4

)
=
√

2
2 .

4. Since the angle θ = 7π
3 measures more than 2π = 6π

3 , we find the terminal side of θ by rotating
one full revolution followed by an additional α = 7π

3 − 2π = π
3 radians. Since θ and α are

coterminal, cos
(

7π
3

)
= cos

(
π
3

)
= 1

2 and sin
(

7π
3

)
= sin

(
π
3

)
=
√

3
2 .

x

y

1

1

θ = − 5π
4

π
4

Finding cos
(
−5π

4

)
and sin

(
−5π

4

)

x

y

1

1

θ = 7π
3

π
3

Finding cos
(

7π
3

)
and sin

(
7π
3

)
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The reader may have noticed that when expressed in radian measure, the reference angle for a
non-quadrantal angle is easy to spot. Reduced fraction multiples of π with a denominator of 6
have π

6 as a reference angle, those with a denominator of 4 have π
4 as their reference angle, and

those with a denominator of 3 have π
3 as their reference angle.6 The Reference Angle Theorem

in conjunction with the table of cosine and sine values on Page 617 can be used to generate the
following figure, which the authors feel should be committed to memory.

x

y

(0, 1)

(1, 0)

(0,−1)

(−1, 0)

(√
2

2 ,
√

2
2

)
(√

3
2 ,

1
2

)

(
1
2 ,
√

3
2

)
(
−
√

2
2 ,
√

2
2

)
(
−
√

3
2 ,

1
2

)

(
−1

2 ,
√

3
2

)

(√
2

2 ,−
√

2
2

)
(√

3
2 ,−

1
2

)

(
1
2 ,−

√
3

2

)
(
−
√

2
2 ,−

√
2

2

)
(
−
√

3
2 ,−

1
2

)

(
−1

2 ,−
√

3
2

)

0, 2π

π

2

π

3π

2

π

4

π

6

π

3
3π

4

5π

6

2π

3

5π

4

7π

6

4π

3

7π

4

11π

6

5π

3

Important Points on the Unit Circle

6For once, we have something convenient about using radian measure in contrast to the abstract theoretical
nonsense about using them as a ‘natural’ way to match oriented angles with real numbers!
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The next example summarizes all of the important ideas discussed thus far in the section.

Example 10.2.4. Suppose α is an acute angle with cos(α) = 5
13 .

1. Find sin(α) and use this to plot α in standard position.

2. Find the sine and cosine of the following angles:

(a) θ = π + α (b) θ = 2π − α (c) θ = 3π − α (d) θ = π
2 + α

Solution.

1. Proceeding as in Example 10.2.2, we substitute cos(α) = 5
13 into cos2(α) + sin2(α) = 1 and

find sin(α) = ±12
13 . Since α is an acute (and therefore Quadrant I) angle, sin(α) is positive.

Hence, sin(α) = 12
13 . To plot α in standard position, we begin our rotation on the positive

x-axis to the ray which contains the point (cos(α), sin(α)) =
(

5
13 ,

12
13

)
.

x

y

1

1 (
5
13 ,

12
13

)
α

Sketching α

2. (a) To find the cosine and sine of θ = π + α, we first plot θ in standard position. We can
imagine the sum of the angles π+α as a sequence of two rotations: a rotation of π radians
followed by a rotation of α radians.7 We see that α is the reference angle for θ, so by
The Reference Angle Theorem, cos(θ) = ± cos(α) = ± 5

13 and sin(θ) = ± sin(α) = ±12
13 .

Since the terminal side of θ falls in Quadrant III, both cos(θ) and sin(θ) are negative,
hence, cos(θ) = − 5

13 and sin(θ) = −12
13 .

7Since π + α = α+ π, θ may be plotted by reversing the order of rotations given here. You should do this.
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x

y

1

1

θ

π

α

Visualizing θ = π + α

x

y

1

1

θ

α

θ has reference angle α

(b) Rewriting θ = 2π − α as θ = 2π + (−α), we can plot θ by visualizing one complete
revolution counter-clockwise followed by a clockwise revolution, or ‘backing up,’ of α
radians. We see that α is θ’s reference angle, and since θ is a Quadrant IV angle, the
Reference Angle Theorem gives: cos(θ) = 5

13 and sin(θ) = −12
13 .

x

y

1

1

θ

2π
−α

Visualizing θ = 2π − α

x

y

1

1

θ

α

θ has reference angle α

(c) Taking a cue from the previous problem, we rewrite θ = 3π − α as θ = 3π + (−α). The
angle 3π represents one and a half revolutions counter-clockwise, so that when we ‘back
up’ α radians, we end up in Quadrant II. Using the Reference Angle Theorem, we get
cos(α) = − 5

13 and sin(α) = 12
13 .



622 Foundations of Trigonometry

x

y

1

1

3π−α

Visualizing 3π − α

x

y

1

1

θ

α

θ has reference angle α

(d) To plot θ = π
2 +α, we first rotate π

2 radians and follow up with α radians. The reference
angle here is not α, so The Reference Angle Theorem is not immediately applicable.
(It’s important that you see why this is the case. Take a moment to think about this
before reading on.) Let Q(x, y) be the point on the terminal side of θ which lies on the
Unit Circle so that x = cos(θ) and y = sin(θ). Once we graph α in standard position,
we use the fact that equal angles subtend equal chords to show that the dotted lines in
the figure below are equal. Hence, x = cos(θ) = −12

13 . Similarly, we find y = sin(θ) = 5
13 .

x

y

1

1

θ

π
2

α

Visualizing θ = π
2

+ α

x

y

1

1
P
(

5
13 ,

12
13

)
Q (x, y) α

α

Using symmetry to determine Q(x, y)

Our next example asks us to solve some very basic trigonometric equations.8

8We will more formally study of trigonometric equations in Section 10.7. Enjoy these relatively straightforward
exercises while they last!
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Example 10.2.5. Find all of the angles which satisfy the given equation.

1. cos(θ) =
1

2
2. sin(θ) = −1

2
3. cos(θ) = 0.

Solution. Since there is no context in the problem to indicate whether to use degrees or radians,
we will default to using radian measure in our answers to each of these problems. This choice will
be justified later in the text when we study what is known as Analytic Trigonometry. In those
sections to come, radian measure will be the only appropriate angle measure so it is worth the time
to become “fluent in radians” now.

1. If cos(θ) = 1
2 , then the terminal side of θ, when plotted in standard position, intersects the

Unit Circle at x = 1
2 . This means θ is a Quadrant I or IV angle with reference angle π

3 .

x

y

11
2

1

π
3

x

y

1

1
2

1

π
3

One solution in Quadrant I is θ = π
3 , and since all other Quadrant I solutions must be

coterminal with π
3 , we find θ = π

3 +2πk for integers k.9 Proceeding similarly for the Quadrant
IV case, we find the solution to cos(θ) = 1

2 here is 5π
3 , so our answer in this Quadrant is

θ = 5π
3 + 2πk for integers k.

2. If sin(θ) = −1
2 , then when θ is plotted in standard position, its terminal side intersects the

Unit Circle at y = −1
2 . From this, we determine θ is a Quadrant III or Quadrant IV angle

with reference angle π
6 .

9Recall in Section 10.1, two angles in radian measure are coterminal if and only if they differ by an integer multiple
of 2π. Hence to describe all angles coterminal with a given angle, we add 2πk for integers k = 0, ±1, ±2, . . . .
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x

y

1

− 1
2

1

π
6

x

y

1

− 1
2

1

π
6

In Quadrant III, one solution is 7π
6 , so we capture all Quadrant III solutions by adding integer

multiples of 2π: θ = 7π
6 + 2πk. In Quadrant IV, one solution is 11π

6 so all the solutions here
are of the form θ = 11π

6 + 2πk for integers k.

3. The angles with cos(θ) = 0 are quadrantal angles whose terminal sides, when plotted in
standard position, lie along the y-axis.

x

y

1

1

π
2

x

y

1

1

π
2

While, technically speaking, π
2 isn’t a reference angle we can nonetheless use it to find our

answers. If we follow the procedure set forth in the previous examples, we find θ = π
2 + 2πk

and θ = 3π
2 + 2πk for integers, k. While this solution is correct, it can be shortened to

θ = π
2 + πk for integers k. (Can you see why this works from the diagram?)

One of the key items to take from Example 10.2.5 is that, in general, solutions to trigonometric
equations consist of infinitely many answers. To get a feel for these answers, the reader is encouraged
to follow our mantra from Chapter 9 - that is, ‘When in doubt, write it out!’ This is especially
important when checking answers to the exercises. For example, another Quadrant IV solution to
sin(θ) = −1

2 is θ = −π
6 . Hence, the family of Quadrant IV answers to number 2 above could just

have easily been written θ = −π
6 + 2πk for integers k. While on the surface, this family may look
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different than the stated solution of θ = 11π
6 + 2πk for integers k, we leave it to the reader to show

they represent the same list of angles.

10.2.1 Beyond the Unit Circle

We began the section with a quest to describe the position of a particle experiencing circular motion.
In defining the cosine and sine functions, we assigned to each angle a position on the Unit Circle. In
this subsection, we broaden our scope to include circles of radius r centered at the origin. Consider
for the moment the acute angle θ drawn below in standard position. Let Q(x, y) be the point on
the terminal side of θ which lies on the circle x2 + y2 = r2, and let P (x′, y′) be the point on the
terminal side of θ which lies on the Unit Circle. Now consider dropping perpendiculars from P and
Q to create two right triangles, ∆OPA and ∆OQB. These triangles are similar, 10 thus it follows
that x

x′ = r
1 = r, so x = rx′ and, similarly, we find y = ry′. Since, by definition, x′ = cos(θ) and

y′ = sin(θ), we get the coordinates of Q to be x = r cos(θ) and y = r sin(θ). By reflecting these
points through the x-axis, y-axis and origin, we obtain the result for all non-quadrantal angles θ,
and we leave it to the reader to verify these formulas hold for the quadrantal angles.

x

y

1

1

r

r

Q (x, y)

P (x′, y′)

θ

θ

x

y

1

O B(x, 0)A(x′, 0)

P (x′, y′)

Q(x, y) = (r cos(θ), r sin(θ))

Not only can we describe the coordinates of Q in terms of cos(θ) and sin(θ) but since the radius of
the circle is r =

√
x2 + y2, we can also express cos(θ) and sin(θ) in terms of the coordinates of Q.

These results are summarized in the following theorem.

Theorem 10.3. Suppose Q(x, y) is the point on the terminal side of an angle θ, plotted in standard
position, which lies on the circle of radius r, x2 + y2 = r2. Then x = r cos(θ) and y = r sin(θ).
Moreover,

cos(θ) =
x

r
=

x√
x2 + y2

and sin(θ) =
y

r
=

y√
x2 + y2

10Do you remember why?
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Note that in the case of the Unit Circle we have r =
√
x2 + y2 = 1, so Theorem 10.3 reduces to

our definitions of cos(θ) and sin(θ).

Example 10.2.6.

1. Suppose that the terminal side of an angle θ, when plotted in standard position, contains the
point Q(4,−2). Find sin(θ) and cos(θ).

2. In Example 10.1.5 in Section 10.1, we approximated the radius of the earth at 41.628◦ north
latitude to be 2960 miles. Justify this approximation if the radius of the Earth at the Equator
is approximately 3960 miles.

Solution.

1. Using Theorem 10.3 with x = 4 and y = −2, we find r =
√

(4)2 + (−2)2 =
√

20 = 2
√

5 so

that cos(θ) = x
r = 4

2
√

5
= 2

√
5

5 and y = y
r = −2

2
√

5
= −

√
5

5 .

2. Assuming the Earth is a sphere, a cross-section through the poles produces a circle of radius
3960 miles. Viewing the Equator as the x-axis, the value we seek is the x-coordinate of the
point Q(x, y) indicated in the figure below.

x

y

Q(4,−2)

−4 −2 2 4

−2

−4

2

4

The terminal side of θ contains Q(4,−2)

x

y

3960

3960

Q (x, y)

41.628◦

A point on the Earth at 41.628◦N

Using Theorem 10.3, we get x = 3960 cos (41.628◦). Using a calculator in ‘degree’ mode, we
find 3960 cos (41.628◦) ≈ 2960. Hence, the radius of the Earth at North Latitude 41.628◦ is
approximately 2960 miles.
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Theorem 10.3 gives us what we need to describe the position of an object traveling in a circular
path of radius r with constant angular velocity ω. Suppose that at time t, the object has swept
out an angle measuring θ radians. If we assume that the object is at the point (r, 0) when t = 0,
the angle θ is in standard position. By definition, ω = θ

t which we rewrite as θ = ωt. According
to Theorem 10.3, the location of the object Q(x, y) on the circle is found using the equations
x = r cos(θ) = r cos(ωt) and y = r sin(θ) = r sin(ωt). Hence, at time t, the object is at the point
(r cos(ωt), r sin(ωt)).11

x

y

1

1

r

r
Q (x, y) = (r cos(ωt), r sin(ωt))

θ = ωt

Equations for Circular Motion

Example 10.2.7. Suppose we are in the situation of Example 10.1.5. Find the equations of motion
of Lakeland Community College as the earth rotates.

Solution. From Example 10.1.5, we take r = 2960 miles and and ω = π
12 hours . Hence, the

equations of motion are x = r cos(ωt) = 2960 cos
(
π
12 t
)

and y = r sin(ωt) = 2960 sin
(
π
12 t
)
, where x

and y are measured in miles and t is measured in hours.

In addition to circular motion, Theorem 10.3 is also the key to developing what is usually called
‘right triangle’ trigonometry.12 As we shall see in the sections to come, many applications in
trigonometry involve finding the measures of the angles in, and lengths of the sides of, right triangles.
Indeed, we made good use of some properties of right triangles to find the exact values of the cosine
and sine of many of the angles in Example 10.2.1, so the following development shouldn’t be that
much of a surprise. Consider the generic right triangle below with corresponding acute angle θ.
The side with length a is called the side of the triangle adjacent to θ; the side with length b is
called the side of the triangle opposite θ; and the remaining side of length c (the side opposite the
right angle) is called the hypotenuse. We now imagine drawing this triangle in Quadrant I so that
the angle θ is in standard position with the adjacent side to θ lying along the positive x-axis.

11If the object does not start at (r, 0) when t = 0, the equations of motion need to be adjusted accordingly. If
t0 > 0 is the first time the object passes through the point (r, 0), it can be shown the position of the object is given
by x = r cos(ω(t− t0)) and y = r sin(ω(t− t0)).

12You may have been exposed to this in High School.



628 Foundations of Trigonometry

θ

a

b
c

x

y

c

c

P (a, b)

θ

According to the Pythagorean Theorem, a2 + b2 = c2, so that the point P (a, b) lies on a circle of
radius c. Theorem 10.3 tells us that cos(θ) = a

c and sin(θ) = b
c , so we have determined the cosine

and sine of θ in terms of the lengths of the sides of the right triangle. Thus we have the following
theorem.

Theorem 10.4. Suppose θ is an acute angle residing in a right triangle. If the length of the side
adjacent to θ is a, the length of the side opposite θ is b, and the length of the hypotenuse is c,

then cos(θ) =
a

c
and sin(θ) =

b

c
.

Example 10.2.8. Find the measure of the missing angle and the lengths of the missing sides of:

30◦

7

Solution. The first and easiest task is to find the measure of the missing angle. Since the sum of
angles of a triangle is 180◦, we know that the missing angle has measure 180◦ − 30◦ − 90◦ = 60◦.
We now proceed to find the lengths of the remaining two sides of the triangle. Let c denote the
length of the hypotenuse of the triangle. By Theorem 10.4, we have cos (30◦) = 7

c , or c = 7
cos(30◦) .

Since cos (30◦) =
√

3
2 , we have, after the usual fraction gymnastics, c = 14

√
3

3 . At this point, we
have two ways to proceed to find the length of the side opposite the 30◦ angle, which we’ll denote

b. We know the length of the adjacent side is 7 and the length of the hypotenuse is 14
√

3
3 , so we

could use the Pythagorean Theorem to find the missing side and solve (7)2 + b2 =
(

14
√

3
3

)2
for b.

Alternatively, we could use Theorem 10.4, namely that sin (30◦) = b
c . Choosing the latter, we find

b = c sin (30◦) = 14
√

3
3 · 1

2 = 7
√

3
3 . The triangle with all of its data is recorded below.
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30◦

7

b = 7
√

3
3

c = 14
√

3
3 60◦

We close this section by noting that we can easily extend the functions cosine and sine to real
numbers by identifying a real number t with the angle θ = t radians. Using this identification, we
define cos(t) = cos(θ) and sin(t) = sin(θ). In practice this means expressions like cos(π) and sin(2)
can be found by regarding the inputs as angles in radian measure or real numbers; the choice is
the reader’s. If we trace the identification of real numbers t with angles θ in radian measure to its
roots on page 604, we can spell out this correspondence more precisely. For each real number t, we
associate an oriented arc t units in length with initial point (1, 0) and endpoint P (cos(t), sin(t)).

x

y

1

1

θ = t

t

x

y

1

1
P (cos(t), sin(t))

θ = t

In the same way we studied polynomial, rational, exponential, and logarithmic functions, we will
study the trigonometric functions f(t) = cos(t) and g(t) = sin(t). The first order of business is to
find the domains and ranges of these functions. Whether we think of identifying the real number
t with the angle θ = t radians, or think of wrapping an oriented arc around the Unit Circle to
find coordinates on the Unit Circle, it should be clear that both the cosine and sine functions are
defined for all real numbers t. In other words, the domain of f(t) = cos(t) and of g(t) = sin(t)
is (−∞,∞). Since cos(t) and sin(t) represent x- and y-coordinates, respectively, of points on the
Unit Circle, they both take on all of the values between −1 an 1, inclusive. In other words, the
range of f(t) = cos(t) and of g(t) = sin(t) is the interval [−1, 1]. To summarize:

Theorem 10.5. Domain and Range of the Cosine and Sine Functions:

• The function f(t) = cos(t) • The function g(t) = sin(t)

– has domain (−∞,∞) – has domain (−∞,∞)

– has range [−1, 1] – has range [−1, 1]
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Suppose, as in the Exercises, we are asked to solve an equation such as sin(t) = −1
2 . As we have

already mentioned, the distinction between t as a real number and as an angle θ = t radians is often
blurred. Indeed, we solve sin(t) = −1

2 in the exact same manner13 as we did in Example 10.2.5
number 2. Our solution is only cosmetically different in that the variable used is t rather than θ:
t = 7π

6 +2πk or t = 11π
6 +2πk for integers, k. We will study the cosine and sine functions in greater

detail in Section 10.5. Until then, keep in mind that any properties of cosine and sine developed
in the following sections which regard them as functions of angles in radian measure apply equally
well if the inputs are regarded as real numbers.

13Well, to be pedantic, we would be technically using ‘reference numbers’ or ‘reference arcs’ instead of ‘reference
angles’ – but the idea is the same.
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10.2.2 Exercises

1. Find the exact value of the cosine and sine of the following angles.

(a) θ = 0

(b) θ =
π

4

(c) θ =
π

3

(d) θ =
π

2

(e) θ =
2π

3

(f) θ =
3π

4

(g) θ = π

(h) θ =
7π

6

(i) θ =
5π

4

(j) θ =
4π

3

(k) θ =
3π

2

(l) θ =
5π

3

(m) θ =
7π

4

(n) θ =
23π

6

(o) θ = −13π

2

(p) θ = −43π

6

(q) θ = −3π

4

(r) θ = −π
6

(s) θ =
10π

3

(t) θ = 117π

2. (a) If sin(θ) = − 7

25
with θ in Quadrant IV, what is cos(θ)?

(b) If cos(θ) =
4

9
with θ in Quadrant I, what is sin(θ)?

(c) If sin(θ) =
5

13
with θ in Quadrant II, what is cos(θ)?

(d) If cos(θ) = − 2

11
with θ in Quadrant III, what is sin(θ)?

(e) If sin(θ) = −2

3
with θ in Quadrant III, what is cos(θ)?

(f) If cos(θ) =
28

53
with θ in Quadrant IV, what is sin(θ)?

3. Find all of the angles which satisfy the given equations.

(a) sin(θ) =
1

2

(b) cos(θ) = −
√

3

2

(c) sin(θ) = 0

(d) cos(θ) =

√
2

2

(e) sin(θ) =

√
3

2

(f) cos(θ) = −1

4. Solve each equation for t. (See the comments following Theorem 10.5.)

(a) cos(t) = 0

(b) sin(t) = −
√

2

2

(c) cos(t) = 3

(d) sin(t) = −1

2

(e) cos(t) =
1

2
(f) sin(t) = −2

(g) cos(t) = 1

(h) sin(t) = 1

(i) cos(t) = −
√

2

2
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5. Use your calculator to approximate the following to three decimal places. Make sure your
calculator is in the proper angle measurement mode!

(a) sin(78.95◦) (b) cos(−2.01) (c) sin(392.994) (d) cos(207◦)

6. Use Theorem 10.4 to answer the following.

(a) If θ = 12◦ and the side adjacent to θ has length 4, how long is the hypotenuse?

(b) If θ = 78.123◦ and the hypotenuse has length 5280, how long is the side adjacent to θ?

(c) If θ = 59◦ and the side opposite θ has length 117.42, how long is the hypotenuse?

(d) If θ = 5◦ and the hypotenuse has length 10, how long is the side opposite θ?

(e) If θ = 5◦ and the hypotenuse has length 10, how long is the side adjacent to θ?

(f) If θ = 37.5◦ and the side opposite θ has length 306, how long is the side adjacent to θ?

7. For each of the following points, let θ be the angle in standard position whose terminal side
contains the point. Compute cos(θ) and sin(θ).

(a) P (−7, 24) (b) Q(3, 4) (c) R(5,−9) (d) T (−2,−11)

8. Let α and β be the two acute angles of a right triangle. (Thus α and β are complementary
angles.) Show that sin(α) = cos(β) and sin(β) = cos(α). The fact that co-functions of
complementary angles are equal in this case is not an accident and a more general result will
be given in Section 10.4.
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10.2.3 Answers

1. (a) cos(0) = 1
sin(0) = 0

(b) cos
(π

4

)
=

√
2

2

sin
(π

4

)
=

√
2

2

(c) cos
(π

3

)
=

1

2

sin
(π

3

)
=

√
3

2

(d) cos
(π

2

)
= 0

sin
(π

2

)
= 1

(e) cos

(
2π

3

)
= −1

2

sin

(
2π

3

)
=

√
3

2

(f) cos

(
3π

4

)
= −
√

2

2

sin

(
3π

4

)
=

√
2

2

(g) cos(π) = −1
sin(π) = 0

(h) cos

(
7π

6

)
= −
√

3

2

sin

(
7π

6

)
= −1

2

(i) cos

(
5π

4

)
= −
√

2

2

sin

(
5π

4

)
= −
√

2

2

(j) cos

(
4π

3

)
= −1

2

sin

(
4π

3

)
= −
√

3

2

(k) cos

(
3π

2

)
= 0

sin

(
3π

2

)
= −1

(l) cos

(
5π

3

)
=

1

2

sin

(
5π

3

)
= −
√

3

2

(m) cos

(
7π

4

)
=

√
2

2

sin

(
7π

4

)
= −
√

2

2

(n) cos

(
23π

6

)
=

√
3

2

sin

(
23π

6

)
= −1

2

(o) cos

(
−13π

2

)
= 0

sin

(
−13π

2

)
= −1

(p) cos

(
−43π

6

)
= −
√

3

2

sin

(
−43π

6

)
=

1

2

(q) cos

(
−3π

4

)
= −
√

2

2

sin

(
−3π

4

)
= −
√

2

2

(r) cos
(
−π

6

)
=

√
3

2

sin
(
−π

6

)
= −1

2

(s) cos

(
10π

3

)
= −1

2

sin

(
10π

3

)
= −
√

3

2

(t) cos(117π) = −1
sin(117π) = 0

2. (a) If sin(θ) = − 7

25
with θ in Quadrant IV, then cos(θ) =

24

25
.

(b) If cos(θ) =
4

9
with θ in Quadrant I, then sin(θ) =

√
65

9
.

(c) If sin(θ) =
5

13
with θ in Quadrant II, then cos(θ) = −12

13
.

(d) If cos(θ) = − 2

11
with θ in Quadrant III, then sin(θ) = −

√
117

11
.

(e) If sin(θ) = −2

3
with θ in Quadrant III, then cos(θ) = −

√
5

3
.

(f) If cos(θ) =
28

53
with θ in Quadrant IV, then sin(θ) = −45

53
.

3. (a) sin(θ) =
1

2
when θ =

π

6
+ 2kπ or θ =

5π

6
+ 2kπ for any integer k.
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(b) cos(θ) = −
√

3

2
when θ =

5π

6
+ 2kπ or θ =

7π

6
+ 2kπ for any integer k.

(c) sin(θ) = 0 when θ = kπ for any integer k.

(d) cos(θ) =

√
2

2
when θ =

π

4
+ 2kπ or θ =

7π

4
+ 2kπ for any integer k.

(e) sin(θ) =

√
3

2
when θ =

π

3
+ 2kπ or θ =

2π

3
+ 2kπ for any integer k.

(f) cos(θ) = −1 when θ = (2k + 1)π for any integer k.

4. (a) cos(t) = 0 when t =
π

2
+ kπ for any integer k.

(b) sin(t) = −
√

2

2
when t =

5π

4
+ 2kπ or t =

7π

4
+ 2kπ for any integer k.

(c) cos(t) = 3 never happens.

(d) sin(t) = −1

2
when t =

7π

6
+ 2kπ or t =

11π

6
+ 2kπ for any integer k.

(e) cos(t) =
1

2
when t =

π

3
+ 2kπ or t =

5π

3
+ 2kπ for any integer k.

(f) sin(t) = −2 never happens

(g) cos(t) = 1 when t = 2kπ for any integer k.

(h) sin(t) = 1 when t =
π

2
+ 2kπ for any integer k.

(i) cos(t) = −
√

2

2
when t =

3π

4
+ 2kπ or t =

5π

4
+ 2kπ for any integer k.

5. (a) sin(78.95◦) ≈ 0.981

(b) cos(−2.01) ≈ −0.425

(c) sin(392.994) ≈ −0.291

(d) cos(207◦) ≈ −0.891

6. (a) The hypotenuse has length ≈ 4.089.

(b) The side adjacent to θ has length ≈ 1086.68.

(c) The hypotenuse has length ≈ 100.65.

(d) The side opposite θ has length ≈ 0.872.

(e) The side adjacent to θ has length ≈ 9.962.

(f) The side adjacent to θ has length ≈ 398.79.

7. (a) cos(θ) = − 7

25
, sin(θ) =

24

25

(b) cos(θ) =
3

5
, sin(θ) =

4

5

(c) cos(θ) =
5√
106

, sin(θ) = − 9√
106

(d) cos(θ) = − 2√
125

, sin(θ) = − 11√
125



10.3 The Six Circular Functions and Fundamental Identities 635

10.3 The Six Circular Functions and Fundamental Identities

In section 10.2, we defined cos(θ) and sin(θ) for angles θ using the coordinate values of points on
the Unit Circle. As such, these functions earn the moniker circular functions. It turns out that
cosine and sine are just two of the six commonly used circular functions which we define below.

Definition 10.2. The Circular Functions: Suppose θ is an angle plotted in standard position
and P (x, y) is the point on the terminal side of θ which lies on the Unit Circle.

• The cosine of θ, denoted cos(θ), is defined by cos(θ) = x.

• The sine of θ, denoted sin(θ), is defined by sin(θ) = y.

• The secant of θ, denoted sec(θ), is defined by sec(θ) =
1

x
, provided x 6= 0.

• The cosecant of θ, denoted csc(θ), is defined by csc(θ) =
1

y
, provided y 6= 0.

• The tangent of θ, denoted tan(θ), is defined by tan(θ) =
y

x
, provided x 6= 0.

• The cotangent of θ, denoted cot(θ), is defined by cot(θ) =
x

y
, provided y 6= 0.

While we left the history of the name ‘sine’ as an interesting research project in Section 10.2, the
names ‘tangent’ and ‘secant’ can be explained using the diagram below. Consider the acute angle θ
below in standard position. Let P (x, y) denote, as usual, the point on the terminal side of θ which
lies on the Unit Circle and let Q(1, y′) denote the point on the terminal side of θ which lies on the
vertical line x = 1.

θ

x

y

1

O B(1, 0)A(x, 0)

P (x, y)

Q(1, y′) = (1, tan(θ))
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The word ‘tangent’ comes from the Latin meaning ‘to touch,’ and for this reason, the line x = 1
is called a tangent line to the Unit Circle since it intersects, or ‘touches’, the circle at only one
point, namely (1, 0). Dropping perpendiculars from P and Q creates a pair of similar triangles

∆OPA and ∆OQB. Thus y′

y = 1
x which gives y′ = y

x = tan(θ), where this last equality comes from
applying Definition 10.2. We have just shown that for acute angles θ, tan(θ) is the y-coordinate of
the point on the terminal side of θ which lies on the line x = 1 which is tangent to the Unit Circle.
Now the word ‘secant’ means ‘to cut’, so a secant line is any line that ‘cuts through’ a circle at two
points.1 The line containing the terminal side of θ is a secant line since it intersects the Unit Circle
in Quadrants I and III. With the point P lying on the Unit Circle, the length of the hypotenuse
of ∆OPA is 1. If we let h denote the length of the hypotenuse of ∆OQB, we have from similar
triangles that h

1 = 1
x , or h = 1

x = sec(θ). Hence for an acute angle θ, sec(θ) is the length of the line
segment which lies on the secant line determined by the terminal side of θ and ‘cuts off’ the tangent
line x = 1. Not only do these observations help explain the names of these functions, they serve as
the basis for a fundamental inequality needed for Calculus which we’ll explore in the Exercises.

Of the six circular functions, only cosine and sine are defined for all angles. Since cos(θ) = x and
sin(θ) = y in Definition 10.2, it is customary to rephrase the remaining four circular functions in
terms of cosine and sine. The following theorem is a result of simply replacing x with cos(θ) and y
with sin(θ) in Definition 10.2.

Theorem 10.6. Reciprocal and Quotient Identities:

• sec(θ) =
1

cos(θ)
, provided cos(θ) 6= 0; if cos(θ) = 0, sec(θ) is undefined.

• csc(θ) =
1

sin(θ)
, provided sin(θ) 6= 0; if sin(θ) = 0, csc(θ) is undefined.

• tan(θ) =
sin(θ)

cos(θ)
, provided cos(θ) 6= 0; if cos(θ) = 0, tan(θ) is undefined.

• cot(θ) =
cos(θ)

sin(θ)
, provided sin(θ) 6= 0; if sin(θ) = 0, cot(θ) is undefined.

It is high time for an example.

Example 10.3.1. Find the indicated value, if it exists.

1. sec (60◦) 2. csc
(

7π
4

)
3. cot(3)

4. tan (θ), where θ is any angle coterminal with 3π
2 .

5. cos (θ), where csc(θ) = −
√

5 and θ is a Quadrant IV angle.

6. sin (θ), where tan(θ) = 3 and θ is a Quadrant III angle.

1Compare this with the definition given in Section 2.1.
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Solution.

1. According to Theorem 10.6, sec (60◦) = 1
cos(60◦) . Hence, sec (60◦) = 1

(1/2) = 2.

2. Since sin
(

7π
4

)
= −

√
2

2 , csc
(

7π
4

)
= 1

sin( 7π
4 )

= 1
−
√

2/2
= − 2√

2
= −
√

2.

3. Since θ = 3 radians is not one of the ‘common angles’ from Section 10.2, we resort to the
calculator for a decimal approximation. Ensuring that the calculator is in radian mode, we
find cot(3) = cos(3)

sin(3) ≈ −7.015.

4. If θ is coterminal with 3π
2 , then cos(θ) = cos

(
3π
2

)
= 0 and sin(θ) = sin

(
3π
2

)
= −1. Attempting

to compute tan(θ) = sin(θ)
cos(θ) results in −1

0 , so tan(θ) is undefined.

5. We are given that csc(θ) = 1
sin(θ) = −

√
5 so sin(θ) = − 1√

5
= −

√
5

5 . As we saw in Section 10.2,

we can use the Pythagorean Identity, cos2(θ) + sin2(θ) = 1, to find cos(θ) by knowing sin(θ).

Substituting, we get cos2(θ)+
(
−
√

5
5

)2
= 1, which gives cos2(θ) = 4

5 , or cos(θ) = ±2
√

5
5 . Since

θ is a Quadrant IV angle, cos(θ) > 0, so cos(θ) = 2
√

5
5 .

6. If tan(θ) = 3, then sin(θ)
cos(θ) = 3. Be careful - this does NOT mean we can take sin(θ) = 3 and

cos(θ) = 1. Instead, from sin(θ)
cos(θ) = 3 we get: sin(θ) = 3 cos(θ). To relate cos(θ) and sin(θ), we

once again employ the Pythagorean Identity, cos2(θ) + sin2(θ) = 1. Solving sin(θ) = 3 cos(θ)
for cos(θ), we find cos(θ) = 1

3 sin(θ). Substituting this into the Pythagorean Identity, we

find sin2(θ) +
(

1
3 sin(θ)

)2
= 1. Solving, we get sin2(θ) = 9

10 so sin(θ) = ±3
√

10
10 . Since θ is a

Quadrant III angle, we know sin(θ) < 0, so our final answer is sin(θ) = −3
√

10
10 .

While the Reciprocal and Quotient Identities presented in Theorem 10.6 allow us to always reduce
problems involving secant, cosecant, tangent and cotangent to problems involving cosine and sine,
it is not always convenient to do so.2 It is worth taking the time to memorize the tangent and
cotangent values of the common angles summarized below.

2As we shall see shortly, when solving equations involving secant and cosecant, we usually convert back to cosines
and sines. However, when solving for tangent or cotangent, we usually stick with what we’re dealt.
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Tangent and Cotangent Values of Common Angles

θ(degrees) θ(radians) tan(θ) cot(θ)

0◦ 0 0 undefined

30◦ π
6

√
3

3

√
3

45◦ π
4 1 1

60◦ π
3

√
3

√
3

3

90◦ π
2 undefined 0

Coupling Theorem 10.6 with the Reference Angle Theorem, Theorem 10.2, we get the following.

Theorem 10.7. Generalized Reference Angle Theorem. The values of the circular functions
of an angle, if they exist, are the same, up to a sign, of the corresponding circular functions of
its reference angle. More specifically, if α is the reference angle for θ, then: cos(θ) = ± cos(α),
sin(θ) = ± sin(α), sec(θ) = ± sec(α), csc(θ) = ± csc(α), tan(θ) = ± tan(α) and cot(θ) = ± cot(α).
The choice of the (±) depends on the quadrant in which the terminal side of θ lies.

We put Theorem 10.7 to good use in the following example.

Example 10.3.2. Find all angles which satisfy the given equation.

1. sec(θ) = 2 2. tan(θ) =
√

3 3. cot(θ) = −1.

Solution.

1. To solve sec(θ) = 2, we convert to cosines and get 1
cos(θ) = 2 or cos(θ) = 1

2 . This is the exact

same equation we solved in Example 10.2.5, number 1, so we know the answer is: θ = π
3 +2πk

or θ = 5π
3 + 2πk for integers k.

2. From the table of common values, we see tan
(
π
3

)
=
√

3. According to Theorem 10.7, we

know the solutions to tan(θ) =
√

3 must, therefore, have a reference angle of π
3 . Our next

task is to determine in which quadrants the solutions to this equation lie. Since tangent is
defined as the ratio y

x , of points (x, y), x 6= 0, on the Unit Circle, tangent is positive when x
and y have the same sign (i.e., when they are both positive or both negative.) This happens
in Quadrants I and III. In Quadrant I, we get the solutions: θ = π

3 + 2πk for integers k, and
for Quadrant III, we get θ = 4π

3 +2πk for integers k. While these descriptions of the solutions
are correct, they can be combined into one list as θ = π

3 + πk for integers k. The latter form
of the solution is best understood looking at the geometry of the situation in the diagram
below.3

3See Example 10.2.5 number 3 in Section 10.2 for another example of this kind of simplification of the solution.
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x

y

1

1

π
3

x

y

1

1

π
3

3. From the table of common values, we see that π
4 has a cotangent of 1, which means the

solutions to cot(θ) = −1 have a reference angle of π
4 . To find the quadrants in which our

solutions lie, we note that cot(θ) = x
y , for a point (x, y), y 6= 0, on the Unit Circle. If cot(θ) is

negative, then x and y must have different signs (i.e., one positive and one negative.) Hence,
our solutions lie in Quadrants II and IV. Our Quadrant II solution is θ = 3π

4 + 2πk, and for
Quadrant IV, we get θ = 7π

4 + 2πk for integers k. Can these lists be combined? We see that,
in fact, they can. One way to capture all the solutions is: θ = 3π

4 + πk for integers k.

x

y

1

1

π
4

x

y

1

1

π
4

We have already seen the importance of identities in trigonometry. Our next task is to use use the
Reciprocal and Quotient Identities found in Theorem 10.6 coupled with the Pythagorean Identity
found in Theorem 10.1 to derive new Pythagorean-like identities for the remaining four circular
functions. Assuming cos(θ) 6= 0, we may start with cos2(θ) + sin2(θ) = 1 and divide both sides

by cos2(θ) to obtain 1 + sin2(θ)
cos2(θ)

= 1
cos2(θ)

. Using properties of exponents along with the Reciprocal

and Quotient Identities, reduces this to 1 + tan2(θ) = sec2(θ). If sin(θ) 6= 0, we can divide both
sides of the identity cos2(θ) + sin2(θ) = 1 by sin2(θ), apply Theorem 10.6 once again, and obtain
cot2(θ) + 1 = csc2(θ). These three Pythagorean Identities are worth memorizing, and they are
summarized in the following theorem.
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Theorem 10.8. The Pythagorean Identities:

• cos2(θ) + sin2(θ) = 1.

• 1 + tan2(θ) = sec2(θ), provided cos(θ) 6= 0.

• cot2(θ) + 1 = csc2(θ), provided sin(θ) 6= 0.

Trigonometric identities play an important role in not just Trigonometry, but in Calculus as well.
We’ll use them in this book to find the values of the circular functions of an angle and solve equations
and inequalities. In Calculus, they are needed to simplify otherwise complicated expressions. In
the next example, we make good use of the Theorems 10.6 and 10.8.

Example 10.3.3. Verify the following identities. Assume that all quantities are defined.

1.
1

csc(θ)
= sin(θ)

2. tan(θ) = sin(θ) sec(θ)

3. (sec(θ)− tan(θ))(sec(θ) + tan(θ)) = 1

4.
sec(θ)

1− tan(θ)
=

1

cos(θ)− sin(θ)

5. 6 sec(θ) tan(θ) =
3

1− sin(θ)
− 3

1 + sin(θ)

6.
sin(θ)

1− cos(θ)
=

1 + cos(θ)

sin(θ)

Solution. In verifying identities, we typically start with the more complicated side of the equation
and use known identities to transform it into the other side of the equation.

1. To verify 1
csc(θ) = sin(θ), we start with the left side. Using csc(θ) = 1

sin(θ) , we get:

1

csc(θ)
=

1
1

sin(θ)

= sin(θ),

which is what we were trying to prove.

2. Starting with the right hand side of tan(θ) = sin(θ) sec(θ), we use sec(θ) = 1
cos(θ) and find:

sin(θ) sec(θ) = sin(θ)
1

cos(θ)
=

sin(θ)

cos(θ)
= tan(θ),

where the last equality is courtesy of Theorem 10.6.

3. Expanding the left hand side of the equation gives: (sec(θ) − tan(θ))(sec(θ) + tan(θ)) =
sec2(θ)− tan2(θ). According to Theorem 10.8, sec2(θ) = 1 + tan2(θ). Putting it all together,

(sec(θ)− tan(θ))(sec(θ) + tan(θ)) = sec2(θ)− tan2(θ) =
(
1 + tan2(θ)

)
− tan2(θ) = 1.
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4. While both sides of our last identity contain fractions, the left side affords us more opportu-
nities to use our identities.4 Substituting sec(θ) = 1

cos(θ) and tan(θ) = sin(θ)
cos(θ) , we get:

sec(θ)

1− tan(θ)
=

1

cos(θ)

1− sin(θ)

cos(θ)

=

1

cos(θ)

1− sin(θ)

cos(θ)

· cos(θ)

cos(θ)

=

(
1

cos(θ)

)
(cos(θ))(

1− sin(θ)

cos(θ)

)
(cos(θ))

=
1

(1)(cos(θ))−
(

sin(θ)

cos(θ)

)
(cos(θ))

=
1

cos(θ)− sin(θ)
,

which is exactly what we had set out to show.

5. The right hand side of the equation seems to hold more promise. We get common denomina-
tors and add:

3

1− sin(θ)
− 3

1 + sin(θ)
=

3(1 + sin(θ))

(1− sin(θ))(1 + sin(θ))
− 3(1− sin(θ))

(1 + sin(θ))(1− sin(θ))

=
3 + 3 sin(θ)

1− sin2(θ)
− 3− 3 sin(θ)

1− sin2(θ)

=
(3 + 3 sin(θ))− (3− 3 sin(θ))

1− sin2(θ)

=
6 sin(θ)

1− sin2(θ)

At this point, it is worth pausing to remind ourselves of our goal. We wish to trans-
form this expression into 6 sec(θ) tan(θ). Using a reciprocal and quotient identity, we find

4Or, to put to another way, earn more partial credit if this were an exam question!
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6 sec(θ) tan(θ) = 6
(

1
cos(θ)

)(
sin(θ)
cos(θ)

)
. In other words, we need to get cosines in our denomi-

nator. To that end, we recall the Pythagorean Identity cos2(θ) + sin2(θ) = 1 which we can
rewrite as cos2(θ) = 1− sin2(θ). Putting all of this together we finish our proof:

3

1− sin(θ)
− 3

1 + sin(θ)
=

6 sin(θ)

1− sin2(θ)

=
6 sin(θ)

cos2(θ)

= 6

(
1

cos(θ)

)(
sin(θ)

cos(θ)

)
= 6 sec(θ) tan(θ)

6. It is debatable which side of the identity is more complicated. One thing which stands out is
the denominator on the left hand side is 1−cos(θ), while the numerator of the right hand side
is 1 + cos(θ). This suggests the strategy of starting with the left hand side and multiplying
the numerator and denominator by the quantity 1 + cos(θ):

sin(θ)

1− cos(θ)
=

sin(θ)

(1− cos(θ))
· (1 + cos(θ))

(1 + cos(θ))

=
sin(θ)(1 + cos(θ))

(1− cos(θ))(1 + cos(θ))

=
sin(θ)(1 + cos(θ))

1− cos2(θ)

=
sin(θ)(1 + cos(θ))

sin2(θ)

=
���sin(θ)(1 + cos(θ))

���sin(θ) sin(θ)

=
1 + cos(θ)

sin(θ)

The reader is encouraged to study the techniques demonstrated in Example 10.3.3. Simply mem-
orizing the fundamental identities is not enough to guarantee success in verifying more complex
identities; a fair amount of Algebra is usually required as well. Be on the lookout for opportunities
to simplify complex fractions and get common denominators. Another common technique is to
exploit so-called ‘Pythagorean Conjugates.’ These are factors such as 1− sin(θ) and 1 + sin(θ),
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which, when multiplied, produce a difference of squares that can be simplified to one term using
one of the Pythagorean Identities in Theorem 10.8. Below is a list of the (basic) Pythagorean
Conjugates and their products.

Pythagorean Conjugates

• 1 + cos(θ) and 1− cos(θ): (1 + cos(θ))(1− cos(θ)) = 1− cos2(θ) = sin2(θ)

• 1 + sin(θ) and 1− sin(θ): (1 + sin(θ))(1− sin(θ)) = 1− sin2(θ) = cos2(θ)

• sec(θ)+tan(θ) and sec(θ)−tan(θ): (sec(θ)+tan(θ))(sec(θ)−tan(θ)) = sec2(θ)−tan2(θ) = 1

• csc(θ) + cot(θ) and csc(θ)− cot(θ): (csc(θ) + cot(θ))(csc(θ)− cot(θ)) = csc2(θ)− cot2(θ) = 1

10.3.1 Beyond the Unit Circle

In Section 10.2, we generalized the functions cosine and sine from coordinates on the Unit Circle
to coordinates on circles of radius r. Using Theorem 10.3 in conjunction with Theorem 10.8, we
generalize the remaining circular functions in kind.

Theorem 10.9. Suppose Q(x, y) is the point on the terminal side of an angle θ (plotted in
standard position) which lies on the circle of radius r, x2 + y2 = r2. Then:

• sec(θ) =
r

x
=

√
x2 + y2

x
, provided x 6= 0.

• csc(θ) =
r

y
=

√
x2 + y2

y
, provided y 6= 0.

• tan(θ) =
y

x
, provided x 6= 0.

• cot(θ) =
x

y
, provided y 6= 0.

Example 10.3.4.

1. Suppose the terminal side of θ, when plotted in standard position, contains the point Q(3,−4).
Find the values of the six circular functions of θ.

2. Suppose θ is a Quadrant IV angle with cot(θ) = −4. Find the values of the five remaining
circular functions of θ.

Solution.

1. Since x = 3 and y = −4, r =
√
x2 + y2 =

√
(3)2 + (−4)2 =

√
25 = 5. Theorem 10.9 tells us

cos(θ) = 3
5 , sin(θ) = −4

5 , sec(θ) = 5
3 , csc(θ) = −5

4 , tan(θ) = −4
3 , and cot(θ) = −3

4 .
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2. In order to use Theorem 10.9, we need to find a point Q(x, y) which lies on the terminal side
of θ, when θ is plotted in standard position. We have that cot(θ) = −4 = x

y , and since θ is a

Quadrant IV angle, we also know x > 0 and y < 0. Viewing −4 = 4
−1 , we may choose5 x = 4

and y = −1 so that r =
√
x2 + y2 =

√
(4)2 + (−1)2 =

√
17. Applying Theorem 10.9 once

more, we find cos(θ) = 4√
17

= 4
√

17
17 , sin(θ) = − 1√

17
= −

√
17

17 , sec(θ) =
√

17
4 , csc(θ) = −

√
17,

and tan(θ) = −1
4 .

We may also specialize Theorem 10.9 to the case of acute angles θ which reside in a right triangle,
as visualized below.

θ

a

b
c

Theorem 10.10. Suppose θ is an acute angle residing in a right triangle. If the length of the side
adjacent to θ is a, the length of the side opposite θ is b, and the length of the hypotenuse is c,
then

tan(θ) =
b

a
sec(θ) =

c

a
csc(θ) =

c

b
cot(θ) =

a

b

The following example uses Theorem 10.10 as well as the concept of an ‘angle of inclination.’ The
angle of inclination (or angle of elevation) of an object refers to the angle whose initial side is some
kind of base-line (say, the ground), and whose terminal side is the line-of-sight to an object above
the base-line. This is represented schematically below.

θ

‘base line’

object

The angle of inclination from the base line to the object is θ

5We may choose any values x and y so long as x > 0, y < 0 and x
y

= −4. For example, we could choose x = 8
and y = −2. The fact that all such points lie on the terminal side of θ is a consequence of the fact that the terminal
side of θ is the portion of the line with slope − 1

4
which extends from the origin into Quadrant IV.
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Example 10.3.5.

1. The angle of inclination from a point on the ground 30 feet away to the top of Lakeland’s
Armington Clocktower6 is 60◦. Find the height of the Clocktower to the nearest foot.

2. In order to determine the height of a California Redwood tree, two sightings from the ground,
one 200 feet directly behind the other, are made. If the angles of inclination were 45◦ and
30◦, respectively, how tall is the tree to the nearest foot?

Solution.

1. We can represent the problem situation using a right triangle as shown below. If we let h
denote the height of the tower, then Theorem 10.10 gives tan (60◦) = h

30 . From this we get

h = 30 tan (60◦) = 30
√

3 ≈ 51.96. Hence, the Clocktower is approximately 52 feet tall.

60◦

30 ft.

h ft.

Finding the height of the Clocktower

2. Sketching the problem situation below, we find ourselves with two unknowns: the height h of
the tree and the distance x from the base of the tree to the first observation point.

45◦30◦

200 ft. x ft.

h ft.

Finding the height of a California Redwood

6Named in honor of Raymond Q. Armington, Lakeland’s Clocktower has been a part of campus since 1972.
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Using Theorem 10.10, we get a pair of equations: tan (45◦) = h
x and tan (30◦) = h

x+200 . Since

tan (45◦) = 1, the first equation gives h
x = 1, or x = h. Substituting this into the second

equation gives h
h+200 = tan (30◦) =

√
3

3 . Clearing fractions, we get 3h = (h + 200)
√

3. The
result is a linear equation for h, so we proceed to expand the right hand side and gather all
the terms involving h to one side.

3h = (h+ 200)
√

3

3h = h
√

3 + 200
√

3

3h− h
√

3 = 200
√

3

(3−
√

3)h = 200
√

3

h =
200
√

3

3−
√

3
≈ 273.20

Hence, the tree is approximately 273 feet tall.

As we did in Section 10.2.1, we may consider all six circular functions as functions of real numbers.
At this stage, there are three equivalent ways to define the functions sec(t), csc(t), tan(t) and
cot(t) for real numbers t. First, we could go through the formality of the wrapping function on
page 604 and define these functions as the appropriate ratios of x and y coordinates of points on
the Unit Circle; second, we could define them by associating the real number t with the angle
θ = t radians so that the value of the trigonometric function of t coincides with that of θ; lastly,
we could simply define them using the Reciprocal and Quotient Identities as combinations of the
functions f(t) = cos(t) and g(t) = sin(t). Presently, we adopt the last approach. We now set about
determining the domains and ranges of the remaining four circular functions. Consider the function
F (t) = sec(t) defined as F (t) = sec(t) = 1

cos(t) . We know F is undefined whenever cos(t) = 0. From

Example 10.2.5 number 3, we know cos(t) = 0 whenever t = π
2 + πk for integers k. Hence, our

domain for F (t) = sec(t), in set builder notation is {t : t 6= π
2 + πk, for integers k}. To get a better

understanding what set of real numbers we’re dealing with, it pays to write out and graph this
set. Running through a few values of k, we find the domain to be {t : t 6= ±π

2 , ±
3π
2 , ±

5π
2 , . . .}.

Graphing this set on the number line we get

− 5π
2 − 3π

2
−π2 0 π

2
3π
2

5π
2

Using interval notation to describe this set, we get

. . . ∪
(
−5π

2
,−3π

2

)
∪
(
−3π

2
,−π

2

)
∪
(
−π

2
,
π

2

)
∪
(
π

2
,
3π

2

)
∪
(

3π

2
,
5π

2

)
∪ . . .

This is cumbersome, to say the least! In order to write this in a more compact way, we note that
from the set-builder description of the domain, the kth point excluded from the domain, which we’ll
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call xk, can be found by the formula xk = π
2 +πk. (We are using sequence notation from Chapter 9.)

Getting a common denominator and factoring out the π in the numerator, we get xk = (2k+1)π
2 . The

domain consists of the intervals determined by successive points xk: (xk, xk + 1) =
(

(2k+1)π
2 , (2k+3)π

2

)
.

In order to capture all of the intervals in the domain, k must run through all of the integers, that
is, k = 0, ±1, ±2, . . . . The way we denote taking the union of infinitely many intervals like this is
to use what we call in this text extended interval notation. The domain of F (t) = sec(t) can
now be written as

∞⋃
k=−∞

(
(2k + 1)π

2
,
(2k + 3)π

2

)
The reader should compare this notation with summation notation introduced in Section 9.2, in
particular the notation used to describe geometric series in Theorem 9.2. In the same way the
index k in the series

∞∑
k=1

ark−1

can never equal the upper limit∞, but rather, ranges through all of the natural numbers, the index
k in the union

∞⋃
k=−∞

(
(2k + 1)π

2
,
(2k + 3)π

2

)
can never actually be ∞ or −∞, but rather, this conveys the idea that k ranges through all of the
integers. Now that we have painstakingly determined the domain of F (t) = sec(t), it is time to
discuss the range. Once again, we appeal to the definition F (t) = sec(t) = 1

cos(t) . The range of

f(t) = cos(t) is [−1, 1], and since F (t) = sec(t) is undefined when cos(t) = 0, we split our discussion
into two cases: when 0 < cos(t) ≤ 1 and when −1 ≤ cos(t) < 0. If 0 < cos(t) ≤ 1, then we can
divide the inequality cos(t) ≤ 1 by cos(t) to obtain sec(t) = 1

cos(t) ≥ 1. Moreover,using the notation

introduced in Section 4.2, we have that as cos(t)→ 0+, sec(t) = 1
cos(t) ≈

1
very small (+)

≈ very big (+).

In other words, as cos(t)→ 0+, sec(t)→∞. If, on the other hand, if −1 ≤ cos(t) < 0, then dividing
by cos(t) causes a reversal of the inequality so that sec(t) = 1

sec(t) ≤ −1. In this case, as cos(t)→ 0−,

sec(t) = 1
cos(t) ≈

1
very small (−)

≈ very big (−), so that as cos(t) → 0−, we get sec(t) → −∞. Since

f(t) = cos(t) admits all of the values in [−1, 1], the function F (t) = sec(t) admits all of the values
in (−∞,−1] ∪ [1,∞). Using set-builder notation, the range of F (t) = sec(t) can be written as
{u : u ≤ −1 or u ≥ 1}, or, more succinctly,7 as {u : |u| ≥ 1}.8 Similar arguments can be used
to determine the domains and ranges of the remaining three circular functions: csc(t), tan(t) and
cot(t). The reader is encouraged to do so. (See the Exercises.) For now, we gather these facts into
the theorem below.

7Using Theorem 2.3 from Section 2.4.
8Notice we have used the variable ‘u’ as the ‘dummy variable’ to describe the range elements. While there is no

mathematical reason to do this (we are describing a set of real numbers, and, as such, could use t again) we choose
u to help solidify the idea that these real numbers are the outputs from the inputs, which we have been calling t.
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Theorem 10.11. Domains and Ranges of the Circular Functions

• The function f(t) = cos(t) • The function g(t) = sin(t)

– has domain (−∞,∞) – has domain (−∞,∞)

– has range [−1, 1] – has range [−1, 1]

• The function F (t) = sec(t) =
1

cos(t)

– has domain {t : t 6= π
2 + πk, for integers k} =

∞⋃
k=−∞

(
(2k + 1)π

2
,
(2k + 3)π

2

)
– has range {u : |u| ≥ 1} = (∞,−1] ∪ [1,∞)

• The function G(t) = csc(t) =
1

sin(t)

– has domain {t : t 6= πk, for integers k} =

∞⋃
k=−∞

(kπ, (k + 1)π)

– has range {u : |u| ≥ 1} = (∞,−1] ∪ [1,∞)

• The function J(t) = tan(t) =
sin(t)

cos(t)

– has domain {t : t 6= π
2 + πk, for integers k} =

∞⋃
k=−∞

(
(2k + 1)π

2
,
(2k + 3)π

2

)
– has range (−∞,∞)

• The function K(t) = cot(t) =
cos(t)

sin(t)

– has domain {t : t 6= πk, for integers k} =
∞⋃

k=−∞
(kπ, (k + 1)π)

– has range (−∞,∞)

The discussion on page 629 in Section 10.2.1 concerning solving equations applies to all six circular
functions, not just f(t) = cos(t) and g(t) = sin(t). In particular, to solve the equation cot(t) = −1
for real numbers, t, we can use the same thought process we used in Example 10.3.2, number 3 to
solve cot(θ) = −1 for angles θ in radian measure – we just need to remember to write our answers
using the variable t as opposed to θ. (See the Exercises.)
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10.3.2 Exercises

1. Find the exact value of the following or state that it is undefined.

(a) tan
(π

4

)
(b) sec

(π
6

)
(c) csc

(
5π

6

)
(d) cot

(
4π

3

)
(e) tan

(
−11π

6

)

(f) sec

(
−3π

2

)
(g) csc

(
−π

3

)
(h) cot

(
13π

2

)
(i) tan (117π)

(j) sec

(
−5π

3

)

(k) csc (3π)

(l) cot (−5π)

(m) tan

(
31π

2

)
(n) sec

(π
4

)
(o) csc

(
−7π

4

)

(p) cot

(
7π

6

)
(q) tan

(
2π

3

)
(r) sec (−7π)

(s) csc
(π

2

)
(t) cot

(
3π

4

)
2. Given the information below, find the exact values of the remaining circular functions of θ.

(a) sin(θ) =
3

5
with θ in Quadrant II

(b) tan(θ) =
12

5
with θ in Quadrant III

(c) csc(θ) =
25

24
with θ in Quadrant I

(d) sec(θ) = 7 with θ in Quadrant IV

(e) csc(θ) = − 10√
91

with θ in Quadrant III

(f) cot(θ) = −23 with θ in Quadrant II

3. Use your calculator to approximate the following to three decimal places. Make sure your
calculator is in the proper angle measurement mode!

(a) csc(78.95◦)

(b) tan(−2.01)

(c) cot(392.994)

(d) sec(207◦)

(e) csc(5.902)

(f) tan(39.672◦)

(g) cot(3◦)

(h) sec(0.45)

4. Find all angles which satisfy the following equations.

(a) tan(θ) =
√

3

(b) sec(θ) = 2

(c) csc(θ) = −1

(d) cot(θ) =

√
3

3

(e) tan(θ) = 0

(f) sec(θ) = 1

(g) csc(θ) = 2

(h) cot(θ) = 0

(i) tan(θ) = −1

(j) sec(θ) = 0

(k) csc(θ) = −1

2

5. Solve each equation for t. Give exact values.

(a) cot(t) = 1

(b) tan(t) = 1

(c) sec(t) = − 2√
3

(d) csc(t) = 0

(e) cot(t) = −
√

3

(f) tan(t) = −
√

3

3

(g) sec(t) =
2√
3

(h) csc(t) =
2√
3

(i) cot(t) =
√

3
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6. A tree standing vertically on level ground casts a 120 foot long shadow. The angle of elevation
from the end of the shadow to the top of the tree is 21.4◦. Find the height of the tree to the
nearest foot. With the help of your classmates, research the term umbra versa and see what
it has to do with the shadow in this problem.

7. The broadcast tower for radio station WSAZ (Home of “Algebra in the Morning with Carl
and Jeff”) has two enormous flashing red lights on it: one at the very top and one a few
feet below the top. From a point 5000 feet away from the base of the tower on level ground
the angle of elevation to the top light is 7.970◦ and to the second light is 7.125◦. Find the
distance between the lights to the nearest foot.

8. On page 644 we defined the angle of inclination (also known as the angle of elevation) and in
this exercise we introduce a related angle - the angle of depression. The angle of depression
of an object refers to the angle whose initial side is a horizontal line above the object and
whose terminal side is the line-of-sight to the object below the horizontal. This is represented
schematically below.

θ

horizontal
observer

object

The angle of depression from the horizontal to the object is θ

(a) Show that if the horizontal is above and parallel to level ground then the angle of
depression (from observer to object) and the angle of inclination (from object to observer)
will be congruent because they are alternate interior angles.

(b) From a firetower 200 feet above level ground in the Sasquatch National Forest, a ranger
spots a fire off in the distance. The angle of depression to the fire is 2.5◦. How far away
from the base of the tower is the fire?

9. From the observation deck of the lighthouse at Sasquatch Point 50 feet above the surface of
Lake Ippizuti, a lifeguard spots a boat out on the lake sailing directly toward the lighthouse.
The first sighting had an angle of depression of 8.2◦ and the second sighting had an angle of
depression of 25.9◦. How far had the boat traveled between the sightings?
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10. A guy wire 1000 feet long is attached to the top of a tower. When pulled taut it makes a 43◦

angle with the ground.

(a) How tall is the tower?

(b) How far away from the base of the tower does the wire hit the ground?

11. Verify the following identities. Assume that all quantities are defined.

(a) cos(θ) sec(θ) = 1

(b) tan(θ) cos(θ) = sin(θ)

(c) csc(θ) cos(θ) = cot(θ)

(d) cos(θ)(tan(θ) + cot(θ)) = csc(θ)

(e) sin(θ)(tan(θ) + cot(θ)) = sec(θ)

(f) tan3(θ) = tan(θ) sec2(θ)− tan(θ)

(g) sin5(θ) =
(
1− cos2(θ)

)2
sin(θ)

(h) sec10(θ) =
(
1 + tan2(θ)

)4
sec2(θ)

(i) sec4(θ)− sec2(θ) = tan2(θ) + tan4(θ)

(j) tan(θ) + cot(θ) = sec(θ) csc(θ)

(k) csc(θ)− sin(θ) = cot(θ) cos(θ)

(l) cos(θ)− sec(θ) = − tan(θ) sin(θ)

(m) csc(θ)− cot(θ) =
sin(θ)

1 + cos(θ)

(n)
1− sin(θ)

1 + sin(θ)
= (sec(θ)− tan(θ))2

(o)
cos(θ) + 1

cos(θ)− 1
=

1 + sec(θ)

1− sec(θ)

(p)
1

sec(θ) + tan(θ)
= sec(θ)− tan(θ)

(q)
cos(θ)

1 + sin(θ)
=

1− sin(θ)

cos(θ)

(r) cos2(θ) tan3(θ) = tan(θ)− sin(θ) cos(θ)

(s)
1

csc(θ)− cot(θ)
− 1

csc(θ) + cot(θ)
= 2 cot(θ)

(t)
cos(θ)

1− tan(θ)
+

sin(θ)

1− cot(θ)
= sin(θ) + cos(θ)

(u)9 ln | sec(θ)| = − ln | cos(θ)|

(v) − ln | csc(θ) + cot(θ)| = ln | csc(θ)− cot(θ)|

12. Verify the domains and ranges of the tangent, cosecant and cotangent functions as presented
in Theorem 10.11.

13. As we did in Exercise 8 in Section 10.2, let α and β be the two acute angles of a right triangle.
(Thus α and β are complementary angles.) Show that sec(α) = csc(β) and tan(α) = cot(β).
The fact that co-functions of complementary angles are equal in this case is not an accident
and a more general result will be given in Section 10.4.

9You may need to review Sections 2.2 and 6.2 before attacking the next two problems.
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14. We wish to establish the inequality cos(θ) <
sin(θ)

θ
< 1 for 0 < θ <

π

2
. Use the diagram from

the beginning of the section, partially reproduced below, to answer the following.

θ

x

y

1

O B(1, 0)

P

Q

(a) Show that triangle OPB has area
1

2
sin(θ).

(b) Show that the circular sector OPB with central angle θ has area
1

2
θ.

(c) Show that triangle OQB has area
1

2
tan(θ).

(d) Comparing areas, show that sin(θ) < θ < tan(θ) for 0 < θ <
π

2
.

(e) Use the inequality sin(θ) < θ to show that
sin(θ)

θ
< 1 for 0 < θ <

π

2
.

(f) Use the inequality θ < tan(θ) to show that cos(θ) <
sin(θ)

θ
for 0 < θ <

π

2
. Combine this

with the previous part to complete the proof.

15. Show that cos(θ) <
sin(θ)

θ
< 1 also holds for −π

2
< θ < 0.

16. Explain why the fact that tan(θ) = 3 = 3
1 does not mean sin(θ) = 3 and cos(θ) = 1? (See the

solution to number 6 in Example 10.3.1.)
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10.3.3 Answers

1. (a) tan
(π

4

)
= 1

(b) sec
(π

6

)
=

2√
3

(c) csc

(
5π

6

)
= 2

(d) cot

(
4π

3

)
=

1√
3

(e) tan

(
−11π

6

)
=

1√
3

(f) sec

(
−3π

2

)
is undefined

(g) csc
(
−π

3

)
= − 2√

3

(h) cot

(
13π

2

)
= 0

(i) tan (117π) = 0

(j) sec

(
−5π

3

)
= 2

(k) csc (3π) is undefined

(l) cot (−5π) is undefined

(m) tan

(
31π

2

)
is undefined

(n) sec
(π

4

)
=
√

2

(o) csc

(
−7π

4

)
=
√

2

(p) cot

(
7π

6

)
=
√

3

(q) tan

(
2π

3

)
= −
√

3

(r) sec (−7π) = −1

(s) csc
(π

2

)
= 1

(t) cot

(
3π

4

)
= −1

2. (a) sin(θ) =
3

5

cos(θ) = −4

5

tan(θ) = −3

4

csc(θ) =
5

3

sec(θ) = −5

4

cot(θ) = −4

3

(b) sin(θ) = −12

13

cos(θ) = − 5

13

tan(θ) =
12

5

csc(θ) = −13

12

sec(θ) = −13

5

cot(θ) =
5

12

(c) sin(θ) =
24

25

cos(θ) =
7

25

tan(θ) =
24

7

csc(θ) =
25

24

sec(θ) =
25

7

cot(θ) =
7

24

(d) sin(θ) =
−
√

48

7

cos(θ) =
1

7

tan(θ) = −
√

48

csc(θ) = − 7√
48

sec(θ) = 7

cot(θ) = − 1√
48

(e) sin(θ) = −
√

91

10

cos(θ) = − 3

10

tan(θ) =

√
91

3

csc(θ) = − 10√
91

sec(θ) = −10

3

cot(θ) =
3√
91

(f) sin(θ) =
1√
530

cos(θ) = − 23√
530

tan(θ) = − 1

23
csc(θ) =

√
530

sec(θ) = −
√

530

23
cot(θ) = −23

3. (a) csc(78.95◦) ≈ 1.019

(b) tan(−2.01) ≈ 2.129

(c) cot(392.994) ≈ 3.292

(d) sec(207◦) ≈ −1.122

(e) csc(5.902) ≈ −2.688

(f) tan(39.672◦) ≈ 0.829

(g) cot(3◦) ≈ 19.081

(h) sec(0.45) ≈ 1.111
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4. (a) tan(θ) =
√

3 when θ =
π

3
+ kπ for any integer k

(b) sec(θ) = 2 when θ =
π

3
+ 2kπ or θ =

5π

3
+ 2kπ for any integer k

(c) csc(θ) = −1 when θ =
3π

2
+ 2kπ for any integer k.

(d) cot(θ) =

√
3

3
when θ =

π

3
+ kπ for any integer k

(e) tan(θ) = 0 when θ = kπ for any integer k

(f) sec(θ) = 1 when θ = 2kπ for any integer k

(g) csc(θ) = 2 when θ =
π

6
+ 2kπ or θ =

5π

6
+ 2kπ for any integer k.

(h) cot(θ) = 0 when θ =
π

2
+ kπ for any integer k

(i) tan(θ) = −1 when θ =
3π

4
+ kπ for any integer k

(j) sec(θ) = 0 never happens

(k) csc(θ) = −1

2
never happens

5. (a) cot(t) = 1 when t =
π

4
+ kπ for any integer k

(b) tan(t) = 1 when t =
π

4
+ kπ for any integer k

(c) sec(t) = − 2√
3

when t =
5π

6
+ 2kπ or t =

7π

6
+ 2kπ for any integer k

(d) csc(t) = 0 never happens

(e) cot(t) = −
√

3 when t =
5π

6
+ kπ for any integer k

(f) tan(t) = −
√

3

3
when t =

5π

6
+ kπ for any integer k

(g) sec(t) =
2√
3

when t =
π

6
+ 2kπ or t =

11π

6
+ 2kπ for any integer k

(h) csc(t) =
2√
3

when t =
π

3
+ 2kπ or t =

2π

3
+ 2kπ for any integer k

(i) cot(t) =
√

3 when t =
π

6
+ kπ for any integer k

6. The tree is about 47 feet tall.

7. The lights are about 75 feet apart.

8. (b) The fire is about 4581 feet
from the base of the tower.

9. The boat has traveled about 244 feet.

10. (a) The tower is about 682 feet tall.

(b) The guy wire hits the ground about
731 feet away from the base of the tower.
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10.4 Trigonometric Identities

In Section 10.3, we saw the utility of the Pythagorean Identities in Theorem 10.8 along with the
Quotient and Reciprocal Identities in Theorem 10.6. Not only did these identities help us compute
the values of the circular functions for angles, they were also useful in simplifying expressions
involving the circular functions. In this section, we introduce several collections of identities which
have uses in this course and beyond. Our first set of identities is the ‘Even / Odd’ identities.1

Theorem 10.12. Even / Odd Identities: For all applicable angles θ,

• cos(−θ) = cos(θ)

• sec(−θ) = sec(θ)

• sin(−θ) = − sin(θ)

• csc(−θ) = − csc(θ)

• tan(−θ) = − tan(θ)

• cot(−θ) = − cot(θ)

In light of the Quotient and Reciprocal Identities, Theorem 10.6, it suffices to show cos(−θ) = cos(θ)
and sin(−θ) = − sin(θ). The remaining four circular functions can be expressed in terms of cos(θ)
and sin(θ) so the proofs of their Even / Odd Identities are left as exercises. Consider an angle θ
plotted in standard position. Let θ0 be the angle coterminal with θ with 0 ≤ θ0 < 2π. (We can
construct the angle θ0 by rotating counter-clockwise from the positive x-axis to the terminal side
of θ as pictured below.) Since θ and θ0 are coterminal, cos(θ) = cos(θ0) and sin(θ) = sin(θ0).

x

y

1

1

θ

θ0

x

y

1

1
θ0

−θ0

P (cos(θ0), sin(θ0))

Q(cos(−θ0), sin(−θ0))

We now consider the angles −θ and −θ0. Since θ is coterminal with θ0, there is some integer k so
that θ = θ0 + 2π · k. Therefore, −θ = −θ0 − 2π · k = −θ0 + 2π · (−k). Since k is an integer, so is
(−k), which means −θ is coterminal with −θ0. Hence, cos(−θ) = cos(−θ0) and sin(−θ) = sin(−θ0).
Let P and Q denote the points on the terminal sides of θ0 and −θ0, respectively, which lie on the
Unit Circle. By definition, the coordinates of P are (cos(θ0), sin(θ0)) and the coordinates of Q are
(cos(−θ0), sin(−θ0)). Since θ0 and −θ0 sweep out congruent central sectors of the Unit Circle, it
follows that the points P and Q are symmetric about the x-axis. Thus, cos(−θ0) = cos(θ0) and

1As mentioned at the end of Section 10.2, properties of the circular functions when thought of as functions of
angles in radian measure hold equally well if we view these functions as functions of real numbers. Not surprisingly,
the Even / Odd properties of the circular functions are so named because they identify cosine and secant as even
functions, while the remaining four circular functions are odd. (See Section 1.7.)



656 Foundations of Trigonometry

sin(−θ0) = − sin(θ0). Since the cosines and sines of θ0 and −θ0 are the same as those for θ and
−θ, respectively, we get cos(−θ) = cos(θ) and sin(−θ) = − sin(θ), as required. The Even / Odd
Identities are readily demonstrated using any of the ‘common angles’ noted in Section 10.2. Their
true utility, however, lies not in computation, but in simplifying expressions involving the circular
functions. Our next batch of identities makes heavy use of the Even / Odd Identities.

Theorem 10.13. Sum and Difference Identities for Cosine: For all angles α and β,

• cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

• cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

We first prove the result for differences. As in the proof of the Even / Odd Identities, we can reduce
the proof for general angles α and β to angles α0 and β0, coterminal to α and β, respectively, each
of which measure between 0 and 2π radians. Since α and α0 are coterminal, as are β and β0, it
follows that α− β is coterminal with α0 − β0. Consider the case below where α0 ≥ β0.

α0

β0

x

y

1O

P (cos(α0), sin(α0))

Q(cos(β0), sin(β0))α0 − β0

x

y

1

O

A(cos(α0 − β0), sin(α0 − β0))

B(1, 0)

α0 − β0

Since the angles POQ and AOB are congruent, the distance between P and Q is equal to the
distance between A and B.2 The distance formula, Equation 1.1, yields

√
(cos(α0)− cos(β0))2 + (sin(α0)− sin(β0))2 =

√
(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2

Squaring both sides, we expand the left hand side of this equation as

(cos(α0)− cos(β0))
2 + (sin(α0)− sin(β0))

2 = cos2(α0)− 2 cos(α0) cos(β0) + cos2(β0)
+ sin2(α0)− 2 sin(α0) sin(β0) + sin2(β0)

= cos2(α0) + sin2(α0) + cos2(β0) + sin2(β0)
−2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

From the Pythagorean Identities, cos2(α0) + sin2(α0) = 1 and cos2(β0) + sin2(β0) = 1, so

2In the picture we’ve drawn, the triangles POQ and AOB are congruent, which is even better. However, α0 − β0

could be 0 or it could be π, neither of which makes a triangle. It could also be larger than π, which makes a triangle,
just not the one we’ve drawn. You should think about those three cases.



10.4 Trigonometric Identities 657

(cos(α0)− cos(β0))
2 + (sin(α0)− sin(β0))

2 = 2− 2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

Turning our attention to the right hand side of our equation, we find

(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2 = cos2(α0 − β0)− 2 cos(α0 − β0) + 1 + sin2(α0 − β0)
= 1 + cos2(α0 − β0) + sin2(α0 − β0)− 2 cos(α0 − β0)

Once again, we simplify cos2(α0 − β0) + sin2(α0 − β0) = 1, so that

(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2 = 2− 2 cos(α0 − β0)

Putting it all together, we get 2 − 2 cos(α0) cos(β0) − 2 sin(α0) sin(β0) = 2 − 2 cos(α0 − β0), which
simplifies to: cos(α0 − β0) = cos(α0) cos(β0) + sin(α0) sin(β0). Since α and α0, β and β0 and α− β
and α0 − β0 are all coterminal pairs of angles, we have cos(α − β) = cos(α) cos(β) + sin(α) sin(β).
For the case where α0 ≤ β0, we can apply the above argument to the angle β0 − α0 to obtain the
identity cos(β0 − α0) = cos(β0) cos(α0) + sin(β0) sin(α0). Applying the Even Identity of cosine, we
get cos(β0 − α0) = cos(−(α0 − β0)) = cos(α0 − β0), and we get the identity in this case, too.

To get the sum identity for cosine, we use the difference formula along with the Even/Odd Identities

cos(α+ β) = cos(α− (−β)) = cos(α) cos(−β) + sin(α) sin(−β) = cos(α) cos(β)− sin(α) sin(β)

We put these newfound identities to good use in the following example.

Example 10.4.1.

1. Find the exact value of cos (15◦).

2. Verify the identity: cos
(
π
2 − θ

)
= sin(θ).

Solution.

1. In order to use Theorem 10.13 to find cos (15◦), we need to write 15◦ as a sum or difference
of angles whose cosines and sines we know. One way to do so is to write 15◦ = 45◦ − 30◦.

cos (15◦) = cos (45◦ − 30◦)

= cos (45◦) cos (30◦) + sin (45◦) sin (30◦)

=

(√
2

2

)(√
3

2

)
+

(√
2

2

)(
1

2

)

=

√
6 +
√

2

4
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2. In a straightforward application of Theorem 10.13, we find

cos
(π

2
− θ
)

= cos
(π

2

)
cos (θ) + sin

(π
2

)
sin (θ)

= (0) (cos(θ)) + (1) (sin(θ))

= sin(θ)

The identity verified in Example 10.4.1, namely, cos
(
π
2 − θ

)
= sin(θ), is the first of the celebrated

‘cofunction’ identities. These identities were first hinted at in Exercise 8 in Section 10.2. From
sin(θ) = cos

(
π
2 − θ

)
, we get:

sin
(π

2
− θ
)

= cos
(π

2
−
[π

2
− θ
])

= cos(θ),

which says, in words, that the ‘co’sine of an angle is the sine of its ‘co’mplement. Now that these
identities have been established for cosine and sine, the remaining circular functions follow suit.
The remaining proofs are left as exercises.

Theorem 10.14. Cofunction Identities: For all applicable angles θ,

• cos
(π

2
− θ
)

= sin(θ)

• sin
(π

2
− θ
)

= cos(θ)

• sec
(π

2
− θ
)

= csc(θ)

• csc
(π

2
− θ
)

= sec(θ)

• tan
(π

2
− θ
)

= cot(θ)

• cot
(π

2
− θ
)

= tan(θ)

With the Cofunction Identities in place, we are now in the position to derive the sum and difference
formulas for sine. To derive the sum formula for sine, we convert to cosines using a cofunction
identity, then expand using the difference formula for cosine

sin(α+ β) = cos
(π

2
− (α+ β)

)
= cos

([π
2
− α

]
− β

)
= cos

(π
2
− α

)
cos(β) + sin

(π
2
− α

)
sin(β)

= sin(α) cos(β) + cos(α) sin(β)

We can derive the difference formula for sine by rewriting sin(α − β) as sin(α + (−β)) and using
the sum formula and the Even / Odd Identities. Again, we leave the details to the reader.

Theorem 10.15. Sum and Difference Identities for Sine: For all angles α and β,

• sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

• sin(α− β) = sin(α) cos(β)− cos(α) sin(β)
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Example 10.4.2.

1. Find the exact value of sin
(

19π
12

)
2. If α is a Quadrant II angle with sin(α) = 5

13 , and β is a Quadrant III angle with tan(β) = 2,
find sin(α− β).

3. Derive a formula for tan(α+ β) in terms of tan(α) and tan(β).

Solution.

1. As in Example 10.4.1, we need to write the angle 19π
12 as a sum or difference of common angles.

The denominator of 12 suggests a combination of angles with denominators 3 and 4. One
such combination is 19π

12 = 4π
3 + π

4 . Applying Theorem 10.15, we get

sin

(
19π

12

)
= sin

(
4π

3
+
π

4

)
= sin

(
4π

3

)
cos
(π

4

)
+ cos

(
4π

3

)
sin
(π

4

)
=

(
−
√

3

2

)(√
2

2

)
+

(
−1

2

)(√
2

2

)

=
−
√

6−
√

2

4

2. In order to find sin(α − β) using Theorem 10.15, we need to find cos(α) and both cos(β)
and sin(β). To find cos(α), we use the Pythagorean Identity cos2(α) + sin2(α) = 1. Since

sin(α) = 5
13 , we have cos2(α) +

(
5
13

)2
= 1, or cos(α) = ±12

13 . Since α is a Quadrant II angle,
cos(α) = −12

13 . We now set about finding cos(β) and sin(β). We have several ways to proceed,
but the Pythagorean Identity 1 + tan2(β) = sec2(β) is a quick way to get sec(β), and hence,
cos(β). With tan(β) = 2, we get 1 + 22 = sec2(β) so that sec(β) = ±

√
5. Since β is a

Quadrant III angle, we choose sec(β) = −
√

5 so cos(β) = 1
sec(β) = 1

−
√

5
= −

√
5

5 . We now need

to determine sin(β). We could use The Pythagorean Identity cos2(β) + sin2(β) = 1, but we

opt instead to use a quotient identity. From tan(β) = sin(β)
cos(β) , we have sin(β) = tan(β) cos(β)

so we get sin(β) = (2)
(
−
√

5
5

)
= −2

√
5

5 . We now have all the pieces needed to find sin(α−β):

sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

=

(
5

13

)(
−
√

5

5

)
−
(
−12

13

)(
−2
√

5

5

)
= −29

√
5

65
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3. We can start expanding tan(α+ β) using a quotient identity and our sum formulas

tan(α+ β) =
sin(α+ β)

cos(α+ β)

=
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)

Since tan(α) = sin(α)
cos(α) and tan(β) = sin(β)

cos(β) , it looks as though if we divide both numerator and

denominator by cos(α) cos(β) we will have what we want

tan(α+ β) =
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)
·

1

cos(α) cos(β)
1

cos(α) cos(β)

=

sin(α) cos(β)

cos(α) cos(β)
+

cos(α) sin(β)

cos(α) cos(β)

cos(α) cos(β)

cos(α) cos(β)
− sin(α) sin(β)

cos(α) cos(β)

=

sin(α)���
�cos(β)

cos(α)���
�cos(β)

+
���

�cos(α) sin(β)

���
�cos(α) cos(β)

���
�cos(α)���

�cos(β)

���
�cos(α)���

�cos(β)
− sin(α) sin(β)

cos(α) cos(β)

=
tan(α) + tan(β)

1− tan(α) tan(β)

Naturally, this formula is limited to those cases where all of the tangents are defined.

The formula developed in Exercise 10.4.2 for tan(α+β) can be used to find a formula for tan(α−β)
by rewriting the difference as a sum, tan(α+(−β)), and the reader is encouraged to fill in the details.
Below we summarize all of the sum and difference formulas for cosine, sine and tangent.

Theorem 10.16. Sum and Difference Identities: For all applicable angles α and β,

• cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

• sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

• tan(α± β) =
tan(α)± tan(β)

1∓ tan(α) tan(β)

In the statement of Theorem 10.16, we have combined the cases for the sum ‘+’ and difference ‘−’
of angles into one formula. The convention here is that if you want the formula for the sum ‘+’ of
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two angles, you use the top sign in the formula; for the difference, ‘−’, use the bottom sign. For
example,

tan(α− β) =
tan(α)− tan(β)

1 + tan(α) tan(β)

If we specialize the sum formulas in Theorem 10.16 to the case when α = β, we obtain the following
‘Double Angle’ Identities.

Theorem 10.17. Double Angle Identities: For all angles θ,

• cos(2θ) =


cos2(θ)− sin2(θ)

2 cos2(θ)− 1

1− 2 sin2(θ)

• sin(2θ) = 2 sin(θ) cos(θ)

• tan(2θ) =
2 tan(θ)

1− tan2(θ)

The three different forms for cos(2θ) can be explained by our ability to ‘exchange’ squares of cosine
and sine via the Pythagorean Identity cos2(θ) + sin2(θ) = 1 and we leave the details to the reader.
It is interesting to note that to determine the value of cos(2θ), only one piece of information is
required: either cos(θ) or sin(θ). To determine sin(2θ), however, it appears that we must know
both sin(θ) and cos(θ). In the next example, we show how we can find sin(2θ) knowing just one
piece of information, namely tan(θ).

Example 10.4.3.

1. Suppose P (−3, 4) lies on the terminal side of θ when θ is plotted in standard position. Find
cos(2θ) and sin(2θ) and determine the quadrant in which the terminal side of the angle 2θ
lies when it is plotted in standard position.

2. If sin(θ) = x for −π
2 ≤ θ ≤

π
2 , find an expression for sin(2θ) in terms of x.

3. Verify the identity: sin(2θ) =
2 tan(θ)

1 + tan2(θ)
.

4. Express cos(3θ) as a polynomial in terms of cos(θ).

Solution.

1. Using Theorem 10.3 from Section 10.2 with x = −3 and y = 4, we find r =
√
x2 + y2 = 5.

Hence, cos(θ) = −3
5 and sin(θ) = 4

5 . Applying Theorem 10.17, we get cos(2θ) = cos2(θ) −
sin2(θ) =

(
−3

5

)2− (4
5

)2
= − 7

25 , and sin(2θ) = 2 sin(θ) cos(θ) = 2
(

4
5

) (
−3

5

)
= −24

25 . Since both
cosine and sine of 2θ are negative, the terminal side of 2θ, when plotted in standard position,
lies in Quadrant III.
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2. If your first reaction to ‘sin(θ) = x’ is ‘No it’s not, cos(θ) = x!’ then you have indeed learned
something, and we take comfort in that. However, context is everything. Here, ‘x’ is just a
variable - it does not necessarily represent the x-coordinate of the point on The Unit Circle
which lies on the terminal side of θ, assuming θ is drawn in standard position. Here, x
represents the quantity sin(θ), and what we wish to know is how to express sin(2θ) in terms
of x. We will see more of this kind of thing in Section 10.6, and, as usual, this is something we
need for Calculus. Since sin(2θ) = 2 sin(θ) cos(θ), we need to write cos(θ) in terms of x to finish
the problem. We substitute x = sin(θ) into the Pythagorean Identity, cos2(θ) + sin2(θ) = 1,
to get cos2(θ) + x2 = 1, or cos(θ) = ±

√
1− x2. Since −π

2 ≤ θ ≤ π
2 , cos(θ) ≥ 0, and thus

cos(θ) =
√

1− x2. Our final answer is sin(2θ) = 2 sin(θ) cos(θ) = 2x
√

1− x2.

3. We start with the right hand side of the identity and note that 1 + tan2(θ) = sec2(θ). From
this point, we use the Reciprocal and Quotient Identities to rewrite tan(θ) and sec(θ) in terms
of cos(θ) and sin(θ):

2 tan(θ)

1 + tan2(θ)
=

2 tan(θ)

sec2(θ)

=

2

(
sin(θ)

cos(θ)

)
1

cos2(θ)

= 2

(
sin(θ)

cos(θ)

)
cos2(θ)

= 2

(
sin(θ)

���
�cos(θ)

)
���

�cos(θ) cos(θ)

= 2 sin(θ) cos(θ)

= sin(2θ)

4. In Theorem 10.17, one of the formulas for cos(2θ), namely cos(2θ) = 2 cos2(θ)− 1, expresses
cos(2θ) as a polynomial in terms of cos(θ). We are now asked to find such an identity for
cos(3θ). Using the sum formula for cosine, we begin with

cos(3θ) = cos(2θ + θ)

= cos(2θ) cos(θ)− sin(2θ) sin(θ)

Our ultimate goal is to express the right hand side in terms of cos(θ) only. We substitute
cos(2θ) = 2 cos2(θ)− 1 and sin(2θ) = 2 sin(θ) cos(θ) which yields

cos(3θ) = cos(2θ) cos(θ)− sin(2θ) sin(θ)

=
(
2 cos2(θ)− 1

)
cos(θ)− (2 sin(θ) cos(θ)) sin(θ)

= 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)
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Finally, we exchange sin2(θ) for 1− cos2(θ) courtesy of the Pythagorean Identity, and get

cos(3θ) = 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)

= 2 cos3(θ)− cos(θ)− 2
(
1− cos2(θ)

)
cos(θ)

= 2 cos3(θ)− cos(θ)− 2 cos(θ) + 2 cos3(θ)

= 4 cos3(θ)− 3 cos(θ)

and we are done.

In the last problem in Example 10.4.3, we saw how we could rewrite cos(3θ) as sums of powers of
cos(θ). In Calculus, we have occasion to do the reverse; that is, reduce the power of cosine and
sine. Solving the identity cos(2θ) = 2 cos2(θ)−1 for cos2(θ) and the identity cos(2θ) = 1−2 sin2(θ)
for sin2(θ) results in the aptly-named ‘Power Reduction’ formulas below.

Theorem 10.18. Power Reduction Formulas: For all angles θ,

• cos2(θ) =
1 + cos(2θ)

2

• sin2(θ) =
1− cos(2θ)

2

Example 10.4.4. Rewrite sin2(θ) cos2(θ) as a sum and difference of cosines to the first power.

Solution. We begin with a straightforward application of Theorem 10.18

sin2(θ) cos2(θ) =

(
1− cos(2θ)

2

)(
1 + cos(2θ)

2

)
=

1

4

(
1− cos2(2θ)

)
=

1

4
− 1

4
cos2(2θ)

Next, we apply the power reduction formula to cos2(2θ) to finish the reduction

sin2(θ) cos2(θ) =
1

4
− 1

4
cos2(2θ)

=
1

4
− 1

4

(
1− cos(2(2θ))

2

)
=

1

4
− 1

8
+

1

8
cos(4θ)

=
1

8
+

1

8
cos(4θ)

Another application of the Power Reduction Formulas is the Half Angle Formulas. To start, we
apply the Power Reduction Formula to cos2

(
θ
2

)



664 Foundations of Trigonometry

cos2

(
θ

2

)
=

1 + cos
(
2
(
θ
2

))
2

=
1 + cos(θ)

2
.

We can obtain a formula for cos
(
θ
2

)
by extracting square roots. In a similar fashion, we may obtain

a half angle formula for sine, and by using a quotient formula, obtain a half angle formula for
tangent. We summarize these formulas below.

Theorem 10.19. Half Angle Formulas: For all applicable angles θ,

• cos

(
θ

2

)
= ±

√
1 + cos(θ)

2

• sin

(
θ

2

)
= ±

√
1− cos(θ)

2

• tan

(
θ

2

)
= ±

√
1− cos(θ)

1 + cos(θ)

where the choice of ± depends on the quadrant in which the terminal side of
θ

2
lies.

Example 10.4.5.

1. Use a half angle formula to find the exact value of cos (15◦).

2. Suppose −π ≤ θ ≤ 0 with cos(θ) = −3
5 . Find sin

(
θ
2

)
.

3. Use the identity given in number 3 of Example 10.4.3 to derive the identity

tan

(
θ

2

)
=

sin(θ)

1 + cos(θ)

Solution.

1. To use the half angle formula, we note that 15◦ = 30◦

2 and since 15◦ is a Quadrant I angle,
its cosine is positive. Thus we have

cos (15◦) = +

√
1 + cos (30◦)

2
=

√
1 +

√
3

2

2

=

√
1 +

√
3

2

2
· 2

2
=

√
2 +
√

3

4
=

√
2 +
√

3

2

Back in Example 10.4.1, we found cos (15◦) by using the difference formula for cosine. In that

case, we determined cos (15◦) =
√

6+
√

2
4 . The reader is encouraged to prove that these two

expressions are equal.
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2. If −π ≤ θ ≤ 0, then −π
2 ≤

θ
2 ≤ 0, which means sin

(
θ
2

)
< 0. Theorem 10.19 gives

sin

(
θ

2

)
= −

√
1− cos (θ)

2
= −

√
1−

(
−3

5

)
2

= −
√

1 + 3
5

2
· 5

5
= −

√
8

10
= −2

√
5

5

3. Instead of our usual approach to verifying identities, namely starting with one side of the
equation and trying to transform it into the other, we will start with the identity we proved
in number 3 of Example 10.4.3 and manipulate it into the identity we are asked to prove. The
identity we are asked to start with is sin(2θ) = 2 tan(θ)

1+tan2(θ)
. If we are to use this to derive an

identity for tan
(
θ
2

)
, it seems reasonable to proceed by replacing each occurrence of θ with θ

2

sin
(
2
(
θ
2

))
=

2 tan
(
θ
2

)
1 + tan2

(
θ
2

)
sin(θ) =

2 tan
(
θ
2

)
1 + tan2

(
θ
2

)
We now have the sin(θ) we need, but we somehow need to get a factor of 1 + cos(θ) involved.
To get cosines involved, recall that 1 + tan2

(
θ
2

)
= sec2

(
θ
2

)
. We continue to manipulate our

given identity by converting secants to cosines and using a power reduction formula

sin(θ) =
2 tan

(
θ
2

)
1 + tan2

(
θ
2

)
sin(θ) =

2 tan
(
θ
2

)
sec2

(
θ
2

)
sin(θ) = 2 tan

(
θ
2

)
cos2

(
θ
2

)
sin(θ) = 2 tan

(
θ
2

)(1 + cos
(
2
(
θ
2

))
2

)
sin(θ) = tan

(
θ
2

)
(1 + cos(θ))

tan

(
θ

2

)
=

sin(θ)

1 + cos(θ)

Our next batch of identities, the Product to Sum Formulas,3 are easily verified by expanding each
of the right hand sides in accordance with Theorem 10.16 and as you should expect by now we leave
the details as exercises. They are of particular use in Calculus, and we list them here for reference.

3These are also known as the Prosthaphaeresis Formulas and have a rich history. The authors recommend that
you conduct some research on them as your schedule allows.
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Theorem 10.20. Product to Sum Formulas: For all angles α and β,

• cos(α) cos(β) = 1
2 [cos(α− β) + cos(α+ β)]

• sin(α) sin(β) = 1
2 [cos(α− β)− cos(α+ β)]

• sin(α) cos(β) = 1
2 [sin(α− β) + sin(α+ β)]

Related to the Product to Sum Formulas are the Sum to Product Formulas, which we will have
need of in Section 10.7. These are easily verified using the Sum to Product Formulas, and as such,
their proofs are left as exercises.

Theorem 10.21. Sum to Product Formulas: For all angles α and β,

• cos(α) + cos(β) = 2 cos

(
α+ β

2

)
cos

(
α− β

2

)

• cos(α)− cos(β) = −2 sin

(
α+ β

2

)
sin

(
α− β

2

)

• sin(α)± sin(β) = 2 sin

(
α± β

2

)
cos

(
α∓ β

2

)

Example 10.4.6.

1. Write cos(2θ) cos(6θ) as a sum.

2. Write sin(θ)− sin(3θ) as a product.

Solution.

1. Identifying α = 2θ and β = 6θ, we find

cos(2θ) cos(6θ) = 1
2 [cos(2θ − 6θ) + cos(2θ + 6θ)]

= 1
2 cos(−4θ) + 1

2 cos(8θ)

= 1
2 cos(4θ) + 1

2 cos(8θ),

where the last equality is courtesy of the even identity for cosine, cos(−4θ) = cos(4θ).

2. Identifying α = θ and β = 3θ yields

sin(θ)− sin(3θ) = 2 sin

(
θ − 3θ

2

)
cos

(
θ + 3θ

2

)
= 2 sin (−θ) cos (2θ)

= −2 sin (θ) cos (2θ) ,

where the last equality is courtesy of the odd identity for sine, sin(−θ) = − sin(θ).
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The reader is reminded that all of the identities presented in this section which regard the circular
functions as functions of angles (in radian measure) apply equally well to the circular functions
regarded as functions of real numbers. In Section 10.5, we see how some of these identities manifest
themselves geometrically as we study the graphs of the trigonometric functions.
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10.4.1 Exercises

1. Verify the Even / Odd Identities for tangent, secant, cosecant and cotangent.

2. Use the Even / Odd Identities to verify the following identities. Assume all quantities are
defined.

(a) sin(3π − 2t) = − sin(2t− 3π)

(b) cos
(
−π

4
− 5t

)
= cos

(
5t+

π

4

)
(c) tan(−t2 + 1) = − tan(t2 − 1)

(d) csc(−t− 5) = − csc(t+ 5)

(e) sec(−6t) = sec(6t)

(f) cot(9− 7t) = − cot(7t− 9)

3. Verify the Cofunction Identities for tangent, secant, cosecant and cotangent.

4. Verify the Difference Identities for sine and tangent.

5. Use the Sum and Difference Identities to find the exact values of the following. You may have
need of the Quotient, Reciprocal or Even / Odd Identities as well.

(a) cos

(
7π

12

)
(b) tan

(
17π

12

) (c) sin
( π

12

)
(d) cot

(
11π

12

) (e) csc

(
5π

12

)
(f) sec

(
− π

12

)
6. Show that

sin(t+ h)− sin(t)

h
= cos(t)

(
sin(h)

h

)
+ sin(t)

(
cos(h)− 1

h

)

7. Show that
cos(t+ h)− cos(t)

h
= cos(t)

(
cos(h)− 1

h

)
− sin(t)

(
sin(h)

h

)

8. Show that
tan(t+ h)− tan(t)

h
=

(
tan(h)

h

)(
sec2(t)

1− tan(t) tan(h)

)
9. Verify the following identities. Assume all quantities are defined.

(a) sin(α+ β) + sin(α− β) = 2 sin(α) cos(β)

(b)
cos(α+ β)

cos(α− β)
=

1− tan(α) tan(β)

1 + tan(α) tan(β)

(c)
tan(α+ β)

tan(α− β)
=

sin(α) cos(α) + sin(β) cos(β)

sin(α) cos(α)− sin(β) cos(β)

10. Show that cos2(θ)− sin2(θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ) for all θ.

11. If sin(θ) =
x

2
for −π

2
< θ <

π

2
, find an expression for cos(2θ) in terms of x.
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12. If tan(θ) =
x

7
for −π

2
< θ <

π

2
, find an expression for sin(2θ) in terms of x.

13. If sec(θ) =
x

4
for 0 < θ <

π

2
, find an expression for ln | sec(θ) + tan(θ)| in terms of x.

14. Use the Half Angle Formulas to find the exact values of the following. You may have need of
the Quotient, Reciprocal or Even / Odd Identities as well.

(a) cos
(π

8

)
(b) sin

(
5π

8

)
(c) tan

(
7π

8

)
15. In each exercise below, use the given information about θ to find the exact values of

• sin(2θ)

• sin

(
θ

2

) • cos(2θ)

• cos

(
θ

2

) • tan(2θ)

• tan

(
θ

2

)
(a) sin(θ) = − 7

25
where

3π

2
< θ < 2π

(b) cos(θ) =
28

53
where 0 < θ <

π

2

(c) tan(θ) =
12

5
where π < θ <

3π

2

(d) csc(θ) = 4 where
π

2
< θ < π

16. If sin(α) =
3

5
where 0 < α <

π

2
and cos(β) =

12

13
where

3π

2
< β < 2π, find the exact values

of the following.

(a) sin(α+ β) (b) cos(α− β) (c) tan(α− β)

17. If sec(α) = −5

3
where

π

2
< α < π and tan(β) =

24

7
where π < β <

3π

2
, find the exact values

of the following.

(a) csc(α− β) (b) sec(α+ β) (c) cot(α+ β)

18. Let θ be a Quadrant III angle with cos(θ) = −1

5
. Show that this is not enough information to

determine the sign of sin

(
θ

2

)
by first assuming 3π < θ <

7π

2
and then assuming π < θ <

3π

2

and computing sin

(
θ

2

)
in both cases.

19. Without using your calculator, show that

√
2 +
√

3

2
=

√
6 +
√

2

4

20. Drawing on part 4 of Example 10.4.3 for inspiration, write cos(4θ) as a polynomial in cosine.
Then write cos(5θ) as a polynomial in cosine. Can you find a pattern so that cos(nθ) could
be written as a polynomial in cosine for any natural number n?
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21. Write sin(3θ) and sin(5θ) as polynomials of sine. Can the same be done for sin(4θ)? If not,
what goes wrong?

22. Write sin4(θ) and cos4(θ) as sums and/or differences of sines and/or cosines to the first power.

23. Verify the Product to Sum Identities.

24. Verify the Sum to Product Identities.

25. Write the following products as sums.

(a) cos(3θ) cos(5θ) (b) sin(2θ) sin(7θ) (c) sin(9θ) cos(θ)

26. Write the following sums as products. (You may need to use a Cofunction or Even / Odd
identity as well.)

(a) cos(3θ) + cos(5θ)

(b) sin(2θ)− sin(7θ)

(c) cos(5θ)− cos(6θ)

(d) sin(9θ)− sin(−θ)
(e) sin(θ) + cos(θ)

(f) cos(θ)− sin(θ)
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10.4.2 Answers

5. (a)

√
2−
√

6

4
(b) 2 +

√
3

(c)

√
6−
√

2

4
(d) −(2 +

√
3)

(e)
√

6−
√

2

(f)
√

6−
√

2

11. 1− x2

2
12.

14x

x2 + 49
13. ln |x+

√
x2 + 16| − ln(4)

14. (a)

√
2 +
√

2

2
(b)

√
2 +
√

2

2
(c) −

√
2−
√

2

2 +
√

2

15. (a) • sin(2θ) = −336

625

• sin

(
θ

2

)
=

√
1

50

• cos(2θ) =
527

625

• cos

(
θ

2

)
= −

√
49

50

• tan(2θ) = −336

527

• tan

(
θ

2

)
= −

√
1

49

(b) • sin(2θ) =
2520

2809

• sin

(
θ

2

)
=

√
25

106

• cos(2θ) = −1241

2809

• cos

(
θ

2

)
=

√
81

106

• tan(2θ) = −2520

1241

• tan

(
θ

2

)
=

√
25

81

(c) • sin(2θ) =
120

169

• sin

(
θ

2

)
=

√
9

13

• cos(2θ) = −119

169

• cos

(
θ

2

)
= −

√
4

13

• tan(2θ) = −120

119

• tan

(
θ

2

)
= −3

2

(d) • sin(2θ) = −
√

15

8

• sin

(
θ

2

)
=

√
1

16

• cos(2θ) =
7

8

• cos

(
θ

2

)
=

√
15

16

• tan(2θ) = −
√

15

7

• tan

(
θ

2

)
=

√
1

15

16. (a) sin(α+ β) =
16

65
(b) cos(α− β) =

33

65
(c) tan(α− β) =

56

33

17. (a) csc(α− β) = −5

4
(b) sec(α+ β) =

125

117
(c) cot(α+ β) =

117

44

25. (a)
cos(2θ) + cos(8θ)

2
(b)

cos(5θ)− cos(7θ)

2
(c)

sin(8θ) + sin(10θ)

2

26. (a) 2 cos(4θ) cos(θ)

(b) −2 cos

(
9

2
θ

)
sin

(
5

2
θ

) (c) 2 sin

(
11

2
θ

)
sin

(
1

2
θ

)
(d) 2 cos(4θ) sin(5θ)

(e)
√

2 cos
(
θ − π

4

)
(f) −

√
2 sin

(
θ − π

4

)
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10.5 Graphs of the Trigonometric Functions

In this section, we return to our discussion of the circular functions as functions of real numbers
and pick up where we left off in Sections 10.2.1 and 10.3.1. As usual, we begin our study with the
functions f(t) = cos(t) and g(t) = sin(t).

10.5.1 Graphs of the Cosine and Sine Functions

From Theorem 10.5 in Section 10.2.1, we know that the domain of f(t) = cos(t) and of g(t) = sin(t)
is all real numbers, (−∞,∞), and the range of both functions is [−1, 1]. The Even / Odd Identities
in Theorem 10.12 tell us cos(−t) = cos(t) for all real numbers t and sin(−t) = − sin(t) for all real
numbers t. This means f(t) = cos(t) is an even function, while g(t) = sin(t) is an odd function.1

Another important property of these functions is that for coterminal angles α and β, cos(α) = cos(β)
and sin(α) = sin(β). Said differently, cos(t+ 2π · k) = cos(t) and sin(t+ 2π · k) = sin(t) for all real
numbers t and any integer k. This last property is given a special name.

Definition 10.3. Periodic Functions: A function f is said to be periodic if there is a real
number c so that f(t+ c) = f(t) for all real numbers t in the domain of f . The smallest positive
number p for which f(t+ p) = f(t) for all real numbers t in the domain of f , if it exists, is called
the period of f .

We have already seen a family of periodic functions in Section 2.1: the constant functions. However,
we leave it to the reader as an exercise to show that, despite being periodic, constant functions
have no period. Returning to the circular functions, we see that by Definition 10.3, f(t) = cos(t)
is periodic, since cos(t+ 2π · k) = cos(t) for any integer k. To determine the period of f , we need
to find the smallest real number p so that f(t+ p) = f(t) for all real numbers t or, said differently,
the smallest positive real number p such that cos(t + p) = cos(t) for all real numbers t. We know
that cos(t+ 2π) = cos(t) for all real numbers t but the question remains if any smaller real number
will do the trick. Suppose p > 0 and cos(t+ p) = cos(t) for all real numbers t. Then, in particular,
cos(0 + p) = cos(0) so that cos(p) = 1. From this we know p is a multiple of 2π and, since the
smallest positive multiple of 2π is 2π itself, we have the result. Similarly, we can show g(t) = sin(t)
is also periodic with 2π as its period.2 Having period 2π essentially means that we can completely
understand everything about the functions f(t) = cos(t) and g(t) = sin(t) by studying one interval
of length 2π, say [0, 2π].3

One last property of the functions f(t) = cos(t) and g(t) = sin(t) is worth pointing out: both of
these functions are continuous and smooth. Recall from Section 3.1 that geometrically this means
the graphs of the cosine and sine functions have no jumps, gaps, holes in the graph, asymptotes,
corners or cusps. As we shall see, the graphs of both f(t) = cos(t) and g(t) = sin(t) meander nicely
and don’t cause any trouble. We summarize these facts in the following theorem.

1See section 1.7 for a review of these concepts.
2Alternatively, we can use the Cofunction Identities in Theorem 10.14 to show that g(t) = sin(t) is periodic with

period 2π since g(t) = sin(t) = cos
(
π
2
− t
)

= f
(
π
2
− t
)
.

3Technically, we should study the interval [0, 2π),4since whatever happens at t = 2π is the same as what happens
at t = 0. As we will see shortly, t = 2π gives us an extra ‘check’ when we go to graph these functions.

4In some advanced texts, the interval of choice is [−π, π).
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Theorem 10.22. Properties of the Cosine and Sine Functions

• The function f(x) = cos(x) • The function g(x) = sin(x)

– has domain (−∞,∞) – has domain (−∞,∞)

– has range [−1, 1] – has range [−1, 1]

– is continuous and smooth – is continuous and smooth

– is even – is odd

– has period 2π – has period 2π

In the chart above, we followed the convention established in Section 1.7 and used x as the indepen-
dent variable and y as the dependent variable.5 This allows us to turn our attention to graphing
the cosine and sine functions in the Cartesian Plane. To graph y = cos(x), we make a table as we
did in Section 1.7 using some of the ‘common values’ of x in the interval [0, 2π]. This generates a
portion of the cosine graph, which we call the ‘fundamental cycle’ of y = cos(x).

x cos(x) (x, cos(x))

0 1 (0, 1)

π
4

√
2

2

(
π
4 ,
√

2
2

)
π
2 0

(
π
2 , 0
)

3π
4 −

√
2

2

(
3π
4 ,−

√
2

2

)
π −1 (π,−1)

5π
4 −

√
2

2

(
5π
4 ,−

√
2

2

)
3π
2 0

(
3π
2 , 0

)
7π
4

√
2

2

(
7π
4 ,
√

2
2

)
2π 1 (2π, 1)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = cos(x).

A few things about the graph above are worth mentioning. First, this graph represents only part
of the graph of y = cos(x). To get the entire graph, we imagine ‘copying and pasting’ this graph
end to end infinitely in both directions (left and right) on the x-axis. Secondly, the vertical scale
here has been greatly exaggerated for clarity and aesthetics. Below is an accurate-to-scale graph
of y = cos(x) showing several cycles with the ‘fundamental cycle’ plotted thicker than the others.
The graph of y = cos(x) is usually described as ‘wavelike’ – and indeed, the applications involving
the cosine and sine functions feature modeling wavelike phenomena.

5The use of x and y in this context is not to be confused with the x- and y-coordinates of points on the Unit
Circle which define cosine and sine.
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x

y

An accurately scaled graph of y = cos(x).

We can plot the fundamental cycle of the graph of y = sin(x) similarly, with similar results.

x sin(x) (x, sin(x))

0 0 (0, 0)

π
4

√
2

2

(
π
4 ,
√

2
2

)
π
2 1

(
π
2 , 1
)

3π
4

√
2

2

(
3π
4 ,
√

2
2

)
π 0 (π, 0)

5π
4 −

√
2

2

(
5π
4 ,−

√
2

2

)
3π
2 −1

(
3π
2 ,−1

)
7π
4 −

√
2

2

(
7π
4 ,−

√
2

2

)
2π 0 (2π, 0)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = sin(x).

As with the graph of y = cos(x), we provide an accurately scaled graph of y = sin(x) below with
the fundamental cycle highlighted.

x

y

An accurately scaled graph of y = sin(x).

It is no accident that the graphs of y = cos(x) and y = sin(x) are so similar. Using a cofunction
identity along with the even property of cosine, we have

sin(x) = cos
(π

2
− x
)

= cos
(
−
(
x− π

2

))
= cos

(
x− π

2

)
Recalling Section 1.8, we see from this formula that the graph of y = sin(x) is the result of shifting
the graph of y = cos(x) to the right π

2 units. A visual inspection confirms this.

Now that we know the basic shapes of the graphs of y = cos(x) and y = sin(x), we can use
Theorem 1.7 in Section 1.8 to graph more complicated curves. To do so, we need to keep track of
the movement of some key points on the original graphs. We choose to track the values x = 0, π2 , π,
3π
2 and 2π. These ‘quarter marks’ correspond to quadrantal angles, and as such, mark the location

of the zeros and the local extrema of these functions over exactly one period. Before we begin our
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next example, we need to review the concept of the ‘argument’ of a function as first introduced
in Section 1.5. For the function f(x) = 1 − 5 cos(2x − π), the argument of f is x. We shall have
occasion, however, to refer to the argument of the cosine, which in this case is 2x − π. Loosely
stated, the argument of a trigonometric function is the expression ‘inside’ the function.

Example 10.5.1. Graph one cycle of the following functions. State the period of each.

1. f(x) = 3 cos
(
πx−π

2

)
+ 1 2. g(x) = 1

2 sin(π − 2x) + 3
2

Solution.

1. We set the argument of the cosine, πx−π
2 , equal to each of the values: 0, π

2 , π, 3π
2 , 2π and

solve for x. We summarize the results below.

a πx−π
2 = a x

0 πx−π
2 = 0 1

π
2

πx−π
2 = π

2 2

π πx−π
2 = π 3

3π
2

πx−π
2 = 3π

2 4

2π πx−π
2 = 2π 5

Next, we substitute each of these x values into f(x) = 3 cos
(
πx−π

2

)
+ 1 to determine the

corresponding y-values and connect the dots in a pleasing wavelike fashion.

x f(x) (x, f(x))

1 4 (1, 4)

2 1 (2, 1)

3 −2 (3,−2)

4 1 (4, 1)

5 4 (5, 4)

x

y

1 2 3 4 5

−2

−1

1

2

3

4

One cycle of y = f(x).

One cycle is graphed on [1, 5] so the period is the length of that interval which is 4.

2. Proceeding as above, we set the argument of the sine, π − 2x, equal to each of our quarter
marks and solve for x.



676 Foundations of Trigonometry

a π − 2x = a x

0 π − 2x = 0 π
2

π
2 π − 2x = π

2
π
4

π π − 2x = π 0

3π
2 π − 2x = 3π

2 −π
4

2π π − 2x = 2π −π
2

We now find the corresponding y-values on the graph by substituting each of these x-values
into g(x) = 1

2 sin(π − 2x) + 3
2 . Once again, we connect the dots in a wavelike fashion.

x g(x) (x, g(x))

π
2

3
2

(
π
2 ,

3
2

)
π
4 2

(
π
4 , 2
)

0 3
2

(
0, 3

2

)
−π

4 1
(
−π

4 , 1
)

−π
2

3
2

(
−π

2 ,
3
2

) x

y

−π
2
−π

4
π
4

π
2

1

2

One cycle of y = g(x).

One cycle was graphed on the interval
[
−π

2 ,
π
2

]
so the period is π

2 −
(
−π

2

)
= π.

The functions in Example 10.5.1 are examples of sinusoids. Roughly speaking, a sinusoid is the
result of taking the basic graph of f(x) = cos(x) or g(x) = sin(x) and performing any of the
transformations6 mentioned in Section 1.8. Sinusoids can be characterized by four properties:
period, amplitude, phase shift and vertical shift. We have already discussed period, that is, how
long it takes for the sinusoid to complete one cycle. The standard period of both f(x) = cos(x) and
g(x) = sin(x) is 2π, but horizontal scalings will change the period of the resulting sinusoid. The
amplitude of the sinusoid is a measure of how ‘tall’ the wave is, as indicated in the figure below.
The amplitude of the standard cosine and sine functions is 1, but vertical scalings can alter this.

6We have already seen how the Even/Odd and Cofunction Identities can be used to rewrite g(x) = sin(x) as a
transformed version of f(x) = cos(x), so of course, the reverse is true: f(x) = cos(x) can be written as a transformed
version of g(x) = sin(x). The authors have seen some instances where sinusoids are always converted to cosine
functions while in other disciplines, the sinusoids are always written in terms of sine functions. We will discuss the
applications of sinusoids in greater detail in Chapter 11. Until then, we will keep our options open.
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amplitude

baseline

period

The phase shift of the sinusoid is the horizontal shift experienced by the fundamental cycle. We
have seen that a phase (horizontal) shift of π2 to the right takes f(x) = cos(x) to g(x) = sin(x) since
cos
(
x− π

2

)
= sin(x). As the reader can verify, a phase shift of π

2 to the left takes g(x) = sin(x) to
f(x) = cos(x). The vertical shift of a sinusoid is exactly the same as the vertical shifts in Section
1.8. In most contexts, the vertical shift of a sinusoid is assumed to be 0, but we state the more
general case below. The following theorem, which is reminiscent of Theorem 1.7 in Section 1.8,
shows how to find these four fundamental quantities from the formula of the given sinusoid.

Theorem 10.23. For ω > 0, the functions

C(x) = A cos(ωx+ φ) +B and S(x) = A sin(ωx+ φ) +B

• have period
2π

ω

• have amplitude |A|

• have phase shift −φ
ω

a

• have vertical shift B

aIn some scientific and engineering circles, the quantity φ is called the phase of the sinusoid. Since our interest
in this book is primarily with graphing sinusoids, we focus our attention on the horizontal shift − φ

ω
induced by φ.

The proof of Theorem 10.23 is a direct application of Theorem 1.7 in Section 1.8 and is left to the
reader. The parameter ω, which is stipulated to be positive, is called the (angular) frequency of
the sinusoid and is the number of cycles the sinusoid completes over a 2π interval. We can always
ensure ω > 0 using the Even/Odd Identities.7 We now test out Theorem 10.23 using the functions
f and g featured in Example 10.5.1. First, we write f(x) in the form prescribed in Theorem 10.23,

f(x) = 3 cos

(
πx− π

2

)
+ 1 = 3 cos

(π
2
x+

(
−π

2

))
+ 1,

so that A = 3, ω = π
2 , φ = −π

2 and B = 1. According to Theorem 10.23, the period of f is
2π
ω = 2π

π/2 = 4, the amplitude is |A| = |3| = 3, the phase shift is −φ
ω = −−π/2π/2 = 1 (indicating

7Try using the formulas in Theorem 10.23 applied to C(x) = cos(−x+ π) to see why we need ω > 0.
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a shift to the right 1 unit) and the vertical shift is B = 1 (indicating a shift up 1 unit.) All of
these match with our graph of y = f(x). Moreover, if we start with the basic shape of the cosine
graph, shift it 1 unit to the right, 1 unit up, stretch the amplitude to 3 and shrink the period
to 4, we will have reconstructed one period of the graph of y = f(x). In other words, instead of
tracking the five ‘quarter marks’ through the transformations to plot y = f(x), we can use five
other pieces of information: the phase shift, vertical shift, amplitude, period and basic shape of the
cosine curve. Turning our attention now to the function g in Example 10.5.1, we first need to use
the odd property of the sine function to write it in the form required by Theorem 10.23

g(x) =
1

2
sin(π − 2x) +

3

2
=

1

2
sin(−(2x− π)) +

3

2
= −1

2
sin(2x− π) +

3

2
= −1

2
sin(2x+ (−π)) +

3

2

We find A = −1
2 , ω = 2, φ = −π and B = 3

2 . The period is then 2π
2 = π, the amplitude is∣∣−1

2

∣∣ = 1
2 , the phase shift is −−π2 = π

2 (indicating a shift right π
2 units) and the vertical shift is up

3
2 . Note that, in this case, all of the data match our graph of y = g(x) with the exception of the
phase shift. Instead of the graph starting at x = π

2 , it ends there. Remember, however, that the
graph presented in Example 10.5.1 is only one portion of the graph of y = g(x). Indeed, another
complete cycle begins at x = π

2 , and this is the cycle Theorem 10.23 is detecting. The reason for the
discrepancy is that, in order to apply Theorem 10.23, we had to rewrite the formula for g(x) using
the odd property of the sine function. Note that whether we graph y = g(x) using the ‘quarter
marks’ approach or using the Theorem 10.23, we get one complete cycle of the graph, which means
we have completely determined the sinusoid.

Example 10.5.2. Below is the graph of one complete cycle of a sinusoid y = f(x).

(
−1, 5

2

)

(
1
2
, 1
2

)

(
2,− 3

2

)

(
7
2
, 1
2

)

(
5, 5

2

)

x

y

−1 1 2 3 4 5

−2

−1

1

2

3

One cycle of y = f(x).

1. Find a cosine function whose graph matches the graph of y = f(x).

2. Find a sine function whose graph matches the graph of y = f(x).
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Solution.

1. We fit the data to a function of the form C(x) = A cos(ωx + φ) + B. Since one cycle is
graphed over the interval [−1, 5], its period is 5 − (−1) = 6. According to Theorem 10.23,
6 = 2π

ω , so that ω = π
3 . Next, we see that the phase shift is −1, so we have −φ

ω = −1, or
φ = ω = π

3 . To find the amplitude, note that the range of the sinusoid is
[
−3

2 ,
5
2

]
. As a result,

the amplitude A = 1
2

[
5
2 −

(
−3

2

)]
= 1

2(4) = 2. Finally, to determine the vertical shift, we
average the endpoints of the range to find B = 1

2

[
5
2 +

(
−3

2

)]
= 1

2(1) = 1
2 . Our final answer is

C(x) = 2 cos
(
π
3x+ π

3

)
+ 1

2 .

2. Most of the work to fit the data to a function of the form S(x) = A sin(ωx+ φ) +B is done.
The period, amplitude and vertical shift are the same as before with ω = π

3 , A = 2 and
B = 1

2 . The trickier part is finding the phase shift. To that end, we imagine extending the
graph of the given sinusoid as in the figure below so that we can identify a cycle beginning
at
(

7
2 ,

1
2

)
. Taking the phase shift to be 7

2 , we get −φ
ω = 7

2 , or φ = −7
2ω = −7

2

(
π
3

)
= −7π

6 .
Hence, our answer is S(x) = 2 sin

(
π
3x−

7π
6

)
+ 1

2 .

(
7
2
, 1
2

)

(
5, 5

2

)

(
13
2
, 1
2

)

(
8,− 3

2

)

(
19
2
, 5
2

)
x

y

−1 1 2 3 4 5 6 7 8 9 10

−2

−1

1

2

3

Extending the graph of y = f(x).

Note that each of the answers given in Example 10.5.2 is one choice out of many possible answers.
For example, when fitting a sine function to the data, we could have chosen to start at

(
1
2 ,

1
2

)
taking

A = −2. In this case, the phase shift is 1
2 so φ = −π

6 for an answer of S(x) = −2 sin
(
π
3x−

π
6

)
+ 1

2 .
Alternatively, we could have extended the graph of y = f(x) to the left and considered a sine
function starting at

(
−5

2 ,
1
2

)
, and so on. Each of these formulas determine the same sinusoid curve

and their formulas are all equivalent using identities. Speaking of identities, if we use the sum
identity for cosine, we can expand the formula to yield

C(x) = A cos(ωx+ φ) +B = A cos(ωx) cos(φ)−A sin(ωx) sin(φ) +B.
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Similarly, using the sum identity for sine, we get

S(x) = A sin(ωx+ φ) +B = A sin(ωx) cos(φ) +A cos(ωx) sin(φ) +B.

Making these observations allows us to recognize (and graph) functions as sinusoids which, at first
glance, don’t appear to fit the forms of either C(x) or S(x).

Example 10.5.3. Consider the function f(x) = cos(2x)−
√

3 sin(2x). Rewrite the formula for f(x):

1. in the form C(x) = A cos(ωx+ φ) +B for ω > 0

2. in the form S(x) = A sin(ωx+ φ) +B for ω > 0

Check your answers analytically using identities and graphically using a calculator.

Solution.

1. The key to this problem is to use the expanded forms of the sinusoid formulas and match up
corresponding coefficients. Equating f(x) = cos(2x)−

√
3 sin(2x) with the expanded form of

C(x) = A cos(ωx+ φ) +B, we get

cos(2x)−
√

3 sin(2x) = A cos(ωx) cos(φ)−A sin(ωx) sin(φ) +B

It should be clear we can take ω = 2 and B = 0 to get

cos(2x)−
√

3 sin(2x) = A cos(2x) cos(φ)−A sin(2x) sin(φ)

To determine A and φ, a bit more work is involved. We get started by equating the coefficients
of the trigonometric functions on either side of the equation. On the left hand side, the
coefficient of cos(2x) is 1, while on the right hand side, it is A cos(φ). Since this equation
is to hold for all real numbers, we must have8 that A cos(φ) = 1. Similarly, we find by
equating the coefficients of sin(2x) that A sin(φ) =

√
3. What we have here is a system

of nonlinear equations! We can temporarily eliminate the dependence on φ by using the
Pythagorean Identity. We know cos2(φ) + sin2(φ) = 1, so multiplying this by A2 gives
A2 cos2(φ)+A2 sin2(φ) = A2. Since A cos(φ) = 1 and A sin(φ) =

√
3, we get A2 = 12+(

√
3)2 =

4 or A = ±2. Choosing A = 2, we have 2 cos(φ) = 1 and 2 sin(φ) =
√

3 or, after some

rearrangement, cos(φ) = 1
2 and sin(φ) =

√
3

2 . One such angle φ which satisfies this criteria is
φ = π

3 . Hence, one way to write f(x) as a sinusoid is f(x) = 2 cos
(
2x+ π

3

)
. We can easily

check our answer using the sum formula for cosine

f(x) = 2 cos
(
2x+ π

3

)
= 2

[
cos(2x) cos

(
π
3

)
− sin(2x) sin

(
π
3

)]
= 2

[
cos(2x)

(
1
2

)
− sin(2x)

(√
3

2

)]
= cos(2x)−

√
3 sin(2x)

8This should remind you of equation coefficients of like powers of x in Section 8.6.
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2. Proceeding as before, we equate f(x) = cos(2x) −
√

3 sin(2x) with the expanded form of
S(x) = A sin(ωx+ φ) +B to get

cos(2x)−
√

3 sin(2x) = A sin(ωx) cos(φ) +A cos(ωx) sin(φ) +B

Once again, we may take ω = 2 and B = 0 so that

cos(2x)−
√

3 sin(2x) = A sin(2x) cos(φ) +A cos(2x) sin(φ)

We equate9 the coefficients of cos(2x) on either side and get A sin(φ) = 1 and A cos(φ) = −
√

3.
Using A2 cos2(φ) + A2 sin2(φ) = A2 as before, we get A = ±2, and again we choose A = 2.

This means 2 sin(φ) = 1, or sin(φ) = 1
2 , and 2 cos(φ) = −

√
3, which means cos(φ) = −

√
3

2 .
One such angle which meets these criteria is φ = 5π

6 . Hence, we have f(x) = 2 sin
(
2x+ 5π

6

)
.

Checking our work analytically, we have

f(x) = 2 sin
(
2x+ 5π

6

)
= 2

[
sin(2x) cos

(
5π
6

)
+ cos(2x) sin

(
5π
6

)]
= 2

[
sin(2x)

(
−
√

3
2

)
+ cos(2x)

(
1
2

)]
= cos(2x)−

√
3 sin(2x)

Graphing the three formulas for f(x) result in the identical curve, verifying our analytic work.

It is important to note that in order for the technique presented in Example 10.5.3 to fit a function
into one of the forms in Theorem 10.23, the arguments of the cosine and sine function much match.
That is, while f(x) = cos(2x) −

√
3 sin(2x) is a sinusoid, g(x) = cos(2x) −

√
3 sin(3x) is not.10 It

is also worth mentioning that, had we chosen A = −2 instead of A = 2 as we worked through
Example 10.5.3, our final answers would have looked different. The reader is encouraged to rework
Example 10.5.3 using A = −2 to see what these differences are, and then for a challenging exercise,
use identities to show that the formulas are all equivalent. The general equations to fit a function
of the form f(x) = a cos(ωx) + b sin(ωx) +B into one of the forms in Theorem 10.23 are explored
in the Exercises.

9Be careful here!
10This graph does, however, exhibit sinusoid-like characteristics! Check it out!
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10.5.2 Graphs of the Secant and Cosecant Functions

We now turn our attention to graphing y = sec(x). Since sec(x) = 1
cos(x) , we can use our table

of values for the graph of y = cos(x) and take reciprocals. We know from Section 10.3.1 that the
domain of F (x) = sec(x) excludes all odd multiples of π

2 , and sure enough, we run into trouble
at x = π

2 and x = 3π
2 since cos(x) = 0 at these values. Using the notation introduced in Section

4.2, we have that as x → π
2
−, cos(x) → 0+, so sec(x) → ∞.11 Similarly, we find that as x → π

2
+,

sec(x) → −∞, as x → 3π
2

−
, sec(x) → −∞, and as x → 3π

2

+
, sec(x) → ∞. This means we have a

pair of vertical asymptotes to the graph of y = sec(x), x = π
2 and x = 3π

2 . Since cos(x) is periodic
with period 2π, it follows that sec(x) is also.12 Below we graph a fundamental cycle of y = sec(x)
along with a more complete graph obtained by the usual ‘copying and pasting.’13

x cos(x) sec(x) (x, sec(x))

0 1 1 (0, 1)

π
4

√
2

2

√
2

(
π
4 ,
√

2
)

π
2 0 undefined

3π
4 −

√
2

2 −
√

2
(

3π
4 ,−
√

2
)

π −1 −1 (π,−1)

5π
4 −

√
2

2 −
√

2
(

5π
4 ,−
√

2
)

3π
2 0 undefined

7π
4

√
2

2

√
2

(
7π
4 ,
√

2
)

2π 1 1 (2π, 1)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

The ‘fundamental cycle’ of y = sec(x).

x

y

The graph of y = sec(x).

11See Section 10.3.1 for a more detailed analysis.
12Provided sec(α) and sec(β) are defined, sec(α) = sec(β) if and only if cos(α) = cos(β). Hence, sec(x) inherits its

period from cos(x).
13In Section 10.3.1, we argued the range of F (x) = sec(x) is (−∞,−1] ∪ [1,∞). We can now see this graphically.
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As one would expect, to graph y = csc(x) we begin with y = sin(x) and take reciprocals of the
corresponding y-values. Here, we encounter issues at x = 0, x = π and x = 2π. Proceeding with
the usual analysis, we graph the fundamental cycle of y = csc(x) below along with the dotted graph
of y = sin(x) for reference. Since y = sin(x) and y = cos(x) are merely phase shifts of each other,
so too are y = csc(x) and y = sec(x).

x sin(x) csc(x) (x, csc(x))

0 0 undefined

π
4

√
2

2

√
2

(
π
4 ,
√

2
)

π
2 1 1

(
π
2 , 1
)

3π
4

√
2

2

√
2

(
3π
4 ,
√

2
)

π 0 undefined

5π
4 −

√
2

2 −
√

2
(

5π
4 ,−
√

2
)

3π
2 −1 −1

(
3π
2 ,−1

)
7π
4 −

√
2

2 −
√

2
(

7π
4 ,−
√

2
)

2π 0 undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

The ‘fundamental cycle’ of y = csc(x).
Once again, our domain and range work in Section 10.3.1 is verified geometrically in the graph of
y = G(x) = csc(x).

x

y

The graph of y = csc(x).

Note that, on the intervals between the vertical asymptotes, both F (x) = sec(x) and G(x) = csc(x)
are continuous and smooth. In other words, they are continuous and smooth on their domains.14

The following theorem summarizes the properties of the secant and cosecant functions. Note that

14Just like the rational functions in Chapter 4 are continuous and smooth on their domains because polynomials are
continuous and smooth everywhere, the secant and cosecant functions are continuous and smooth on their domains
since the cosine and sine functions are continuous and smooth everywhere.
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all of these properties are direct results of them being reciprocals of the cosine and sine functions,
respectively.

Theorem 10.24. Properties of the Secant and Cosecant Functions

• The function F (x) = sec(x)

– has domain
{
x : x 6= π

2 + πk, k is an integer
}

=
∞⋃

k=−∞

(
(2k − 1)π

2
,
(2k + 1)π

2

)
– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is continuous and smooth on its domain

– is even

– has period 2π

• The function G(x) = csc(x)

– has domain {x : x 6= πk, k is an integer} =
∞⋃

k=−∞
(kπ, (k + 1)π)

– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is continuous and smooth on its domain

– is odd

– has period 2π

In the next example, we discuss graphing more general secant and cosecant curves.

Example 10.5.4. Graph one cycle of the following functions. State the period of each.

1. f(x) = 1− 2 sec(2x) 2. g(x) =
csc(π − πx)− 5

3

Solution.

1. To graph y = 1− 2 sec(2x), we follow the same procedure as in Example 10.5.1. First, we set
the argument of secant, 2x, equal to the ‘quarter marks’ 0, π

2 , π, 3π
2 and 2π and solve for x.

a 2x = a x

0 2x = 0 0

π
2 2x = π

2
π
4

π 2x = π π
2

3π
2 2x = 3π

2
3π
4

2π 2x = 2π π
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Next, we substitute these x values into f(x). If f(x) exists, we have a point on the graph;
otherwise, we have found a vertical asymptote. In addition to these points and asymptotes,
we have graphed the associated cosine curve – in this case y = 1− 2 cos(2x) – dotted in the
picture below. Since one cycle is graphed over the interval [0, π], the period is π − 0 = π.

x f(x) (x, f(x))

0 −1 (0,−1)

π
4 undefined

π
2 3

(
π
2 , 3
)

3π
4 undefined

π −1 (π,−1)

x

y

π
4

π
2

3π
4

π−1

1
2
3

One cycle of y = 1− 2 sec(2x).

2. Proceeding as before, we set the argument of cosecant in g(x) = csc(π−πx)−5
3 equal to the

quarter marks and solve for x.

a π − πx = a x

0 π − πx = 0 1

π
2 π − πx = π

2
1
2

π π − πx = π 0

3π
2 π − πx = 3π

2 −1
2

2π π − πx = 2π −1

Substituting these x-values into g(x), we generate the graph below and find the period to be

1− (−1) = 2. The associated sine curve, y = sin(π−πx)−5
3 , is dotted in as a reference.

x g(x) (x, g(x))

1 undefined

1
2 −4

3

(
1
2 ,−

4
3

)
0 undefined

−1
2 −2

(
−1

2 ,−2
)

−1 undefined

x

y

−1 − 1
2

1
2

1

−2

−1

One cycle of y = csc(π−πx)−5
3 .
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Before moving on, we note that it is possible to speak of the period, phase shift and vertical shift of
secant and cosecant graphs and use even/odd identities to put them in a form similar to the sinusoid
forms mentioned in Theorem 10.23. Since these quantities match those of the corresponding cosine
and sine curves, we do not spell this out explicitly. Finally, since the ranges of secant and cosecant
are unbounded, there is no amplitude associated with these curves.

10.5.3 Graphs of the Tangent and Cotangent Functions

Finally, we turn our attention to the graphs of the tangent and cotangent functions. When con-
structing a table of values for the tangent function, we see that J(x) = tan(x) is undefined at
x = π

2 and x = 3π
2 , in accordance with our findings in Section 10.3.1. As x → π

2
−, sin(x) → 1−

and cos(x) → 0+, so that tan(x) = sin(x)
cos(x) → ∞ producing a vertical asymptote at x = π

2 . Using a

similar analysis, we get that as x→ π
2

+, tan(x)→ −∞, as x→ 3π
2

−
, tan(x)→∞, and as x→ 3π

2

+
,

tan(x)→ −∞. Plotting this information and performing the usual ‘copy and paste’ produces:

x tan(x) (x, tan(x))

0 0 (0, 0)

π
4 1

(
π
4 , 1
)

π
2 undefined

3π
4 −1

(
3π
4 ,−1

)
π 0 (π, 0)

5π
4 1

(
5π
4 , 1

)
3π
2 undefined

7π
4 −1

(
7π
4 ,−1

)
2π 0 (2π, 0)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The graph of y = tan(x) over [0, 2π].

x

y

The graph of y = tan(x).
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From the graph, it appears as if the tangent function is periodic with period π. To prove that this
is the case, we appeal to the sum formula for tangents. We have:

tan(x+ π) =
tan(x) + tan(π)

1− tan(x) tan(π)
=

tan(x) + 0

1− (tan(x))(0)
= tan(x),

which tells us the period of tan(x) is at most π. To show that it is exactly π, suppose p is a
positive real number so that tan(x + p) = tan(x) for all real numbers x. For x = 0, we have
tan(p) = tan(0 + p) = tan(0) = 0, which means p is a multiple of π. The smallest positive multiple
of π is π itself, so we have established the result. We take as our fundamental cycle for y = tan(x)
the interval

(
−π

2 ,
π
2

)
, and use as our ‘quarter marks’ x = −π

2 , −π
4 , 0, π4 and π

2 . From the graph, we
see confirmation of our domain and range work in Section 10.3.1.

It should be no surprise that K(x) = cot(x) behaves similarly to J(x) = tan(x). Plotting cot(x)
over the interval [0, 2π] results in the graph below.

x cot(x) (x, cot(x))

0 undefined

π
4 1

(
π
4 , 1
)

π
2 0

(
π
2 , 0
)

3π
4 −1

(
3π
4 ,−1

)
π undefined

5π
4 1

(
5π
4 , 1

)
3π
2 0

(
3π
2 , 0

)
7π
4 −1

(
7π
4 ,−1

)
2π undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The graph of y = cot(x) over [0, 2π].

From these data, it clearly appears as if the period of cot(x) is π, and we leave it to the reader
to prove this.15 We take as one fundamental cycle the interval (0, π) with quarter marks: x = 0,
π
4 , π

2 , 3π
4 and π. A more complete graph of y = cot(x) is below, along with the fundamental cycle

highlighted as usual. Once again, we see the domain and range of K(x) = cot(x) as read from the
graph matches with what we found analytically in Section 10.3.1.

15Certainly, mimicking the proof that the period of tan(x) is an option; for another approach, consider transforming
tan(x) to cot(x) using identities.
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x

y

The graph of y = cot(x).

The properties of the tangent and cotangent functions are summarized below. As with Theorem
10.24, each of the results below can be traced back to properties of the cosine and sine functions
and the definition of the tangent and cotangent functions as quotients thereof.

Theorem 10.25. Properties of the Tangent and Cotangent Functions

• The function J(x) = tan(x)

– has domain
{
x : x 6= π

2 + πk, k is an integer
}

=
∞⋃

k=−∞

(
(2k − 1)π

2
,
(2k + 1)π

2

)
– has range (−∞,∞)

– is continuous and smooth on its domain

– is odd

– has period π

• The function K(x) = cot(x)

– has domain {x : x 6= πk, k is an integer} =

∞⋃
k=−∞

(kπ, (k + 1)π)

– has range (−∞,∞)

– is continuous and smooth on its domain

– is odd

– has period π

Example 10.5.5. Graph one cycle of the following functions. Find the period.

1. f(x) = 1− tan
(
x
2

)
. 2. g(x) = 2 cot

(
π
2x+ π

)
+ 1.
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Solution.

1. We proceed as we have in all of the previous graphing examples by setting the argument of
tangent in f(x) = 1− tan

(
x
2

)
, namely x

2 , equal to each of the ‘quarter marks’ −π
2 , −π

4 , 0, π
4

and π
2 , and solving for x.

a x
2 = a x

−π
2

x
2 = −π

2 −π
−π

4
x
2 = −π

4 −π
2

0 x
2 = 0 0

π
4

x
2 = π

4
π
2

π
2

x
2 = π

2 π

Substituting these x-values into f(x), we find points on the graph and the vertical asymptotes.

x f(x) (x, f(x))

−π undefined

−π
2 2

(
−π

2 , 2
)

0 1 (0, 1)

π
2 0

(
π
2 , 0
)

π undefined

x

y

−π −π
2

π
2

π

−2

−1

1

2

One cycle of y = 1− tan
(
x
2

)
.

We see that the period is π − (−π) = 2π.

2. The ‘quarter marks’ for the fundamental cycle of the cotangent curve are 0, π
4 , π

2 , 3π
4 and π.

To graph g(x) = 2 cot
(
π
2x+ π

)
+ 1, we begin by setting π

2x+ π equal to each quarter mark
and solving for x.

a π
2x+ π = a x

0 π
2x+ π = 0 −2

π
4

π
2x+ π = π

4 −3
2

π
2

π
2x+ π = π

2 −1

3π
4

π
2x+ π = 3π

4 −1
2

π π
2x+ π = π 0
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We now use these x-values to generate our graph.

x g(x) (x, g(x))

−2 undefined

−3
2 3

(
−3

2 , 3
)

−1 1 (−1, 1)

−1
2 −1

(
−1

2 ,−1
)

0 undefined

x

y

−2 −1

−1

1

2

3

One cycle of y = 2 cot
(
π
2
x+ π

)
+ 1.

We find the period to be 0− (−2) = 2.

As with the secant and cosecant functions, it is possible to extend the notion of period, phase shift
and vertical shift to the tangent and cotangent functions as we did for the cosine and sine functions
in Theorem 10.23. Since the number of classical applications involving sinusoids far outnumber
those involving tangent and cotangent functions, we omit this. The ambitious reader is invited to
formulate such a theorem, however.
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10.5.4 Exercises

1. Graph one cycle of the following functions. State the period, amplitude, phase shift and
vertical shift of each.

(a) y = 3 sin(x)

(b) y = sin(3x)

(c) y = −2 cos(x)

(d) y = cos
(
x− π

2

)
(e) y = − sin

(
x+

π

3

)
(f) y = sin(2x− π)

(g) y = −1

3
cos

(
1

2
x+

π

3

)

(h) y = cos(3x− 2π) + 4

(i) y = sin
(
−x− π

4

)
− 2

(j) y =
2

3
cos
(π

2
− 4x

)
+ 1

(k) y = −3

2
cos
(

2x+
π

3

)
− 1

2

(l) y = 4 sin(−2πx+ π)

2. Graph one cycle of the following functions. State the period of each.

(a) y = tan
(
x− π

3

)
(b) y = 2 tan

(
1

4
x

)
− 3

(c) y =
1

3
tan(−2x− π) + 1

(d) y = sec
(
x− π

2

)
(e) y = − csc

(
x+

π

3

)
(f) y = −1

3
sec

(
1

2
x+

π

3

)

(g) y = csc(2x− π)

(h) y = sec(3x− 2π) + 4

(i) y = csc
(
−x− π

4

)
− 2

(j) y = cot
(
x+

π

6

)
(k) y = −11 cot

(
1

5
x

)
(l) y =

1

3
cot

(
2x+

3π

2

)
+ 1

3. Using Example 10.5.3 as a guide, show that the following functions are sinusoids by rewriting
them in the forms C(x) = A cos(ωx+ φ) +B and S(x) = A sin(ωx+ φ) +B for ω > 0.

(a) f(x) =
√

2 sin(x) +
√

2 cos(x) + 1

(b) f(x) = 3
√

3 sin(3x)− 3 cos(3x)

(c) f(x) = − sin(x) + cos(x)− 2

(d) f(x) = −1

2
sin(2x)−

√
3

2
cos(2x)

4. Let φ be an angle measured in radians and let P (a, b) be a point on the terminal side of φ
when it is drawn in standard position. Use Theorem 10.3 and the sum identity for sine in
Theorem 10.15 to show that f(x) = a sin(ωx) + b cos(ωx) +B (with ω > 0) can be rewritten
as f(x) =

√
a2 + b2 sin(ωx+ φ) +B.

5. With the help of your classmates, express the domains of the functions in Examples 10.5.4
and 10.5.5 using extended interval notation. (We will revisit this in Section 10.7.)
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6. Graph the following functions with the help of your calculator and discuss the given questions
with your classmates.

(a) f(x) = cos(3x) + sin(x). Is this function periodic? If so, what is the period?

(b) f(x) = sin(x)
x . What appears to be the horizontal asymptote of the graph?

(c) f(x) = x sin(x). Graph y = ±x on the same set of axes and describe the behavior of f .

(d) f(x) = sin
(

1
x

)
. What’s happening as x→ 0?

(e) f(x) = x− tan(x). Graph y = x on the same set of axes and describe the behavior of f .

(f) f(x) = e−0.1x (cos(2x) + sin(2x)). Graph y = ±e−0.1x on the same set of axes and
describe the behavior of f .

(g) f(x) = e−0.1x (cos(2x) + 2 sin(x)). Graph y = ±e−0.1x on the same set of axes and
describe the behavior of f .

7. Show that a constant function f is periodic by showing that f(x + 117) = f(x) for all real
numbers x. Then show that f has no period by showing that you cannot find a smallest
number p such that f(x + p) = f(x) for all real numbers x. Said another way, show that
f(x+ p) = f(x) for all real numbers x for ALL values of p > 0, so no smallest value exists to
satisfy the definition of ‘period’.
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10.5.5 Answers

1. (a) y = 3 sin(x)
Period: 2π
Amplitude: 3
Phase Shift: 0
Vertical Shift: 0 x

y

π
2

π 3π
2

2π

−3

3

(b) y = sin(3x)

Period:
2π

3
Amplitude: 1
Phase Shift: 0
Vertical Shift: 0 x

y

π
6

π
3

π
2

2π
3

−1

1

(c) y = −2 cos(x)
Period: 2π
Amplitude: 2
Phase Shift: 0
Vertical Shift: 0

x

y

π
2

π 3π
2

2π

−2

2

(d) y = cos
(
x− π

2

)
Period: 2π
Amplitude: 1

Phase Shift:
π

2
Vertical Shift: 0 x

y

π
2

π 3π
2

2π 5π
2

−1

1
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(e) y = − sin
(
x+

π

3

)
Period: 2π
Amplitude: 1

Phase Shift: −π
3

Vertical Shift: 0 x

y

−π
3

π
6

2π
3

7π
6

5π
3

−1

1

(f) y = sin(2x− π)
Period: π
Amplitude: 1

Phase Shift:
π

2
Vertical Shift: 0

x

y

π
2

3π
4

π 5π
4

3π
2

−1

1

(g) y = −1

3
cos

(
1

2
x+

π

3

)
Period: 4π

Amplitude:
1

3

Phase Shift: −2π

3
Vertical Shift: 0

x

y

−2π
3

π
3

4π
3

7π
3

10π
3

−1
3

1
3

(h) y = cos(3x− 2π) + 4

Period:
2π

3
Amplitude: 1

Phase Shift:
2π

3
Vertical Shift: 4

x

y

2π
3

5π
6

π 7π
6

4π
3

3

4

5
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(i) y = sin
(
−x− π

4

)
− 2

Period: 2π
Amplitude: 1

Phase Shift: −π
4

(You need to use

y = − sin
(
x+

π

4

)
− 2 to find this.)16

Vertical Shift: −2

x

y

−9π
4 −

7π
4 −

5π
4 −

3π
4
−π

4
π
4

3π
4

5π
4

7π
4

−3

−2

−1

(j) y =
2

3
cos
(π

2
− 4x

)
+ 1

Period:
π

2

Amplitude:
2

3
Phase Shift:

π

8
(You need to use

y =
2

3
cos
(

4x− π

2

)
+ 1 to find this.)17

Vertical Shift: 1 x

y

−3π
8
−π

4 −
π
8

π
8

π
4

3π
8

π
2

5π
8

1
3

1

5
3

(k) y = −3

2
cos
(

2x+
π

3

)
− 1

2
Period: π

Amplitude:
3

2
Phase Shift: −π

6

Vertical Shift: −1

2

x

y

−π
6

π
12

π
3

7π
12

5π
6

−2

−1
2

1

(l) y = 4 sin(−2πx+ π)
Period: 1
Amplitude: 4

Phase Shift:
1

2
(You need to use

y = −4 sin(2πx− π) to find this.)18

Vertical Shift: 0

x

y

−1
2 −

1
4

1
4

1
2

3
4

1 5
4

3
2

−4

4

16Two cycles of the graph are shown to illustrate the discrepancy discussed on page 678.
17Again, we graph two cycles to illustrate the discrepancy discussed on page 678.
18This will be the last time we graph two cycles to illustrate the discrepancy discussed on page 678.
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2. (a) y = tan
(
x− π

3

)
Period: π

x

y

−π
6

π
12

π
3

7π
12

5π
6−1

1

(b) y = 2 tan

(
1

4
x

)
− 3

Period: 4π

x

y

−2π −π π 2π

−5

−3

−1

(c) y =
1

3
tan(−2x− π) + 1

is equivalent to

y = −1

3
tan(2x+ π) + 1

via the Even / Odd identity for tangent.

Period:
π

2

x

y

− 3π
4 −

5π
8
−π2 − 3π

8
−π4

4
3

1
2
3
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(d) y = sec
(
x− π

2

)
Start with y = cos

(
x− π

2

)
Period: 2π

x

y

π
2

π 3π
2

2π 5π
2−1

1

(e) y = − csc
(
x+

π

3

)
Start with y = − sin

(
x+

π

3

)
Period: 2π

x

y

−π
3

π
6

2π
3

7π
6

5π
3−1

1

(f) y = −1

3
sec

(
1

2
x+

π

3

)
Start with y = −1

3
cos

(
1

2
x+

π

3

)
Period: 4π

x

y

−2π
3

π
3

4π
3

7π
3

10π
3

−1
3

1
3
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(g) y = csc(2x− π)
Start with y = sin(2x− π)
Period: π

x

y

π
2

3π
4

π 5π
4

3π
2

−1

1

(h) y = sec(3x− 2π) + 4
Start with y = cos(3x− 2π) + 4

Period:
2π

3

x

y

2π
3

5π
6

π 7π
6

4π
3

3

4

5

(i) y = csc
(
−x− π

4

)
− 2

Start with y = sin
(
−x− π

4

)
− 2

Period: 2π x

y

−π
4

π
4

3π
4

5π
4

7π
4

−3

−2

−1



10.5 Graphs of the Trigonometric Functions 699

(j) y = cot
(
x+

π

6

)
Period: π

x

y

−π
6

π
12

π
3

7π
12

5π
6

−1

1

(k) y = −11 cot

(
1

5
x

)
Period: 5π

x

y

5π
4

5π
2

15π
4

5π
−11

11

(l) y =
1

3
cot

(
2x+

3π

2

)
+ 1

Period:
π

2

x

y

− 3π
4 −

5π
8
−π2 − 3π

8
−π4

4
3

1
2
3
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3. (a) f(x) =
√

2 sin(x) +
√

2 cos(x) + 1 = 2 sin
(
x+

π

4

)
+ 1 = 2 cos

(
x+

7π

4

)
+ 1

(b) f(x) = 3
√

3 sin(3x)− 3 cos(3x) = 6 sin

(
3x+

11π

6

)
= 6 cos

(
3x+

4π

3

)
(c) f(x) = − sin(x) + cos(x)− 2 =

√
2 sin

(
x+

3π

4

)
− 2 =

√
2 cos

(
x+

π

4

)
− 2

(d) f(x) = −1

2
sin(2x)−

√
3

2
cos(2x) = sin

(
2x+

4π

3

)
= cos

(
2x+

5π

6

)
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10.6 The Inverse Trigonometric Functions

As the title indicates, in this section we concern ourselves with finding inverses of the (circular)
trigonometric functions. Our immediate problem is that, owing to their periodic nature, none of
the six circular functions is one-to-one. To remedy this, we restrict the domains of the circular
functions in the same way we restricted the domain of the quadratic function in Example 5.2.3 in
Section 5.2 to obtain a one-to-one function. We first consider f(x) = cos(x). Choosing the interval
[0, π] allows us to keep the range as [−1, 1] as well as the properties of being smooth and continuous.

x

y

Restricting the domain of f(x) = cos(x) to [0, π].

Recall from Section 5.2 that the inverse of a function f is typically denoted f−1. For this reason,
some textbooks use the notation f−1(x) = cos−1(x) for the inverse of f(x) = cos(x). The obvious
pitfall here is our convention of writing (cos(x))2 as cos2(x), (cos(x))3 as cos3(x) and so on. It
is far too easy to confuse cos−1(x) with 1

cos(x) = sec(x) so we will not use this notation in our

text.1 Instead, we use the notation f−1(x) = arccos(x), read ‘arc-cosine of x.’ To understand the
‘arc’ in ‘arccosine’, recall that an inverse function, by definition, reverses the process of the original
function. The function f(t) = cos(t) takes a real number input t, associates it with the angle
θ = t radians, and returns the value cos(θ). Digging deeper,2 we have that cos(θ) = cos(t) is the
x-coordinate of the terminal point on the Unit Circle of an oriented arc of length |t| whose initial
point is (1, 0). Hence, we may view the inputs to f(t) = cos(t) as oriented arcs and the outputs as
x-coordinates on the Unit Circle. The function f−1, then, would take x-coordinates on the Unit
Circle and return oriented arcs, hence the ‘arc’ in arccosine. Below are the graphs of f(x) = cos(x)
and f−1(x) = arccos(x), where we obtain the latter from the former by reflecting it across the line
y = x, in accordance with Theorem 5.3.

x

y

π
2

π

−1

1

f(x) = cos(x), 0 ≤ x ≤ π

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
2

π

−1 1

f−1(x) = arccos(x).

We restrict g(x) = sin(x) in a similar manner, although the interval of choice is
[
−π

2 ,
π
2

]
.

1But be aware that many books do! As always, be sure to check the context!
2See page 604 if you need a review of how we associate real numbers with angles in radian measure.
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x

y

Restricting the domain of f(x) = sin(x) to
[
−π

2 ,
π
2

]
.

It should be no surprise that we call g−1(x) = arcsin(x), read ‘arc-sine of x.’

x

y

−π
2

π
2

−1

1

g(x) = sin(x), −π
2
≤ x ≤ π

2
.

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

−π
2

π
2

−1 1

g−1(x) = arcsin(x).

We list some important facts about the arccosine and arcsine functions in the following theorem.

Theorem 10.26. Properties of the Arccosine and Arcsine Functions

• Properties of F (x) = arccos(x)

– Domain: [−1, 1]

– Range: [0, π]

– arccos(x) = t if and only if 0 ≤ t ≤ π and cos(t) = x

– cos(arccos(x)) = x provided −1 ≤ x ≤ 1

– arccos(cos(x)) = x provided 0 ≤ x ≤ π

• Properties of G(x) = arcsin(x)

– Domain: [−1, 1]

– Range:
[
−π

2 ,
π
2

]
– arcsin(x) = t if and only if −π

2 ≤ t ≤
π
2 and sin(t) = x

– sin(arcsin(x)) = x provided −1 ≤ x ≤ 1

– arcsin(sin(x)) = x provided −π
2 ≤ x ≤

π
2

– additionally, arcsine is odd

Everything in Theorem 10.26 is a direct consequence of the facts that f(x) = cos(x) for 0 ≤ x ≤ π
and F (x) = arccos(x) are inverses of each other as are g(x) = sin(x) for −π

2 ≤ x ≤ π
2 and

G(x) = arcsin(x).

It is time for an example.
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Example 10.6.1.

1. Find the exact values of the following.

(a) arccos
(

1
2

)
(b) arcsin

(√
2

2

)
(c) arccos

(
−
√

2
2

)
(d) arcsin

(
−1

2

)

(e) arccos
(
cos
(
π
6

))
(f) arccos

(
cos
(

11π
6

))
(g) cos

(
arccos

(
−3

5

))
(h) sin

(
arccos

(
−3

5

))
2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-

alence is valid.

(a) tan (arccos (x)) (b) cos (2 arcsin(x))

Solution.

1. (a) To find arccos
(

1
2

)
, we need to find the real number t (or, equivalently, an angle measuring

t radians) which lies between 0 and π with cos(t) = 1
2 . We know t = π

3 meets these
criteria, so arccos

(
1
2

)
= π

3 .

(b) The value of arcsin
(√

2
2

)
is a real number t between −π

2 and π
2 with sin(t) =

√
2

2 . The

number we seek is t = π
4 . Hence, arcsin

(√
2

2

)
= π

4 .

(c) The number t = arccos
(
−
√

2
2

)
lies in the interval [0, π] with cos(t) = −

√
2

2 . Our answer

is arccos
(
−
√

2
2

)
= 3π

4 .

(d) To find arcsin
(
−1

2

)
, we seek the number t in the interval

[
−π

2 ,
π
2

]
with sin(t) = −1

2 . The
answer is t = −π

6 so that arcsin
(
−1

2

)
= −π

6 .

(e) Since 0 ≤ π
6 ≤ π, we could simply invoke Theorem 10.26 to get arccos

(
cos
(
π
6

))
= π

6 .
However, in order to make sure we understand why this is the case, we choose to work
the example through using the definition of arccosine. Working from the inside out,

arccos
(
cos
(
π
6

))
= arccos

(√
3

2

)
. Now, arccos

(√
3

2

)
is the real number t with 0 ≤ t ≤ π

and cos(t) =
√

3
2 . We find t = π

6 , so that arccos
(
cos
(
π
6

))
= π

6 .

(f) Since 11π
6 does not fall between 0 and π, Theorem 10.26 does not apply. We are forced to

work through from the inside out starting with arccos
(
cos
(

11π
6

))
= arccos

(√
3

2

)
. From

the previous problem, we know arccos
(√

3
2

)
= π

6 . Hence, arccos
(
cos
(

11π
6

))
= π

6 .

(g) To help simplify cos
(
arccos

(
−3

5

))
let t = arccos

(
−3

5

)
. Then, by definition, 0 ≤ t ≤ π

and cos(t) = −3
5 . Hence, cos

(
arccos

(
−3

5

))
= cos(t) = −3

5 .
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(h) As in the previous example, we let t = arccos
(
−3

5

)
so that 0 ≤ t ≤ π and cos(t) = −3

5 .
In terms of t, then, we need to find sin

(
arccos

(
−3

5

))
= sin(t). Using the Pythagorean

Identity cos2(t)+sin2(t) = 1, we get
(
−3

5

)2
+sin2(t) = 1 or sin(t) = ±4

5 . Since 0 ≤ t ≤ π,
we choose3 sin(t) = 4

5 . Hence, sin
(
arccos

(
−3

5

))
= 4

5 .

2. (a) We begin rewriting tan (arccos (x)) using t = arccos(x). We know that 0 ≤ t ≤ π and
cos(t) = x, so our goal is to express tan (arccos (x)) = tan(t) in terms of x. This is where
identities come into play, but we must be careful to use identities which are defined for
all values of t under consideration. In this situation, we have 0 ≤ t ≤ π, but since the
quantity we are looking for, tan(t), is undefined at t = π

2 , the identities we choose to need

to hold for all t in
[
0, π2

)
∪
(
π
2 , π

]
. Since tan(t) = sin(t)

cos(t) , and we know cos(t) = x, all that

remains is to find sin(t) in terms of x and we’ll be done.4 The identity cos2(t)+sin2(t) = 1
holds for all t, in particular the ones in

[
0, π2

)
∪
(
π
2 , π

]
, so substituting cos(t) = x, we

get x2 + sin2(t) = 1. Hence, sin(t) = ±
√

1− x2 and since t belongs to
[
0, π2

)
∪
(
π
2 , π

]
,

sin(t) ≥ 0, so we choose sin(t) =
√

1− x2. Thus, tan(t) = sin(t)
cos(t) =

√
1−x2

x . To determine

the values of x for which this is valid, we first note that arccos(x) is valid only for
−1 ≤ x ≤ 1. Additionally, as we have already mentioned, tan(t) is not defined when

t = π
2 , which means we must exclude x = cos

(
π
2

)
= 0. Hence, tan (arccos (x)) =

√
1−x2

x
for x in [−1, 0) ∪ (0, 1].

(b) We proceed as in the previous problem by writing t = arcsin(x) so that t lies in the
interval

[
−π

2 ,
π
2

]
with sin(t) = x. We aim to express cos (2 arcsin(x)) = cos(2t) in terms

of x. Since cos(2t) is defined everywhere, we get no additional restrictions on t. We
have three choices for rewriting cos(2t): cos2(t)− sin2(t), 2 cos2(t)− 1 and 1− 2 sin2(t),
each of which is valid for t in

[
−π

2 ,
π
2

]
. Since we already know x = sin(t), it is easiest to

use the last form. We have cos (2 arcsin(x)) = cos(2t) = 1 − 2 sin2(t) = 1 − 2x2. Since
arcsin(x) is defined only for −1 ≤ x ≤ 1, the equivalence cos (2 arcsin(x)) = 1 − 2x2 is
valid on [−1, 1].

A few remarks about Example 10.6.1 are in order. Most of the common errors encountered in
dealing with the inverse circular functions come from the need to restrict the domains of the
original functions so that they are one-to-one. One instance of this phenomenon is the fact that
arccos

(
cos
(

11π
6

))
= π

6 as opposed to 11π
6 . This is the exact same phenomenon discussed in Section

5.2 when we saw
√

(−2)2 = 2 as opposed to −2. Additionally, even though the expression 1−2x2 is
defined for all real numbers, the equivalence cos (2 arcsin(x)) = 1−2x2 is valid for only −1 ≤ x ≤ 1.
This is akin to the fact that while the expression x is defined for all real numbers, the equivalence
(
√
x)

2
= x is valid only for x ≥ 0.

3In other words, the angle θ = t radians is a Quadrant I or II angle where sine is nonnegative.
4Alternatively, we could use the identity: 1 + tan2(t) = sec2(t). Since we are given x = cos(t), we know sec(t) =

1
cos(t)

= 1
x

. The reader is invited to work through this approach to see what, if any, difficulties arise.
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The next pair of functions we wish to discuss are the inverses of tangent and cotangent. First, we
restrict f(x) = tan(x) to its fundamental cycle on

(
−π

2 ,
π
2

)
to obtain f−1(x) = arctan(x). Among

other things, note that the vertical asymptotes x = −π
2 and x = π

2 of the graph of f(x) = tan(x)
become the horizontal asymptotes y = −π

2 and y = π
2 of the graph of f−1(x) = arctan(x).

x

y

−π
4

−π
2

π
4

π
2

−1

1

f(x) = tan(x), −π
2
< x < π

2
.

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

−π
4

−π
2

π
4

π
2

−1 1

f−1(x) = arctan(x).

Next, we restrict g(x) = cot(x) to its fundamental cycle on (0, π) to obtain g−1(x) = arccot(x).
Once again, the vertical asymptotes x = 0 and x = π of the graph of g(x) = cot(x) become the
horizontal asymptotes y = 0 and y = π in the graph of g−1(x) = arccot(x).

x

y

π
4

π
2

3π
4

π

−1

1

g(x) = cot(x), 0 < x < π.

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
4

π
2

3π
4

π

−1 1

g−1(x) = arccot(x).
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Theorem 10.27. Properties of the Arctangent and Arcotangent Functions

• Properties of F (x) = arctan(x)

– Domain: (−∞,∞)

– Range:
(
−π

2 ,
π
2

)
– as x→ −∞, arctan(x)→ −π

2
+; as x→∞, arctan(x)→ π

2
−

– arctan(x) = t if and only if −π
2 < t < π

2 and tan(t) = x

– arctan(x) = arccot
(

1
x

)
for x > 0

– tan (arctan(x)) = x for all real numbers x

– arctan(tan(x)) = x provided −π
2 < x < π

2

– additionally, arctangent is odd

• Properties of G(x) = arccot(x)

– Domain: (−∞,∞)

– Range: (0, π)

– as x→ −∞, arccot(x)→ π−; as x→∞, arccot(x)→ 0+

– arccot(x) = t if and only if 0 < t < π and cot(t) = x

– arccot(x) = arctan
(

1
x

)
for x > 0

– cot (arccot(x)) = x for all real numbers x

– arccot(cot(x)) = x provided 0 < x < π

Example 10.6.2.

1. Find the exact values of the following.

(a) arctan(
√

3)

(b) arccot(−
√

3)

(c) cot(arccot(−5))

(d) sin
(
arctan

(
−3

4

))
2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-

alence is valid.

(a) tan(2 arctan(x)) (b) cos(arccot(2x))

Solution.

1. (a) We know arctan(
√

3) is the real number t between −π
2 and π

2 with tan(t) =
√

3. We find

t = π
3 , so arctan(

√
3) = π

3 .
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(b) The real number t = arccot(−
√

3) lies in the interval (0, π) with cot(t) = −
√

3. We get
arccot(−

√
3) = 5π

6 .

(c) We can apply Theorem 10.27 directly and obtain cot(arccot(−5)) = −5. However,
working it through provides us with yet another opportunity to understand why this
is the case. Letting t = arccot(−5), we have that t belongs to the interval (0, π) and
cot(t) = −5. In terms of t, the expression cot(arccot(−5)) = cot(t), and since cot(t) =
−5 by definition, we have cot(arccot(−5)) = −5.

(d) We start simplifying sin
(
arctan

(
−3

4

))
by letting t = arctan

(
−3

4

)
. Then t lies between

−π
2 and π

2 with tan(t) = −3
4 . We seek sin

(
arctan

(
−3

4

))
= sin(t). There are many

ways to proceed at this point. The Pythagorean Identity, 1 + cot2(t) = csc2(t) relates
the reciprocals of sin(t) and tan(t), so this seems a reasonable place to start. Since

tan(t) = −3
4 , cot(t) = 1

tan(t) = −4
3 . We get 1 +

(
−4

3

)2
= csc2(t) so that csc(t) = ±5

3 ,

and, hence, sin(t) = ±3
5 . Since −π

2 < t < π
2 and tan(t) = −3

4 < 0, it must be the case
that t lies between −π

2 and 0. As a result, we choose sin(t) = −3
5 .

2. (a) If we let t = arctan(x), then −π
2 < t < π

2 and tan(t) = x. We look for a way to express
tan(2 arctan(x)) = tan(2t) in terms of x. Before we get started using identities, we note
that tan(2t) is undefined when 2t = π

2 + πk for integers k, which means we need to
exclude any of the values t = π

4 + π
2k, where k is an integer, which lie in

(
−π

2 ,
π
2

)
. We

find that we need to discard t = ±π
4 from the discussion, so we are now working with

t in
(
−π

2 ,−
π
4

)
∪
(
−π

4 ,
π
4

)
∪
(
π
4 ,

π
2

)
. Returning to arctan(2t), we note the double angle

identity tan(2t) = 2 tan(t)
1−tan2(t)

, is valid for values of t under consideration, hence we get

tan(2 arctan(x)) = tan(2t) = 2 tan(t)
1−tan2(t)

= 2x
1−x2 . To find where this equivalence is valid we

first note that the domain of arctan(x) is all real numbers, so the only exclusions come
from the x values which correspond to t = ±π

4 , the values where tan(2t) is undefined.
Since x = tan(t), we exclude x = tan

(
±π

4

)
= ±1. Hence, tan(2 arctan(x)) = 2x

1−x2

holds5 for (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(b) We let t = arccot(2x) so that 0 < t < π and cot(t) = 2x. In terms of t, cos(arccot(2x)) =
cos(t), and our goal is to express the latter in terms of x. Since cos(t) is always defined,
there are no additional restrictions on t, and we can begin using identities to get expres-
sions for cos(t) and cot(t). The identity cot(t) = cos(t)

sin(t) is valid for t in (0, π), so if we

can get sin(t) in terms of x, then we can write cos(t) = cot(t) sin(t) and be done. The
identity 1 + cot2(t) = csc2(t) holds for all t in (0, π) and relates cot(t) and csc(t) = 1

sin(t) ,

so we substitute cot(t) = 2x and get 1 + (2x)2 = csc2(t). Thus, csc(t) = ±
√

4x2 + 1
and since t is between 0 and π, we know csc(t) > 0, so we choose csc(t) =

√
4x2 + 1.

This gives sin(t) = 1√
4x2+1

, so that cos(t) = cot(t) sin(t) = 2x√
4x2+1

. Since arccot(2x) is

defined for all real numbers x and we encountered no additional restrictions on t, we
have the equivalence cos (arccot(2x)) = 2x√

4x2+1
for all real numbers x.

5Why not just start with 2x
1−x2 and find its domain? After all, it gives the correct answer - in this case. There are

lots of incorrect ways to arrive at the correct answer. It pays to be careful.
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The last two functions to invert are secant and cosecant. There are two generally acceptable ways
to restrict the domains of these functions so that they are one-to-one. One approach simplifies the
Trigonometry associated with the inverse functions, but complicates the Calculus; the other makes
the Calculus easier, but the Trigonometry less so. We present both points of view.

10.6.1 Inverses of Secant and Cosecant: Trigonometry Friendly Approach

In this subsection, we restrict the secant and cosecant functions to coincide with the restrictions
on cosine and sine, respectively. For f(x) = sec(x), we restrict the domain to

[
0, π2

)
∪
(
π
2 , π

]

x

y

π
2

π

−1

1

f(x) = sec(x) on
[
0, π

2

)
∪
(
π
2
, π
] reflect across y = x

−−−−−−−−−−−−→
switch x and y coordinates

x

y

π
2

π

−1 1

f−1(x) = arcsec(x)

and we restrict g(x) = csc(x) to
[
−π

2 , 0
)
∪
(
0, π2

]
.

x

y

−π
2

π
2

−1

1

f(x) = csc(x) on
[
0, π

2

)
∪
(
0, π

2

] reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

−π
2

π
2

−1 1

f−1(x) = arccsc(x)

Note that for both arcsecant and arccosecant, the domain is (−∞,−1] ∪ [1,∞). Taking a page
from Section 2.2, we can rewrite this as {x : |x| ≥ 1}. This is often done in Calculus textbooks, so
we include it here for completeness. Using these definitions, we get the following properties of the
arcsecant and arccosecant functions.
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Theorem 10.28. Properties of the Arcsecant and Arccosecant Functionsa

• Properties of F (x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π2

)
∪
(
π
2 , π

]
– as x→ −∞, arcsec(x)→ π

2
+; as x→∞, arcsec(x)→ π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π

2 < t ≤ π and sec(t) = x

– arcsec(x) = arccos
(

1
x

)
provided |x| ≥ 1

– sec (arcsec(x)) = x provided |x| ≥ 1

– arcsec(sec(x)) = x provided 0 ≤ x < π
2 or π

2 < x ≤ π

• Properties of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
−π

2 , 0
)
∪
(
0, π2

]
– as x→ −∞, arccsc(x)→ 0−; as x→∞, arccsc(x)→ 0+

– arccsc(x) = t if and only if −π
2 ≤ t < 0 or 0 < t ≤ π

2 and csc(t) = x

– arccsc(x) = arcsin
(

1
x

)
provided |x| ≥ 1

– csc (arccsc(x)) = x provided |x| ≥ 1

– arccsc(csc(x)) = x provided −π
2 ≤ x < 0 or 0 < x ≤ π

2

– additionally, arccosecant is odd

a. . . assuming the “Trigonometry Friendly” ranges are used.

Example 10.6.3.

1. Find the exact values of the following.

(a) arcsec(2)

(b) arccsc(−2)

(c) arcsec
(
sec
(

5π
4

))
(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-
alence is valid.

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

Solution.

1. (a) Using Theorem 10.28, we have arcsec(2) = arccos
(

1
2

)
= π

3 .
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(b) Once again, Theorem 10.28 comes to our aid giving arccsc(−2) = arcsin
(
−1

2

)
= −π

6 .

(c) Since 5π
4 doesn’t fall between 0 and π

2 or π
2 and π, we cannot use the inverse property

stated in Theorem 10.28. We can, nevertheless, begin by working ‘inside out’ which

yields arcsec
(
sec
(

5π
4

))
= arcsec(−

√
2) = arccos

(
−
√

2
2

)
= 3π

4 .

(d) One way to begin to simplify cot (arccsc (−3)) is to let t = arccsc(−3). Then, csc(t) = −3
and, since this is negative, we have that t lies in the interval

[
−π

2 , 0
)
. We are after

cot (arccsc (−3)) = cot(t), so we use the Pythagorean Identity 1 + cot2(t) = csc2(t).
Substituting, we have 1 + cot2(t) = (−3)2, or cot(t) = ±

√
8 = ±2

√
2. Since −π

2 ≤ t < 0,

cot(t) < 0, so we get cot (arccsc (−3)) = −2
√

2.

2. (a) We begin simplifying tan(arcsec(x)) by letting t = arcsec(x). Then, sec(t) = x for
t in

[
0, π2

)
∪
(
π
2 , π

]
, and we seek a formula for tan(t). Since tan(t) is defined for all

the t values in
[
0, π2

)
∪
(
π
2 , π

]
, we have no additional restrictions on t. The identity

1 + tan2(t) = sec2(t) is valid for all values t under consideration, and we get substitute
sec(t) = x to get 1 + tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1. If t belongs to

[
0, π2

)
then tan(t) ≥ 0; if, on the the other hand, t belongs to

(
π
2 , π

]
then tan(t) ≤ 0. As a

result, we get a piecewise defined function for tan(t)

tan(t) =

{ √
x2 − 1, if 0 ≤ t < π

2

−
√
x2 − 1, if π

2 < t ≤ π

Now we need to determine what these conditions on t mean for x. We know that the
domain of arcsec(x) is (−∞,−1] ∪ [1,∞), and since x = sec(t), x ≥ 1 corresponds to
0 ≤ t < π

2 , and x ≤ −1 corresponds to π
2 < t ≤ π. Since we encountered no further

restrictions on t, the equivalence below holds for all x in (−∞,−1] ∪ [1,∞).

tan(arcsec(x)) =

{ √
x2 − 1, if x ≥ 1

−
√
x2 − 1, if x ≤ −1

(b) To simplify cos(arccsc(4x)), we start by letting t = arccsc(4x). Then csc(t) = 4x for
t in

[
−π

2 , 0
)
∪
(
0, π2

]
. Our objective is to write cos(arccsc(4x)) = cos(t) in terms of

x. Since cos(t) is defined for all t, we do not encounter any additional restrictions on
t. From csc(t) = 4x, we get sin(t) = 1

4x . The identity cos2(t) + sin2(t) = 1 holds

for all values of t and substituting for sin(t) yields cos2(t) +
(

1
4x

)2
= 1. Solving, we

get cos(t) = ±
√

16x2−1
16x2 = ±

√
16x2−1
4|x| . Since t belongs to

[
−π

2 , 0
)
∪
(
0, π2

]
, we know

cos(t) ≥ 0, so we choose cos(t) =
√

16−x2

4|x| . (The absolute values here are necessary, since

x could be negative.) Since the domain of arccsc(x) requires |x| ≥ 1, the domain of
arccsc(4x) requires |4x| ≥ 1. Using Theorem 2.3, we can rewrite this as the compound
inequality 4x ≤ −1 or 4x ≥ 1. Solving, we get x ≤ −1

4 or x ≥ 1
4 . Since we had no

additional restrictions on t, the equivalence cos(arccsc(4x)) =
√

16x2−1
4|x| holds for all x in(

−∞,−1
4

]
∪
[

1
4 ,∞

)
.
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10.6.2 Inverses of Secant and Cosecant: Calculus Friendly Approach

In this subsection, we restrict f(x) = sec(x) to
[
0, π2

)
∪
[
π, 3π

2

)

x

y

π
2

π 3π
2

−1

1

f(x) = sec(x) on
[
0, π

2

)
∪
[
π, 3π

2

) reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
2

π

3π
2

−1 1

f−1(x) = arcsec(x)

and we restrict g(x) = csc(x) to
(
0, π2

]
∪
(
π, 3π

2

]
.

x

y

π
2

π 3π
2

−1

1

g(x) = csc(x) on
(
0, π

2

]
∪
(
π, 3π

2

] reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
2

π

3π
2

−1 1

g−1(x) = arccsc(x)

Using these definitions, we get the following result.
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Theorem 10.29. Properties of the Arcsecant and Arccosecant Functionsa

• Properties of F (x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π2

)
∪
[
π, 3π

2

)
– as x→ −∞, arcsec(x)→ 3π

2

−
; as x→∞, arcsec(x)→ π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π ≤ t < 3π

2 and sec(t) = x

– arcsec(x) = arccos
(

1
x

)
for x ≥ 1 onlyb

– sec (arcsec(x)) = x provided |x| ≥ 1

– arcsec(sec(x)) = x provided 0 ≤ x < π
2 or π ≤ x < 3π

2

• Properties of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
(
0, π2

]
∪
(
π, 3π

2

]
– as x→ −∞, arccsc(x)→ π+; as x→∞, arccsc(x)→ 0+

– arccsc(x) = t if and only if 0 < t ≤ π
2 or π < t ≤ 3π

2 and csc(t) = x

– arccsc(x) = arcsin
(

1
x

)
for x ≥ 1 onlyc

– csc (arccsc(x)) = x provided |x| ≥ 1

– arccsc(csc(x)) = x provided 0 < x ≤ π
2 or π < x ≤ 3π

2

a. . . assuming the “Calculus Friendly” ranges are used.
bCompare this with the similar result in Theorem 10.28.
cCompare this with the similar result in Theorem 10.28.

Our next example is a duplicate of Example 10.6.3. The interested reader is invited to compare
and contrast the solution to each.

Example 10.6.4.

1. Find the exact values of the following.

(a) arcsec(2)

(b) arccsc(−2)

(c) arcsec
(
sec
(

5π
4

))
(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-
alence is valid.

(a) tan(arcsec(x)) (b) cos(arccsc(4x))
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Solution.

1. (a) Since 2 ≥ 1, we may invoke Theorem 10.29 to get arcsec(2) = arccos
(

1
2

)
= π

3 .

(b) Unfortunately, −2 is not greater to or equal to 1, so we cannot apply Theorem 10.29 to
arccsc(−2) and convert this into an arcsine problem. Instead, we appeal to the definition.
The real number t = arccsc(−2) lies between 0 and π

2 or between π and 3π
2 and satisfies

csc(t) = −2. We have t = 7π
6 , so arccsc(−2) = 7π

6 .

(c) Since 5π
4 lies between π and 3π

2 , we may apply Theorem 10.29 directly to simplify
arcsec

(
sec
(

5π
4

))
= 5π

4 . We encourage the reader to work this through using the defini-
tion as we have done in the previous examples to see how it goes.

(d) To simplify cot (arccsc (−3)) we let t = arccsc (−3) so that cot (arccsc (−3)) = cot(t).
We know csc(t) = −3, and since this is negative, t lies between π and 3π

2 . Using
the Pythagorean Identity 1 + cot2(t) = csc2(t), we find 1 + cot2(t) = (−3)2 so that
cot(t) = ±

√
8 = ±2

√
2. Since t is in the interval

(
0, 3π

2

]
, we know cot(t) > 0. Our

answer is cot (arccsc (−3)) = 2
√

2.

2. (a) To simplify tan(arcsec(x)), we let t = arcsec(x) so sec(t) = x for t in
[
0, π2

)
∪
[
π, 3π

2

)
. Our

goal is to express tan(arcsec(x)) = tan(t) in terms of x. Since tan(t) is defined for all t
under consideration, we have no additional restrictions on t. The identity 1 + tan2(t) =
sec2(t) is valid for all t under discussion, so we substitute sec(t) = x to get 1 + tan2(t) =
x2. We get tan(t) = ±

√
x2 − 1, but since t lies in

[
0, π2

)
∪
[
π, 3π

2

)
, tan(t) ≥ 0, so we

choose tan(t) =
√
x2 − 1. Since we found no additional restrictions on t, the equivalence

tan(arcsec(x)) =
√
x2 − 1 holds on the domain of arcsec(x), (−∞,−1] ∪ [1,∞).

(b) If we let t = arccsc(4x), then csc(t) = 4x for t in
(
0, π2

]
∪
(
π, 3π

2

]
. Then cos(arccsc(4x)) =

cos(t) and our objective is to express the latter in terms of x. Since cos(t) is defined
everywhere, we have no additional restrictions on t. From csc(t) = 4x, we have sin(t) =

1
csc(t) = 1

4x which allows us to use the Pythagorean Identity, cos2(t) + sin2(t) = 1, which

holds for all values of t. We get cos2(t) +
(

1
4x

)2
= 1, or cos(t) = ±

√
16x2−1

16x2 = ±
√

16x2−1
4|x| .

If t lies in
(
0, π2

]
, then cos(t) ≥ 0. Otherwise, t belongs to

(
π, 3π

2

]
in which case cos(t) ≤ 0.

Assuming 0 < t ≤ π
2 , we choose cos(t) =

√
16x2−1
4|x| . Since csc(t) ≥ 1 in this case and

csc(t) = 4x, we have 4x ≥ 1 or x ≥ 1
4 . Hence, in this case, |x| = x so cos(t) =

√
16x2−1
4|x| =

√
16x2−1

4x . For π < t ≤ 3π
2 , we choose cos(t) = −

√
16x2−1
4|x| and since csc(t) ≤ −1 here, we

get x ≤ −1
4 < 0 so |x| = −x. This leads to cos(t) = −

√
16x2−1
4|x| = −

√
16x2−1
4(−x) =

√
16x2−1

4x in

this case, too. Hence, we have established that, in all cases: cos(arccsc(4x)) =
√

16x2−1
4x .

Since the domain of arccsc(x) requires |x| ≥ 1, arccsc(4x) requires |4x| ≥ 1 or, using
Theorem 2.3, for x to lie in

(
−∞,−1

4

]
∪
[

1
4 ,∞

)
. Since we found no additional restrictions

on t, cos(arccsc(4x)) =
√

16x2−1
4x for all x in

(
−∞,−1

4

]
∪
[

1
4 ,∞

)
.
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10.6.3 Using a Calculator to Approximate Inverse Function Values.

In the sections to come, we will have need to approximate the values of the inverse circular functions.
On most calculators, only the arcsine, arccosine and arctangent functions are available and they
are usually labeled as sin−1, cos−1 and tan−1, respectively. If we are asked to approximate these
values, it is a simple matter to punch up the appropriate decimal on the calculator. If we are asked
for an arccotangent, arcsecant or arccosecant, however, we often need to employ some ingenuity, as
the next example illustrates.

Example 10.6.5. Use a calculator to approximate the following values to four decimal places.

1. arccot(2) 2. arcsec(5) 3. arccot(−2) 4. arccsc(−5)

Solution.

1. Since 2 > 0, we can use a property listed in Theorem 10.27 to write arccot(2) = arctan
(

1
2

)
.

In ‘radian’ mode, we find arccot(2) = arctan
(

1
2

)
≈ 0.4636.

2. Since 5 ≥ 1, we can invoke either Theorem 10.28 or Theorem 10.29 to write arcsec(5) =
arccos

(
1
5

)
≈ 1.3694.

3. Since the argument, −2, is negative we cannot directly apply Theorem 10.27 to help us find
arccot(−2). Let t = arccot(−2). Then t is a real number between 0 and π with cot(t) = −2.
Let θ = t radians. Then θ is an angle between 0 and π with cot(θ) = −2. Since cot(θ) < 0, we
know θ must be a Quadrant II angle. Consider the reference angle for θ, α, as pictured below.
By definition, 0 < α < π

2 and by the Reference Angle Theorem, Theorem 10.2, it follows that
cot(α) = 2. By definition, then, α = arccot(2) radians which we can rewrite using Theorem
10.27 as arctan

(
1
2

)
. Since θ + α = π, we have θ = π − α = π − arctan

(
1
2

)
≈ 2.6779 radians.

Since θ = t radians, we have arccot(−2) ≈ 2.6779.
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x

y

1

1

α

θ

4. If the range of arccsc(x) is taken to be
[
−π

2 , 0
)
∪
(
0, π2

]
, we can use Theorem 10.28 to get

arccsc(−5) = arcsin
(
−1

5

)
≈ −0.2014. If, on the other hand, the range of arccsc(x) is taken

to be
(
0, π2

]
∪
(
π, 3π

2

]
, then we proceed as in the previous problem. Let t = arccsc(−5) and let

θ = t radians. Then csc(θ) = −5 which means π ≤ θ < 3π
2 . Let α be the reference angle for θ.

Then 0 < α < π
2 and csc(α) = 5. Hence, α = arccsc(5) = arcsin

(
1
5

)
radians, where the last

equality comes from Theorem 10.29. Since, in this case, θ = π + α = π + arcsin
(

1
5

)
≈ 3.3430

radians, we get arccsc(−5) ≈ 3.3430.

x

y

1

1

α

θ

The inverse trigonometric functions are typically found in applications whenever the measure of an
angle is required. One such scenario is presented in the following example.

Example 10.6.6. 6 The roof on the house below has a ‘6/12 pitch.’ This means that when viewed
from the side, the roof line has a rise of 6 feet over a run of 12 feet. Find the angle of inclination

6The authors would like to thank Dan Stitz for this problem and associated graphics.
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from the bottom of the roof to the top of the roof. Express your answer in decimal degrees, rounded
to the nearest hundredth of a degree.

Front View Side View

Solution. If we divide the side view of the house down the middle, we find that the roof line
forms the hypotenuse of a right triangle with legs of length 6 feet and 12 feet. Using Theorem
10.10, we find the angle of inclination, labeled θ below, satisfies tan(θ) = 6

12 = 1
2 . Since θ is an

acute angle, we can use the arctangent function and we find θ = arctan
(

1
2

)
radians. Converting

degrees to radians,7 we find θ =
(
arctan

(
1
2

)
radians

) (180 degrees
π radians

)
≈ 26.56◦.

12 feet

6 feet

θ

10.6.4 Solving Equations Using the Inverse Trigonometric Functions.

In Sections 10.2 and 10.3, we learned how to solve equations like sin(θ) = 1
2 for angles θ and

tan(t) = −1 for real numbers t. In each case, we ultimately appealed to the Unit Circle and relied
on the fact that the answers corresponded to a set of ‘common angles’ listed on page 619. If, on
the other hand, we had been asked to find all angles with sin(θ) = 1

3 or solve tan(t) = −2 for
real numbers t, we would have been hard-pressed to do so. With the introduction of the inverse
trigonometric functions, however, we are now in a position to solve these equations. A good parallel
to keep in mind is how the square root function can be used to solve certain quadratic equations.
The equation x2 = 4 is a lot like sin(θ) = 1

2 in that it has friendly, ‘common value’ answers x = ±2.
The equation x2 = 7, on the other hand, is a lot like sin(θ) = 1

3 . We know8 there are answers, but
we can’t express them using ‘friendly’ numbers.9 To solve x2 = 7, we make use of the square root

7Or, alternatively, setting the calculator to ‘degree’ mode.
8How do we know this again?
9This is all, of course, a matter of opinion. For the record, the authors find ±

√
7 just as ‘nice’ as ±2.
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function and write x = ±
√

7. We can certainly approximate these answers using a calculator, but
as far as exact answers go, we leave them as x = ±

√
7.10 In the same way, we will use the arcsine

function to solve sin(θ) = 1
3 , as seen in the following example.

Example 10.6.7. Solve the following equations.

1. Find all angles θ for which sin(θ) = 1
3 .

2. Find all real numbers t for which tan(t) = −2

3. Solve sec(x) = −5
3 for x.

Solution.

1. If sin(θ) = 1
3 , then the terminal side of θ, when plotted in standard position, intersects the

Unit Circle at y = 1
3 . Geometrically, we see that this happens at two places: in Quadrant I

and Quadrant II.

x

y

1

1

1
3

α

x

y

1

1

1
3

α

The quest now is to find the measures of these angles. Since 1
3 isn’t the sine of any of the

‘common angles’ discussed earlier, we are forced to use the inverse trigonometric functions,
in this case the arcsine function, to express our answers. By definition, the real number
t = arcsin

(
1
3

)
satisfies 0 < t < π

2 with sin(t) = 1
3 , so we know our solutions have a reference

angle of α = arcsin
(

1
3

)
radians. The solutions in Quadrant I are all coterminal with α and

so our solution here is θ = α+ 2πk = arcsin
(

1
3

)
+ 2πk for integers k. Turning our attention

to Quadrant II, one angle with a reference angle of α is π − α. Hence, all solutions here are
of the form θ = π − α+ 2πk = π − arcsin

(
1
3

)
+ 2πk, for integers k.

2. Even though we are told t represents a real number, it we can visualize this problem in terms
of angles on the Unit Circle, so at least mentally,11 we cosmetically change the equation to

10We could solve x2 = 4 using square roots as well to get x = ±
√

4, but, we would simplify the answers to x = ±2.
11In practice, this is done mentally, or in a classroom setting, verbally. Carl’s penchant for pedantry wins out here.
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tan(θ) = −2. Tangent is negative in two places: in Quadrant II and Quadrant IV. If we
proceed as above using a reference angle approach, then the reference angle α must satisfy
0 < α < π

2 and tan(α) = 2. Such an angle is α = arctan(2) radians. A Quadrant II
angle with reference angle α is π − α. Hence, the Quadrant II solutions to the equation are
θ = π − α + 2πk = π − arctan(2) + 2πk for integers k. A Quadrant IV angle with reference
angle α is 2π−α, so the Quadrant IV solutions are θ = 2π−α+ 2πk = 2π− arctan(2) + 2πk
for integers k. As we saw in Section 10.3, these solutions can be combined.12 One way to
describe all the solutions is θ = − arctan(2) + πk for integers k. Remembering that we are
solving for real numbers t and not angles θ measured in radians, we write our final answer as
t = − arctan(2) + πk for integers k.

x

y

1

1

α

x

y

1

1

α

Alternatively, we can forgo the ‘angle’ approach altogether and we note that tan(t) = −2
only once on its fundamental period

(
−π

2 ,
π
2

)
. By definition, this happens at the value t =

arctan(−2). Since the period of tangent is π, we can capture all solutions by adding integer
multiples of π and get our solution t = arctan(−2) + πk for integers k.

3. The last equation we are asked to solve, sec(x) = −5
3 , poses two immediate problems. First,

we are not told whether or not x represents an angle or a real number. We assume the
latter, but note that, once again, we will use angles and the Unit Circle to solve the equation
regardless. Second, as we have mentioned, there is no universally accepted range of the
arcsecant function. For that reason, we adopt the advice given in Section 10.3 and convert
this to the cosine problem cos(x) = −3

5 . Adopting an angle approach, we consider the
equation cos(θ) = −3

5 and note our solutions lie in Quadrants II and III. The reference
angle α satisfies 0 < α < π

2 with cos(α) = 3
5 . We look to the arccosine function for help.

The real number t = arccos
(

3
5

)
satisfies 0 < t < π

2 and cos(t) = 3
5 , so our reference angle

is α = arccos
(

3
5

)
radians. Proceeding as before, we find the Quadrant II solutions to be

θ = π − α + 2πk = π − arccos
(

3
5

)
+ 2πk for integers k. In Quadrant III, one angle with

reference angle α is π+α, so our solutions here are θ = π+α+2πk = π+arccos
(

3
5

)
+2πk for

12When in doubt, write them out!



10.6 The Inverse Trigonometric Functions 719

integers k. Passing back to real numbers, we state our solutions as t = π − arccos
(

3
5

)
+ 2πk

or t = π + arccos
(

3
5

)
+ 2πk for integers k.

x

y

1

1

α

x

y

1

1

α

It is natural to wonder if it is possible to skip the ‘angle’ argument in number 3 as we did in
number 2 in Example 10.6.7 above. It is true that one solution to cos(x) = −3

5 is x = arccos
(
−3

5

)
and since the period of the cosine function is 2π, we can readily express one family of solutions
as x = arccos

(
−3

5

)
+ 2πk for integers k. The problem with this is that there is another family

of solutions. While expressing this family of solutions in terms of arccos
(
−3

5

)
isn’t impossible, it

certainly isn’t as intuitive as using a reference angle.13 In general, equations involving cosine and
sine (and hence secant or cosecant) are usually best handled using the reference angle idea thinking
geometrically to get the solutions which lie in the fundamental period [0, 2π) and then add integer
multiples of the period 2π to generate all of the coterminal answers and capture all of the solutions.
With tangent and cotangent, we can ignore the angular roots of trigonometry altogether, invoke
the appropriate inverse function, and then add integer multiples of the period, which in these cases
is π. The reader is encouraged to check the answers found in Example 10.6.7 - both analytically
and with the calculator (see Section 10.6.3). With practice, the inverse trigonometric functions will
become as familiar to you as the square root function. Speaking of practice . . .

13In our humble opinion, of course!
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10.6.5 Exercises

1. Find the exact value of the following.

(a) arcsin (−1)

(b) arcsin

(
−
√

3

2

)

(c) arcsin

(
−
√

2

2

)

(d) arcsin

(
−1

2

)
(e) arcsin (0)

(f) arcsin

(
1

2

)

(g) arcsin

(√
2

2

)

(h) arcsin

(√
3

2

)
(i) arcsin (1)

2. Find the exact value of the following.

(a) arccos (−1)

(b) arccos

(
−
√

3

2

)

(c) arccos

(
−
√

2

2

)

(d) arccos

(
−1

2

)
(e) arccos (0)

(f) arccos

(
1

2

)

(g) arccos

(√
2

2

)

(h) arccos

(√
3

2

)
(i) arccos (1)

3. Find the exact value of the following.

(a) arctan
(
−
√

3
)

(b) arctan (−1)

(c) arctan

(
−
√

3

3

)
(d) arctan (0)

(e) arctan

(√
3

3

)

(f) arctan (1)

(g) arctan
(√

3
)

4. Find the exact value of the following.

(a) arccot
(
−
√

3
)

(b) arccot (−1)

(c) arccot

(
−
√

3

3

)
(d) arccot (0)

(e) arccot

(√
3

3

)
(f) arccot (1)

(g) arccot
(√

3
)
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5. Find the exact value of the following.

(a) arcsec (2)

(b) arccsc (2)

(c) arcsec
(√

2
)

(d) arccsc
(√

2
)

(e) arcsec

(
2
√

3

3

)
(f) arccsc

(
2
√

3

3

)
(g) arcsec (1)

(h) arccsc (1)

6. Assume that the range of f(x) = arcsec(x) is
[
0,
π

2

)
∪
[
π,

3π

2

)
when finding the exact value

of the following.

(a) arcsec (−2)

(b) arcsec
(
−
√

2
) (c) arcsec

(
−2
√

3

3

)
(d) arcsec (−1)

7. Assume that the range of f(x) = arccsc(x) is
(

0,
π

2

]
∪
(
π,

3π

2

]
when finding the exact value

of the following.

(a) arccsc (−2)

(b) arccsc
(
−
√

2
) (c) arccsc

(
−2
√

3

3

)
(d) arccsc (−1)

8. Repeat Exercise 6 using
[
0,
π

2

)
∪
(π

2
, π
]

as the range of f(x) = arcsec(x).

(a) arcsec (−2)

(b) arcsec
(
−
√

2
) (c) arcsec

(
−2
√

3

3

)
(d) arcsec (−1)

9. Repeat Exercise 7 using
[
−π

2
, 0
)
∪
(

0,
π

2

]
as the range of f(x) = arccsc(x).

(a) arccsc (−2)

(b) arccsc
(
−
√

2
) (c) arccsc

(
−2
√

3

3

)
(d) arccsc (−1)
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10. Find the exact value of the following or state that it is undefined.

(a) arcsin

(
sin

(
7π

6

))
(b) sin

(
arcsin

(
7π

6

))
(c) arccos

(
cos
(
−π

4

))
(d) arcsin

(
sin

(
2π

3

))
(e) arctan

(
tan

(
3π

4

))
(f) cos (arccos (π))

(g) sec (arccos (0))

(h) tan

(
arcsin

(√
3

2

))

(i) cos

(
arctan

(
3

4

))

(j) csc

(
arccos

(
− 5

13

))
(k) sin

(
arcsin

(
3

5

)
− arctan

(
−24

7

))
(l) cos

(
2 arccos

(
3

7

))
(m) sin

(
1

2
arctan

(
5

12

))
(n) tan

(
arcsin

(
−4

5

)
+ arccos

(
12

13

))
(o) cos

(
1

2
arcsin

(
28

53

))
(p) sin

(
2 arccos

(
−24

25

))
11. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-

alence is valid.

(a) sin (arccos (x))

(b) cos (arctan (x))

(c) tan (arcsin (x))

(d) sec (arctan (x))

(e) csc (arccos (x))

(f) sin (2 arctan (x))

(g) sin (2 arccos (x))

(h) cos (2 arctan (x))

(i) sin (arcsin(x) + arccos(x))

(j) cos (arcsin(x) + arctan(x))

(k) tan (2 arcsin(x))

(l) sin

(
1

2
arctan(x)

)

12. Show that arcsec(x) = arccos

(
1

x

)
for |x| ≥ 1 as long as we use

[
0,
π

2

)
∪
(π

2
, π
]

as the range

of f(x) = arcsec(x).

13. Show that arccsc(x) = arcsin

(
1

x

)
for |x| ≥ 1 as long as we use

[
−π

2
, 0
)
∪
(

0,
π

2

]
as the range

of f(x) = arccsc(x).

14. Show that arcsin(x) + arccos(x) =
π

2
for −1 ≤ x ≤ 1.

15. If sin(θ) =
x

2
for −π

2
< θ <

π

2
, find an expression for θ + sin(2θ) in terms of x.
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16. If tan(θ) =
x

7
for −π

2
< θ <

π

2
, find an expression for

1

2
θ − 1

2
sin(2θ) in terms of x.

17. If sec(θ) =
x

4
for 0 < θ <

π

2
, find an expression for 4 tan(θ)− 4θ in terms of x.

18. Solve the following equations using the techniques discussed in Example 10.6.7 then approx-
imate the solutions which lie in the interval [0, 2π) to four decimal places.

(a) sin(x) =
7

11

(b) cos(x) = −2

9
(c) sin(x) = −0.569

(d) cos(x) = 0.117

(e) sin(x) = 0.008

(f) cos(x) =
359

360
(g) tan(x) = 117

(h) cot(x) = −12

(i) sec(x) =
3

2

(j) csc(x) = −90

17

(k) tan(x) = −
√

10

(l) sin(x) =
3

8

(m) cos(x) = − 7

16

(n) tan(x) = 0.03

19. Find the two acute angles in the right triangle whose sides have the given lengths. Express
your answers using degree measure rounded to two decimal places.

(a) 3, 4 and 5 (b) 5, 12 and 13 (c) 336, 527 and 625

20. A guy wire 1000 feet long is attached to the top of a tower. When pulled taut it touches level
ground 360 feet from the base of the tower. What angle does the wire make with the ground?
Express your answer using degree measure rounded to one decimal place.

21. At Cliffs of Insanity Point, The Great Sasquatch Canyon is 7117 feet deep. From that point,
a fire is seen at a location known to be 10 miles away from the base of the sheer canyon
wall. What angle of depression is made by the line of sight from the canyon edge to the fire?
Express your answer using degree measure rounded to one decimal place.

22. Shelving is being built at the Utility Muffin Research Library which is to be 14 inches deep.
An 18-inch rod will be attached to the wall and the underside of the shelf at its edge away
from the wall, forming a right triangle under the shelf to support it. What angle, to the
nearest degree, will the rod make with the wall?

23. A parasailor is being pulled by a boat on Lake Ippizuti. The cable is 300 feet long and the
parasailor is 100 feet above the surface of the water. What is the angle of elevation from the
boat to the parasailor? Express your answer using degree measure rounded to one decimal
place.
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24. Rewrite the given functions as sinusoids of the form S(x) = A sin(ωx + φ) using Exercises
3 and 4 in Section 10.5 for reference. Approximate the value of φ (which is in radians, of
course) to four decimal places.

(a) f(x) = 2 sin(x)− cos(x)

(b) g(x) = 5 sin(3x) + 12 cos(3x)

25. Discuss with your classmates why arcsin

(
1

2

)
6= 30◦.

26. Use the following picture to show that arctan(1) + arctan(2) + arctan(3) = π.

x

y

A(0, 1)

O(0, 0) B(1, 0) C(2, 0)

D(2, 3)

α β γ

(a) Clearly 4AOB and 4BCD are right triangles because the line through O and A and
the line through C and D are perpendicular to the x-axis. Use the distance formula to
show that 4BAD is also a right triangle (with ∠BAD being the right angle) by showing
that the sides of the triangle satisfy the Pythagorean Theorem.

(b) Use 4AOB to show that α = arctan(1)

(c) Use 4BAD to show that β = arctan(2)

(d) Use 4BCD to show that γ = arctan(3)

(e) Use the fact that O, B and C all lie on the x-axis to conclude that α+ β+ γ = π. Thus
arctan(1) + arctan(2) + arctan(3) = π.
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10.6.6 Answers

1. (a) arcsin (−1) = −π
2

(b) arcsin

(
−
√

3

2

)
= −π

3

(c) arcsin

(
−
√

2

2

)
= −π

4

(d) arcsin

(
−1

2

)
= −π

6

(e) arcsin (0) = 0

(f) arcsin

(
1

2

)
=
π

6

(g) arcsin

(√
2

2

)
=
π

4

(h) arcsin

(√
3

2

)
=
π

3

(i) arcsin (1) =
π

2

2. (a) arccos (−1) = π

(b) arccos

(
−
√

3

2

)
=

5π

6

(c) arccos

(
−
√

2

2

)
=

3π

4

(d) arccos

(
−1

2

)
=

2π

3

(e) arccos (0) =
π

2

(f) arccos

(
1

2

)
=
π

3

(g) arccos

(√
2

2

)
=
π

4

(h) arccos

(√
3

2

)
=
π

6

(i) arccos (1) = 0

3. (a) arctan
(
−
√

3
)

= −π
3

(b) arctan (−1) = −π
4

(c) arctan

(
−
√

3

3

)
= −π

6

(d) arctan (0) = 0

(e) arctan

(√
3

3

)
=
π

6

(f) arctan (1) =
π

4

(g) arctan
(√

3
)

=
π

3

4. (a) arccot
(
−
√

3
)

=
5π

6

(b) arccot (−1) =
3π

4

(c) arccot

(
−
√

3

3

)
=

2π

3

(d) arccot (0) =
π

2

(e) arccot

(√
3

3

)
=
π

3

(f) arccot (1) =
π

4

(g) arccot
(√

3
)

=
π

6

5. (a) arcsec (2) =
π

3

(b) arccsc (2) =
π

6

(c) arcsec
(√

2
)

=
π

4

(d) arccsc
(√

2
)

=
π

4
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(e) arcsec

(
2
√

3

3

)
=
π

6

(f) arccsc

(
2
√

3

3

)
=
π

3

(g) arcsec (1) = 0

(h) arccsc (1) =
π

2

6. (a) arcsec (−2) =
4π

3

(b) arcsec
(
−
√

2
)

=
5π

4

(c) arcsec

(
−2
√

3

3

)
=

7π

6

(d) arcsec (−1) = π

7. (a) arccsc (−2) =
7π

6

(b) arccsc
(
−
√

2
)

=
5π

4

(c) arccsc

(
−2
√

3

3

)
=

4π

3

(d) arccsc (−1) =
3π

2

8. (a) arcsec (−2) =
2π

3

(b) arcsec
(
−
√

2
)

=
3π

4

(c) arcsec

(
−2
√

3

3

)
=

5π

6

(d) arcsec (−1) = π

9. (a) arccsc (−2) = −π
6

(b) arccsc
(
−
√

2
)

= −π
4

(c) arccsc

(
−2
√

3

3

)
= −π

3

(d) arccsc (−1) = −π
2

10. (a) arcsin

(
sin

(
7π

6

))
= −π

6

(b) sin

(
arcsin

(
7π

6

))
is und.

(c) arccos
(

cos
(
−π

4

))
=

3π

4

(d) arcsin

(
sin

(
2π

3

))
=
π

3

(e) arctan

(
tan

(
3π

4

))
= −π

4

(f) cos (arccos (π)) is und.

(g) sec (arccos (0)) is und.

(h) tan

(
arcsin

(√
3

2

))
=
√

3

(i) cos

(
arctan

(
3

4

))
=

4

5

(j) csc

(
arccos

(
− 5

13

))
=

13

12

(k) sin

(
arcsin

(
3

5

)
− arctan

(
−24

7

))
=

117

125

(l) cos

(
2 arccos

(
3

7

))
= −31

49

(m) sin

(
1

2
arctan

(
5

12

))
=

√
1

26

(n) tan

(
arcsin

(
−4

5

)
+ arccos

(
12

13

))
= −33

56

(o) cos

(
1

2
arcsin

(
28

53

))
=

√
49

53

(p) sin

(
2 arccos

(
−24

25

))
= −336

625
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11.

(a) sin (arccos (x)) =
√

1− x2

for −1 ≤ x ≤ 1

(b) cos (arctan (x)) =
1√

1 + x2
for all x

(c) tan (arcsin (x)) =
x√

1− x2

for −1 < x < 1

(d) sec (arctan (x)) =
√

1 + x2 for all x

(e) csc (arccos (x)) =
1√

1− x2

for −1 < x < 1

(f) sin (2 arctan (x)) =
2x

x2 + 1
for all x

(g) sin (2 arccos (x)) = 2x
√

1− x2

for −1 ≤ x ≤ 1

(h) cos (2 arctan (x)) =
1− x2

1 + x2
for all x

(i) sin (arcsin(x) + arccos(x)) = 1 for −1 ≤ x ≤ 1

(j) cos (arcsin(x) + arctan(x)) =

√
1− x2 − x2

√
1 + x2

for −1 ≤ x ≤ 1

(k) tan (2 arcsin(x)) =
2x
√

1− x2

1− 2x2
for x in

(
−1,−

√
2

2

)
∪

(
−
√

2

2
,

√
2

2

)
∪

(√
2

2
, 1

)
14

(l) sin

(
1

2
arctan(x)

)
=



√√
x2 + 1− 1

2
√
x2 + 1

for x ≥ 0

−

√√
x2 + 1− 1

2
√
x2 + 1

for x < 0

15. If sin(θ) =
x

2
for −π

2
< θ <

π

2
, then θ + sin(2θ) = arcsin

(x
2

)
+
x
√

4− x2

2

16. If tan(θ) =
x

7
for −π

2
< θ <

π

2
, then

1

2
θ − 1

2
sin(2θ) =

1

2
arctan

(x
7

)
− 7x

x2 + 49

17. If sec(θ) =
x

4
for 0 < θ <

π

2
, then 4 tan(θ)− 4θ =

√
x2 − 16− 4arcsec

(x
4

)
18. (a) x = arcsin

(
7

11

)
+ 2kπ or x = π − arcsin

(
7

11

)
+ 2kπ

In [0, 2π), x ≈ 0.6898, 2.4518

(b) x = π − arccos

(
2

9

)
+ 2kπ or x = π + arccos

(
2

9

)
+ 2kπ

In [0, 2π), x ≈ 1.7949, 4.4883

(c) x = π + arcsin(0.569) + 2kπ or x = 2π − arcsin(0.569) + 2kπ
In [0, 2π), x ≈ 3.7469, 5.6779

14The equivalence for x = ±1 can be verified independently of the derivation of the formula, but Calculus is required
to fully understand what is happening at those x values. You’ll see what we mean when you work through the details
of the identity for tan(2t). For now, we exclude x = ±1 from our answer.
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(d) x = arccos(0.117) + 2kπ or x = 2π − arccos(0.117) + 2kπ
In [0, 2π), x ≈ 1.4535, 4.8297

(e) x = arcsin(0.008) + 2kπ or x = π − arcsin(0.008) + 2kπ
In [0, 2π), x ≈ 0.0080, 3.1336

(f) x = arccos

(
359

360

)
+ 2kπ or x = 2π − arccos

(
359

360

)
+ 2kπ

In [0, 2π), x ≈ 0.0746, 6.2086

(g) x = arctan(117) + kπ
In [0, 2π), x ≈ 1.5622, 4.7038

(h) x = arccot(−12) + kπ
In [0, 2π), x ≈ 3.0585, 6.2000

(i) x = arccos

(
2

3

)
+ 2kπ or x = 2π − arccos

(
2

3

)
+ 2kπ

In [0, 2π), x ≈ 0.8411, 5.4422

(j) x = π + arcsin

(
17

90

)
+ 2kπ or x = 2π − arcsin

(
17

90

)
+ 2kπ

In [0, 2π), x ≈ 3.3316, 6.0932

(k) x = arctan
(
−
√

10
)

+ kπ
In [0, 2π), x ≈ 1.8771, 5.0187

(l) x = arcsin

(
3

8

)
+ 2kπ or x = π − arcsin

(
3

8

)
+ 2kπ

In [0, 2π), x ≈ 0.3844, 2.7572

(m) x = π − arccos

(
7

16

)
+ 2kπ or x = π + arccos

(
7

16

)
+ 2kπ

In [0, 2π), x ≈ 2.0236, 4.2596

(n) x = arctan(0.03) + kπ
In [0, 2π), x ≈ 0.0300, 3.1716

19. (a) 36.87◦ and 53.13◦ (b) 22.62◦ and 67.38◦ (c) 32.52◦ and 57.48◦

20. 68.9◦

21. 7.7◦

22. 51◦

23. 19.5◦

24. (a) f(x) = 2 sin(x)− cos(x) =
√

5 sin(x+ 5.8195)

(b) g(x) = 5 sin(3x) + 12 cos(3x) = 13 sin(3x+ 1.1760)
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10.7 Trigonometric Equations and Inequalities

In Sections 10.2, 10.3 and most recently 10.6, we solved some basic equations involving the trigono-
metric functions. In these cases, the equations were of the form T (x) = c where T (x) is some
circular function, x is a real number (or equivalently, an angle measuring x radians) and c is a real
number ostensibly in the range of T .1 We summarize how to solve these equations below.

Strategies for Solving Basic Equations Involving Trigonometric Functions

To solve equations of the form T (x) = c

• If T (x) = cos(x) or T (x) = sin(x), solve the equation for x on [0, 2π) and add integer
multiples of the period 2π.

NOTE: If the arccosine or arcsine is needed, consider using the ‘reference angle’ approach
as demonstrated in Example 10.6.7 numbers 1 and 3.

• If T (x) = sec(x) or T (x) = csc(x), convert to cosine or sine, respectively, and solve as above.

• If T (x) = tan(x), solve for x on
(
−π

2 ,
π
2

)
, using the arctangent as needed, and add integer

multiples of the period π.

• If T (x) = cot(x), solve for x on (0, π), using the arccotangent as needed, and add integer
multiples of the period π.

Using the above guidelines, we can comfortably solve sin(x) = 1
2 and find the solution x = π

6 + 2πk
or x = 5π

6 + 2πk for integers k. How do we solve something like sin(3x) = 1
2? One approach is to

solve the equation for the argument2 of the sine function, in this case 3x, to get 3x = π
6 + 2πk or

3x = 5π
6 + 2πk for integers k. To solve for x, we divide the expression through by 3 and obtain

x = π
18 + 2π

3 k or x = 5π
18 + 2π

3 k for integers k. This is the technique employed in the example below.

Example 10.7.1. Solve the following equations and check your answers analytically. List the
solutions which lie in the interval [0, 2π) and verify them using a graphing utility.

1. cos(2x) = −
√

3
2

2. csc
(

1
3x− π

)
=
√

2

3. cot (3x) = 0

4. sec2(x) = 4

5. tan
(
x
2

)
= −3

6. sin(2x) = 0.87

Solution.

1. On the interval [0, 2π), there are two values with cosine −
√

3
2 , namely 5π

6 and 7π
6 . Hence,

we begin solving cos(2x) = −
√

3
2 by setting the argument 2x equal to these values and add

multiples of 2π (the period of cosine) which yields 2x = 5π
6 +2πk or 2x = 7π

6 +2πk for integers
k. Solving for x gives x = 5π

12 + πk or x = 7π
12 + πk for integers k. To check these answers

analytically, we substitute them into the original equation. For any integer k we have

1If c is isn’t in the range of T , the equation has no real solutions.
2See the comments at the beginning of Section 10.5 for a review of this concept.
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cos
(
2
[

5π
12 + πk

])
= cos

(
5π
6 + 2πk

)
= cos

(
5π
6

)
(he period of cosine is 2π.)

= −
√

3
2

Similarly, we find cos
(
2
[

7π
12 + πk

])
= cos

(
7π
6 + 2πk

)
= cos

(
7π
6

)
= −

√
3

2 . To determine which
of our solutions lie in [0, 2π), we substitute integer values for k. The solutions we keep come
from the values of k = 0 and k = 1 and are x = 5π

12 , 7π
12 , 17π

12 and 19π
12 . To confirm these

answers graphically, we plot y = cos(2x) and y = −
√

3
2 over [0, 2π) and examine where these

two graphs intersect. We see that the x-coordinates of the intersection points correspond to
our exact answers.

2. As we saw in Section 10.3, equations involving cosecant are usually best handled by converting

the cosecants to sines. Hence, we rewrite csc
(

1
3x− π

)
=
√

2 as sin
(

1
3x− π

)
= 1√

2
=
√

2
2 .

There are two values in [0, 2π) with sine
√

2
2 : π

4 and 3π
4 . Since the period of sine is 2π, we get

1
3x−π = π

4 +2πk or 1
3x−π = 3π

4 +2πk for integers k. Solving for x, we get our general solution
x = 15π

4 + 6πk or x = 21π
4 + 6πk for integers k. Checking these answers, we get that for any

integer k, csc
(

1
3

[
15π
4 + 6πk

]
− π

)
= csc

(
5π
4 + 2πk − π

)
= csc

(
π
4 + 2πk

)
= csc

(
π
4

)
=
√

2 and

csc
(

1
3

[
21π
4 + 6πk

]
− π

)
= csc

(
7π
4 + 2πk − π

)
= csc

(
3π
4 + 2πk

)
= csc

(
3π
4

)
=
√

2. Despite
having infinitely many solutions, we find that none of them lie in [0, 2π). To verify this
graphically, we use a reciprocal identity to rewrite the cosecant as a sine and we find that
y = 1

sin( 1
3
x−π)

and y =
√

2 do not intersect over the interval [0, 2π).

y = cos(2x) and y = −
√

3
2

y = 1
sin( 1

3
x−π)

and y =
√

2

3. In the interval (0, π), only one value, π2 , has a cotangent of 0. Since the period of cotangent is π,
the solutions to cot(3x) = 0 are 3x = π

2 + πk for integers k. Solving for x yields x = π
6 + π

3k.
Checking our answers, we have that for any integer k, cot

(
3
[
π
6 + π

3k
])

= cot
(
π
2 + πk

)
=

cot
(
π
2

)
= 0. As k runs through the integers, we obtain six answers, corresponding to k = 0

through k = 5, which lie in [0, 2π): x = π
6 , π2 , 5π

6 , 7π
6 , 3π

2 and 11π
6 . To confirm these graphically,

we must be careful. On many calculators, there is no function button for cotangent. We
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choose3 to use the quotient identity cot(3x) = cos(3x)
sin(3x) . Graphing y = cos(3x)

sin(3x) and y = 0 (the

x-axis), we see that the x-coordinates of the intersection points approximately match our
solutions.

4. To solve sec2(x) = 4, we first extract square roots to get sec(x) = ±2. Converting to cosines,
we have cos(x) = ±1

2 . For cos(x) = 1
2 , we get x = π

3 + 2πk or x = 5π
3 + 2πk for integers k.

For cos(x) = −1
2 , we get x = 2π

3 + 2πk or x = 4π
3 + 2πk for integers k. Taking a step back,4

we realize that these solutions can be combined because π
3 and 4π

3 are π units apart as are 2π
3

and 5π
3 . Hence, we may rewrite our solutions as x = π

3 + πk and x = 2π
3 + πk for integers k.

Now, depending on the integer k, sec
(
π
3 + πk

)
doesn’t always equal sec

(
π
3

)
. However, it is

true that for all integers k, sec
(
π
3 + πk

)
= ± sec

(
π
3

)
= ±2. (Can you show this?) As a result,

sec2
(
π
3 + πk

)
= (±2)2 = 4 for all integers k. The same holds for the family x = 2π

3 +πk. The
solutions which lie in [0, 2π) come from the values k = 0 and k = 1, namely x = π

3 , 2π
3 , 4π

3
and 5π

3 . To confirm graphically, we use a reciprocal identity to rewrite the secant as cosine.
The x-coordinates of the intersection points of y = 1

(cos(x))2 and y = 4 verify our answers.

y = cos(3x)
sin(3x) and y = 0 y = 1

cos2(x)
and y = 4

5. Our first step in solving tan
(
x
2

)
= −3 is to consider values in the interval

(
−π

2 ,
π
2

)
with a

tangent of −3. Since −3 isn’t among the ‘common values’ for tangent, we need the arctangent
function. The period of the tangent function is π, so we get x

2 = arctan(−3)+πk for integers k.
Multiplying through by 2 gives us our solution x = 2 arctan(−3)+2πk for integers k. To check

our answer, we note that for any integer k, tan
(

2 arctan(−3)+2πk
2

)
= tan (arctan(−3) + πk) =

tan (arctan(−3)) = −3. To determine which of our answers lie in the interval [0, 2π), we
begin substituting integers k into the expression x = 2 arctan(−3)+2πk. When k = 0, we get
x = 2 arctan(−3). Since −3 < 0, −π

2 < arctan(−3) < 0, so multiplying through by 2 tells us
−π < 2 arctan(−3) < 0 which is not in the range [0, 2π). Hence, we discard this answer along
with all other answers obtained for k < 0. Starting with the positive integers, for k = 1 we
find x = 2 arctan(−3) + 2π. Since −π < 2 arctan(−3) < 0, we get that x = 2 arctan(−3) + 2π
is between π and 2π, so we keep this solution. For k = 2, we get x = 2 arctan(−3) + 4π, and

3The reader is encouraged to see what happens if we had chosen the reciprocal identity cot(3x) = 1
tan(3x)

instead.
The graph on the calculator appears identical, but what happens when you try to find the intersection points?

4Geometrically, we are finding the measures of all angles with a reference angle of π
3

. Once again, visualizing these
numbers as angles in radian measure can help us literally ‘see’ how these two families of solutions are related.
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since 2 arctan(−3) > −π, x = 2 arctan(−3) + 4π > 3π > 2π so it is outside the range [0, 2π).
Hence we discard it, and all of the solutions corresponding to k > 2 as well. Graphically,
we see y = tan

(
x
2

)
and y = −3 intersect only once on [0, 2π), and the calculator gives the

same decimal approximation for both x = 2 arctan(−3) + 2π and the x-coordinate of the lone
intersection point, which is x ≈ 3.7851.

6. As 0.87 isn’t one of the ‘common’ values for sine, we’ll need to use the arcsine function
to solve sin(2x) = 0.87. There are two values in [0, 2π) with a sine of 0.87: arcsin(0.87)
and π − arcsin(0.87). Since the period of sine is 2π, we get 2x = arcsin(0.87) + 2πk or
2x = π − arcsin(0.87) + 2πk for integers k. Solving for x, we find x = 1

2 arcsin(0.87) +
πk or x = π

2 −
1
2 arcsin(0.87) + πk for integers k. To check, we note that for integers

k, sin
(
2
[

1
2 arcsin(0.87) + πk

])
= sin (arcsin(0.87) + 2πk) = sin (arcsin(0.87)) = 0.87 and

sin
(
2
[
π
2 −

1
2 arcsin(0.87) + πk

])
= sin (π − arcsin(0.87) + 2πk) = sin (π − arcsin(0.87)) =

0.87. We now need to determine which of our solutions lie in [0, 2π). Starting with the family
of solutions x = 1

2 arcsin(0.87)+πk, we find k = 0 gives x = 1
2 arcsin(0.87). Since 0.87 > 0, we

know that 0 < arcsin(0.87) < π
2 . Dividing through by 2 gives 0 < 1

2 arcsin(0.87) < π
4 . Hence

x = 1
2 arcsin(0.87) lies in the interval [0, 2π). Next, we let k = 1 and get x = 1

2 arcsin(0.87)+π.
Since 0 < 1

2 arcsin(0.87) < π
4 , x = 1

2 arcsin(0.87) + π is between π and 5π
4 , so we keep this

answer as well. When k = 2, we get x = 1
2 arcsin(0.87) + 2π. Since 1

2 arcsin(0.87) > 0,
x = 1

2 arcsin(0.87) + 2π > 2π, so we discard this answer along with all answers corresponding
to k > 2. Since k represents an integer, we need to allow negative values of k as well. For
k = −1, we get x = 1

2 arcsin(0.87)−π, and since 1
2 arcsin(0.87) < π

4 , x = 1
2 arcsin(0.87)−π < 0,

so it is not in [0, 2π). We can safely disregard the answers corresponding to k < −1 as well.
Next, we move to the family of solutions x = π

2 −
1
2 arcsin(0.87) + πk for integers k. For

k = 0, we get x = π
2 −

1
2 arcsin(0.87). Since 0 < 1

2 arcsin(0.87) < π
4 , x = π

2 −
1
2 arcsin(0.87)

lies between π
4 and π

2 so it lies in the specified range of [0, 2π). Advancing to k = 1,
we get x = π

2 −
1
2 arcsin(0.87) + π = 3π

2 −
1
2 arcsin(0.87). Since 0 < 1

2 arcsin(0.87) < π
4 ,

x = 3π
2 −

1
2 arcsin(0.87) is between 5π

4 and 3π
2 , well within the range [0, 2π) so we keep it. For

k = 2, we find x = π
2 −

1
2 arcsin(0.87) + 2π = 5π

2 −
1
2 arcsin(0.87). Since 1

2 arcsin(0.87) < π
4 ,

x = 5π
2 −

1
2 arcsin(0.87) > 9π

4 which is outside the range [0, 2π). Checking the negative inte-
gers, we begin with k = −1 and get x = π

2 −
1
2 arcsin(0.87)− π = −π

2 −
1
2 arcsin(0.87). Since

1
2 arcsin(0.87) > 0, x = −π

2 −
1
2 arcsin(0.87) < 0 which is not in [0, 2π). Hence, the four solu-

tions which lie in [0, 2π) are x = 1
2 arcsin(0.87), x = 1

2 arcsin(0.87) +π, x = π
2 −

1
2 arcsin(0.87)

and x = 3π
2 −

1
2 arcsin(0.87). By graphing y = sin(2x) and y = 0.87, we confirm our results.

y = tan
(
x
2

)
and y = −3 y = sin(2x) and y = 0.87
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Each of the problems in Example 10.7.1 featured one trigonometric function. If an equation involves
two different trigonometric functions or if the equation contains the same trigonometric function
but with different arguments, we will need to use identities and Algebra to reduce the equation to
the same form as those given in Example 10.7.1.

Example 10.7.2. Solve the following equations and list the solutions which lie in the interval [0, 2π).
Verify your solutions on [0, 2π) graphically.

1. 3 sin3(x) = sin2(x)

2. sec2(x) = tan(x) + 3

3. cos(2x) = 3 cos(x)− 2

4. cos(3x) = 2− cos(x)

5. cos(3x) = cos(5x)

6. sin(2x) =
√

3 cos(x)

7. sin(x) cos
(
x
2

)
+ cos(x) sin

(
x
2

)
= 1

8. cos(x)−
√

3 sin(x) = 2

Solution.

1. We resist the temptation to divide both sides of 3 sin3(x) = sin2(x) by sin2(x) and instead
gather all of the terms to one side of the equation and factor.

3 sin3(x) = sin2(x)
3 sin3(x)− sin2(x) = 0

sin2(x)(3 sin(x)− 1) = 0 Factor out sin2(x) from both terms.

We get sin2(x) = 0 or 3 sin(x) − 1 = 0. Solving for sin(x), we find sin(x) = 0 or sin(x) = 1
3 .

The solution to the first equation is x = πk, with x = 0 and x = π being the two solutions
which lie in [0, 2π). To solve sin(x) = 1

3 , we use the arcsine function to get x = arcsin
(

1
3

)
+2πk

or x = π− arcsin
(

1
3

)
+ 2πk for integers k. We find the two solutions here which lie in [0, 2π)

to be x = arcsin
(

1
3

)
and x = π− arcsin

(
1
3

)
. To check graphically, we plot y = 3(sin(x))3 and

y = (sin(x))2 and find the x-coordinates of the intersection points of these two curves. Some
extra zooming is required near x = 0 and x = π to verify that these two curves do in fact
intersect four times.5

2. Analysis of sec2(x) = tan(x) + 3 reveals two different trigonometric functions, so an identity
is in order. Since sec2(x) = 1 + tan2(x), we get

sec2(x) = tan(x) + 3
1 + tan2(x) = tan(x) + 3 (Since sec2(x) = 1 + tan2(x).)

tan2(x)− tan(x)− 2 = 0
u2 − u− 2 = 0 Let u = tan(x).

(u+ 1)(u− 2) = 0

5Note that we are not counting the point (2π, 0) in our solution set since x = 2π is not in the interval [0, 2π). In
the forthcoming solutions, remember that while x = 2π may be a solution to the equation, it isn’t counted among
the solutions in [0, 2π).
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This gives u = −1 or u = 2. Since u = tan(x), we have tan(x) = −1 or tan(x) = 2. From
tan(x) = −1, we get x = −π

4 + πk for integers k. To solve tan(x) = 2, we employ the
arctangent function and get x = arctan(2) +πk for integers k. From the first set of solutions,
we get x = 3π

4 and x = 5π
4 as our answers which lie in [0, 2π). Using the same sort of argument

we saw in Example 10.7.1, we get x = arctan(2) and x = π + arctan(2) as answers from our
second set of solutions which lie in [0, 2π). Using a reciprocal identity, we rewrite the secant
as a cosine and graph y = 1

(cos(x))2 and y = tan(x) + 3 to find the x-values of the points where

they intersect.

y = 3(sin(x))3 and y = (sin(x))2 y = 1
(cos(x))2 and y = tan(x) + 3

3. In the equation cos(2x) = 3 cos(x)− 2, we have the same circular function, namely cosine, on
both sides but the arguments differ. Using the identity cos(2x) = 2 cos2(x)− 1, we obtain a
‘quadratic in disguise’ and proceed as we have done in the past.

cos(2x) = 3 cos(x)− 2
2 cos2(x)− 1 = 3 cos(x)− 2 (Since cos(2x) = 2 cos2(x)− 1.)

2 cos2(x)− 3 cos(x) + 1 = 0
2u2 − 3u+ 1 = 0 Let u = cos(x).

(2u− 1)(u− 1) = 0

This gives u = 1
2 or u = 1. Since u = cos(x), we get cos(x) = 1

2 or cos(x) = 1. Solving
cos(x) = 1

2 , we get x = π
3 + 2πk or x = 5π

3 + 2πk for integers k. From cos(x) = 1, we get
x = 2πk for integers k. The answers which lie in [0, 2π) are x = 0, π

3 , and 5π
3 . Graphing

y = cos(2x) and y = 3 cos(x)− 2, we find, after a little extra effort, that the curves intersect
in three places on [0, 2π), and the x-coordinates of these points confirm our results.

4. To solve cos(3x) = 2− cos(x), we use the same technique as in the previous problem. From
Example 10.4.3, number 4, we know that cos(3x) = 4 cos3(x)− 3 cos(x). This transforms the
equation into a polynomial in terms of cos(x).

cos(3x) = 2− cos(x)
4 cos3(x)− 3 cos(x) = 2− cos(x)

2 cos3(x)− 2 cos(x)− 2 = 0
4u3 − 2u− 2 = 0 Let u = cos(x).
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To solve 4u3 − 2u − 2 = 0, we need the techniques in Chapter 3 to factor 4u3 − 2u − 2 into
(u−1)

(
4u2 + 4u+ 2

)
. We get either u−1 = 0 or 4u2−2u−2 = 0, and since the discriminant

of the latter is negative, the only real solution to 4u3− 2u− 2 = 0 is u = 1. Since u = cos(x),
we get cos(x) = 1, so x = 2πk for integers k. The only solution which lies in [0, 2π) is x = 0.
Graphing y = cos(3x) and y = 2− cos(x) on the same set of axes over [0, 2π) shows that the
graphs intersect at what appears to be (0, 1), as required.

y = cos(2x) and y = 3 cos(x)− 2 y = cos(3x) and y = 2− cos(x)

5. While we could approach cos(3x) = cos(5x) in the same manner as we did the previous two
problems, we choose instead to showcase the utility of the Sum to Product Identities. From
cos(3x) = cos(5x), we get cos(5x) − cos(3x) = 0, and it is the presence of 0 on the right
hand side that indicates a switch to a product would be a good move.6 Using Theorem 10.21,
we have that cos(5x) − cos(3x) = −2 sin

(
5x+3x

2

)
sin
(

5x−3x
2

)
= −2 sin(4x) sin(x). Hence,

the equation cos(5x) = cos(3x) is equivalent to −2 sin(4x) sin(x) = 0. From this, we get
sin(4x) = 0 or sin(x) = 0. Solving sin(4x) = 0 gives x = π

4k for integers k, and the solution
to sin(x) = 0 is x = πk for integers k. The second set of solutions is contained in the first set
of solutions,7 so our final solution to cos(5x) = cos(3x) is x = π

4k for integers k. There are
eight of these answers which lie in [0, 2π): x = 0, π

4 , π
2 , 3π

4 , π, 5π
4 , 3π

2 and 7π
4 . Our plot of the

graphs of y = cos(3x) and y = cos(5x) below bears this out.

6. In examining the equation sin(2x) =
√

3 cos(x), not only do we have different circular func-
tions involved, namely sine and cosine, we also have different arguments to contend with,
namely 2x and x. Using the identity sin(2x) = 2 sin(x) cos(x) makes all of the arguments the
same and we proceed as we would solving any nonlinear equation – gather all of the nonzero
terms on one side of the equation and factor.

sin(2x) =
√

3 cos(x)

2 sin(x) cos(x) =
√

3 cos(x) (Since sin(2x) = 2 sin(x) cos(x).)

2 sin(x) cos(x)−
√

3 cos(x) = 0

cos(x)(2 sin(x)−
√

3) = 0

from which we get cos(x) = 0 or sin(x) =
√

3
2 . From cos(x) = 0, we obtain x = π

2 + πk for

integers k. From sin(x) =
√

3
2 , we get x = π

3 +2πk or x = 2π
3 +2πk for integers k. The answers

6As always, experience is the greatest teacher here!
7As always, when in doubt, write it out!
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which lie in [0, 2π) are x = π
2 , 3π

2 , π
3 and 2π

3 . We graph y = sin(2x) and y =
√

3 cos(x) and,
after some careful zooming, verify our answers.

y = cos(3x) and y = cos(5x) y = sin(2x) and y =
√

3 cos(x)

7. Unlike the previous problem, there seems to be no quick way to get the circular functions or
their arguments to match in the equation sin(x) cos

(
x
2

)
+ cos(x) sin

(
x
2

)
= 1. If we stare at

it long enough, however, we realize that the left hand side is the expanded form of the sum
formula for sin

(
x+ x

2

)
. Hence, our original equation is equivalent to sin

(
3
2x
)

= 1. Solving,
we find x = π

3 + 4π
3 k for integers k. Two of these solutions lie in [0, 2π): x = π

3 and x = 5π
3 .

Graphing y = sin(x) cos
(
x
2

)
+ cos(x) sin

(
x
2

)
and y = 1 validates our solutions.

8. With the absence of double angles or squares, there doesn’t seem to be much we can do.
However, since the arguments of the cosine and sine are the same, we can rewrite the left
hand side of this equation as a sinusoid.8 To fit f(x) = cos(x) −

√
3 sin(x) to the form

A cos(ωt+ φ) +B, we use what we learned in Example 10.5.3 and find A = 2, B = 0, ω = 1
and φ = π

3 . Hence, we can rewrite the equation cos(x)−
√

3 sin(x) = 2 as 2 cos
(
x+ π

3

)
= 2,

or cos
(
x+ π

3

)
= 1. Solving the latter, we get x = −π

3 + 2πk for integers k. Only one of these
solutions, x = 5π

3 , which corresponds to k = 1, lies in [0, 2π). Geometrically, we see that

y = cos(x)−
√

3 sin(x) and y = 2 intersect just once, supporting our answer.

y = sin(x) cos
(
x
2

)
+ cos(x) sin

(
x
2

)
and y = 1 y = cos(x)−

√
3 sin(x) and y = 2

We repeat here the advice given when solving systems of nonlinear equations in section 8.7 – when
it comes to solving equations involving the trigonometric functions, it helps to just try something.

8We are essentially ‘undoing’ the sum / difference formula for cosine or sine, depending on which form we use, so
this problem is actually closely related to the previous one!
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Next, we focus on solving inequalities involving the trigonometric functions. Since these functions
are continuous on their domains, we may use the sign diagram technique we’ve used in the past to
solve the inequalities.9

Example 10.7.3. Solve the following inequalities on [0, 2π). Express your answers using interval
notation and verify your answers graphically.

1. 2 sin(x) ≤ 1 2. sin(2x) > cos(x) 3. tan(x) ≥ 3

Solution.

1. We begin solving 2 sin(x) ≤ 1 by collecting all of the terms on one side of the equation and
zero on the other to get 2 sin(x)− 1 ≤ 0. Next, we let f(x) = 2 sin(x)− 1 and note that our
original inequality is equivalent to solving f(x) ≤ 0. We now look to see where, if ever, f is
undefined and where f(x) = 0. Since the domain of f is all real numbers, we can immediately
set about finding the zeros of f . Solving f(x) = 0, we have 2 sin(x) − 1 = 0 or sin(x) = 1

2 .
The solutions here are x = π

6 + 2πk and x = 5π
6 + 2πk for integers k. Since we are restricting

our attention to [0, 2π), only x = π
6 and x = 5π

6 are of concern to us. Next, we choose test
values in [0, 2π) other than the zeros and determine if f is positive or negative there. For
x = 0 we have f(0) = −1, for x = π

2 we get f
(
π
2

)
= 1 and for x = π we get f(π) = −1.

Since our original inequality is equivalent to f(x) ≤ 0, we are looking for where the function
is negative (−) or 0, and we get the intervals

[
0, π6

)
∪
[

5π
6 , 2π

)
. We can confirm our answer

graphically by seeing where the graph of y = 2 sin(x) crosses or is below the graph of y = 1.

0

(−)

π
6

0 (+)

5π
6

0 (−)

2π

y = 2 sin(x) and y = 1

2. We first rewrite sin(2x) > cos(x) as sin(2x) − cos(x) > 0 and let f(x) = sin(2x) − cos(x).
Our original inequality is thus equivalent to f(x) > 0. The domain of f is all real numbers,
so we can advance to finding the zeros of f . Setting f(x) = 0 yields sin(2x) − cos(x) = 0,
which, by way of the double angle identity for sine, becomes 2 sin(x) cos(x) − cos(x) = 0 or
cos(x)(2 sin(x)−1) = 0. From cos(x) = 0, we get x = π

2 +πk for integers k of which only x = π
2

and x = 3π
2 lie in [0, 2π). For 2 sin(x)− 1 = 0, we get sin(x) = 1

2 which gives x = π
6 + 2πk or

9See page 160, Example 3.1.5, page 247, page 313, Example 6.3.2 and Example 6.4.2 for discussion and examples
of this technique.
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x = 5π
6 + 2πk for integers k. Of those, only x = π

6 and x = 5π
6 lie in [0, 2π). Next, we choose

our test values. For x = 0 we find f(0) = −1; when x = π
4 we get f

(
π
4

)
= 1 −

√
2

2 = 2−
√

2
2 ;

for x = 3π
4 we get f

(
3π
4

)
= −1 +

√
2

2 =
√

2−2
2 ; when x = π we have f(π) = 1, and lastly, for

x = 7π
4 we get f

(
7π
4

)
= −1 −

√
2

2 = −2−
√

2
2 . We see f(x) > 0 on

(
π
6 ,

π
2

)
∪
(

5π
6 ,

3π
2

)
, so this is

our answer. We can use the calculator to check that the graph of y = sin(2x) is indeed above
the graph of y = cos(x) on those intervals.

0

(−)

π
6

0 (+)

π
2

0 (−)

5π
6

0 (+)

3π
2

0 (−)

2π

y = sin(2x) and y = cos(x)

3. Proceeding as in the last two problems, we rewrite tan(x) ≥ 3 as tan(x) − 3 ≥ 0 and let
f(x) = tan(x) − 3. We note that on [0, 2π), f is undefined at x = π

2 and 3π
2 , so those

values will need the usual disclaimer on the sign diagram.10 Moving along to zeros, solving
f(x) = tan(x) − 3 = 0 requires the arctangent function. We find x = arctan(3) + πk for
integers k and of these, only x = arctan(3) and x = arctan(3) + π lie in [0, 2π). Since
3 > 0, we know 0 < arctan(3) < π

2 which allows us to position these zeros correctly on the
sign diagram. To choose test values, we begin with x = 0 and find f(0) = −3. Finding a
convenient test value in the interval

(
arctan(3), π2

)
is a bit more challenging. Keep in mind

that the arctangent function is increasing and is bounded above by π
2 . This means the number

x = arctan(117) is guaranteed to lie between arctan(3) and π
2 .11 We find f(arctan(117)) =

tan(arctan(117)) − 3 = 114. For our next test value, we take x = π and find f(π) = −3.
To find our next test value, we note that since arctan(3) < arctan(117) < π

2 , it follows12

that arctan(3) + π < arctan(117) + π < 3π
2 . Evaluating f at x = arctan(117) + π yields

f(arctan(117) + π) = tan(arctan(117) + π)− 3 = tan(arctan(117))− 3 = 114. We choose our
last test value to be x = 7π

4 and find f
(

7π
4

)
= −4. Since we want f(x) ≥ 0, we see that our

answer is
[
arctan(3), π2

)
∪
[
arctan(3) + π, 3π

2

)
. Using the graphs of y = tan(x) and y = 3, we

can verify when the graph of the former is above (or meets) the graph of the latter.

10See page 247 for a discussion of the non-standard character known as the interrobang.
11We could have chosen any value arctan(t) where t > 3.
12. . . by adding π through the inequality . . .
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0

(−)

arctan(3)

0 (+)

π
2

‽ (−)

(arctan(3) + π)

0 (+)

3π
2

‽ (−)

2π

y = tan(x) and y = 3

We close this section with an example that puts solving equations and inequalities to good use –
finding domains of functions.

Example 10.7.4. Express the domain of the following functions using extended interval notation.13

1. f(x) = csc
(
2x+ π

3

)
2. f(x) =

sin(x)

2 cos(x)− 1
3. f(x) =

√
1− cot(x)

Solution.

1. To find the domain of f(x) = csc
(
2x+ π

3

)
, we rewrite f in terms of sine as f(x) = 1

sin(2x+π
3 )

.

Since the sine function is defined everywhere, our only concern comes from zeros in the denom-
inator. Solving sin

(
2x+ π

3

)
= 0, we get x = −π

6 + π
2k for integers k. In set-builder notation,

our domain is
{
x : x 6= −π

6 + π
2k for integers k

}
. To help visualize the domain, we follow the

old mantra ‘When in doubt, write it out!’ We get
{
x : x 6= −π

6 ,
2π
6 ,−

4π
6 ,

5π
6 ,−

7π
6 ,

8π
6 , . . .

}
,

where we have kept the denominators 6 throughout to help see the pattern. Graphing the
situation on a numberline, we have

− 7π
6 − 4π

6
−π6 2π

6
5π
6

8π
6

Proceeding as we did in on page 647 in Section 10.3.1, we let xk denote the kth number
excluded from the domain and we have xk = −π

6 + π
2k = (3k−1)π

6 for integers k. The intervals

which comprise the domain are of the form (xk, xk + 1) =
(

(3k−1)π
6 , (3k+2)π

6

)
as k runs through

the integers. Using extended interval notation, we have that the domain is

∞⋃
k=−∞

(
(3k − 1)π

6
,
(3k + 2)π

6

)
We can check our answer by substituting in values of k to see that it matches our diagram.

13See page 647 for details about this notation.
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2. Since the domains of sin(x) and cos(x) are all real numbers, the only concern when finding

the domain of f(x) = sin(x)
2 cos(x)−1 is division by zero so we set the denominator equal to zero and

solve. From 2 cos(x)−1 = 0 we get cos(x) = 1
2 so that x = π

3 +2πk or x = 5π
3 +2πk for integers

k. Using set-builder notation, the domain is
{
x : x 6= π

3 + 2πk andx 6= 5π
3 + 2πk for integers k

}
.

Writing out a few of the terms gives
{
x : x 6= ±π

3 ,±
5π
3 ,±

7π
3 ,±

11π
3 , . . .

}
, so we have

− 11π
3 − 7π

3 − 5π
3

−π3
π
3

5π
3

7π
3

11π
3

Unlike the previous example, we have two different families of points to consider, and we
present two ways of dealing with this kind of situation. One way is to generalize what we
did in the previous example and use the formulas we found in our domain work to describe
the intervals. To that end, we let ak = π

3 + 2πk = (6k+1)π
3 and bk = 5π

3 + 2πk = (6k+5)π
3 for

integers k. The goal now is to write the domain in terms of the a’s an b’s. We find a0 = π
3 ,

a1 = 7π
3 , a−1 = −5π

3 , a2 = 13π
3 , a−2 = −11π

3 , b0 = 5π
3 , b1 = 11π

3 , b−1 = −π
3 , b2 = 17π

3 and
b−2 = −7π

3 . Hence, in terms of the a’s and b’s, our domain is

. . . (a−2, b−2) ∪ (b−2, a−1) ∪ (a−1, b−1) ∪ (b−1, a0) ∪ (a0, b0) ∪ (b0, a1) ∪ (a1, b1) ∪ . . .

If we group these intervals in pairs, (a−2, b−2)∪(b−2, a−1), (a−1, b−1)∪(b−1, a0), (a0, b0)∪(b0, a1)
and so forth, we see a pattern emerge of the form (ak, bk) ∪ (bk, ak + 1) for integers k so that
our domain can be written as

∞⋃
k=−∞

(ak, bk) ∪ (bk, ak + 1) =

∞⋃
k=−∞

(
(6k + 1)π

3
,
(6k + 5)π

3

)
∪
(

(6k + 5)π

3
,
(6k + 7)π

3

)

A second approach to the problem exploits the periodic nature of f . It is based on the
same premise on which our equation solving technique is based – for a periodic function,
if we understand what happens on a fundamental period, we can know what is happening
everywhere by adding integer multiples of the period. Since cos(x) and sin(x) have period
2π, it’s not too difficult to show the function f is periodic and repeats itself every 2π units.14

This means if we can find a formula for the domain on an interval of length 2π, we can express
the entire domain by translating our answer left and right on the x-axis by adding integer
multiples of 2π. One such interval that arises from our domain work is

[
π
3 ,

7π
3

]
. The portion

of the domain here is
(
π
3 ,

5π
3

)
∪
(

5π
3 ,

7π
3

)
. Adding integer multiples of 2π, we get the family of

intervals
(
π
3 + 2πk, 5π

3 + 2πk
)
∪
(

5π
3 + 2πk, 7π

3 + 2πk
)

for integers k. We leave it to the reader
to show that getting common denominators leads to our previous answer.

14This doesn’t necessarily mean the period of f is 2π. The tangent function is comprised of cos(x) and sin(x), but
its period is half theirs. The reader is invited to investigate the period of f .
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3. To find the domain of f(x) =
√

1− cot(x), we first note that, due to the presence of the
cot(x) term, x 6= πk for integers k. Next, we recall that for the square root to be defined, we
need 1−cot(x) ≥ 0. Unlike the inequalities we solved in Example 10.7.3, we are not restricted
here to a given interval. For this reason, we employ the same technique as when we solved
equations involving cotangent. That is, we solve the inequality on (0, π) and then add integer
multiples of the period, in this case, π. We let g(x) = 1− cot(x) and set about making a sign
diagram for g over the interval (0, π) to find where g(x) > 0. We note that g is undefined for
x = πk for integers k, in particular, at the endpoints of our interval x = 0 and x = π. Next,
we look for the zeros of g. Solving g(x) = 0, we get cot(x) = 1 or x = π

4 + πk for integers k
and only one of these, x = π

4 , lies in (0, π). Choosing the test values x = π
6 and x = π

2 , we

get g
(
π
6

)
= 1−

√
3, and g

(
π
2

)
= 1.

0

‽ (−)

π
4

0 (+)

π

‽

We find g(x) > 0 on
[
π
4 , π

)
. Adding multiples of the period we get our solution to consist of

the intervals
[
π
4 + πk, π + πk

)
=
[

(4k+1)π
4 , (k + 1)π

)
. Using extended interval notation, we

express our final answer as

∞⋃
k=−∞

[
(4k + 1)π

4
, (k + 1)π

)
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10.7.1 Exercises

1. Find all of the exact solutions to each of the following equations and then list those solutions
which are in the interval [0, 2π).

(a) sin (5x) = 0

(b) cos (3x) =
1

2
(c) tan (6x) = 1

(d) csc (4x) = −1

(e) sec (3x) =
√

2

(f) cot (2x) = −
√

3

3

(g) sin
(x

3

)
=

√
2

2

(h) cos

(
x+

5π

6

)
= 0

(i) sin
(

2x− π

3

)
= −1

2

(j) 2 cos

(
x+

7π

4

)
=
√

3

(k) tan (2x− π) = 1

(l) tan2 (x) = 3

(m) sec2 (x) =
4

3

(n) cos2 (x) =
1

2

(o) sin2 (x) =
3

4

2. Solve each of the following equations, giving the exact solutions which lie in [0, 2π)

(a) sin (x) = cos (x)

(b) sin (2x) = sin (x)

(c) sin (2x) = cos (x)

(d) cos (2x) = sin (x)

(e) cos (2x) = cos (x)

(f) tan3 (x) = 3 tan (x)

(g) tan2 (x) =
3

2
sec (x)

(h) cos3 (x) = − cos (x)

(i) tan(2x)− 2 cos(x) = 0

(j) csc3(x) + csc2(x) = 4 csc(x) + 4

(k) sin(6x) cos(x) = − cos(6x) sin(x)

(l) cos(2x) cos(x) + sin(2x) sin(x) = 1

(m) cos(5x) cos(3x)− sin(5x) sin(3x) =

√
3

2

(n) sin(x) + cos(x) = 1

(o) cos(4x) = cos(2x)

(p) sin(5x) = sin(3x)

(q) cos(5x) = − cos(2x)

(r) 2 tan(x) = 1− tan2(x)

(s) 3
√

3 sin(3x)− 3 cos(3x) = 3
√

3

(t) sin(6x) + sin(x) = 0

3. Solve the following inequalities. Express the exact answers in interval notation, restricting
your attention to 0 ≤ x ≤ 2π.

(a) sin (x) ≤ 0

(b) tan (x) ≥
√

3

(c) sec2 (x) ≤ 4

(d) cos2 (x) >
1

2

(e) cos (2x) ≤ 0

(f) sin
(
x+

π

3

)
>

1

2

(g) cot2 (x) ≥ 1

3
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4. Solve the following inequalities. Express the exact answers in interval notation, restricting
your attention to −π ≤ x ≤ π.

(a) cos (x) >

√
3

2

(b) sec (x) ≤ 2

(c) sin2 (x) <
3

4
(d) cot (x) ≥ −1

(e) cos(x) ≥ sin(x)

5. Solve the following inequalities. Express the exact answers in interval notation, restricting
your attention to −2π ≤ x ≤ 2π.

(a) csc (x) > 1

(b) tan2 (x) ≥ 1

(c) sin(2x) ≥ sin(x)

(d) cos(2x) ≤ sin(x)

6. Solve each of the following equations, giving only the solutions which lie in [0, 2π). Express
the exact solutions using inverse trigonometric functions and then use your calculator to
approximate the solutions to four decimal places.

(a) sin(x) = 0.3502

(b) sin(x) = −0.721

(c) cos(x) = 0.9824

(d) cos(x) = −0.5637

(e) tan(x) = 117

(f) tan(x) = −0.6109

(g) tan (x) = cos (x)

(h) tan (x) = sec (x)

7. Express the domain of each function using the extended interval notation. (See page 647 in
Section 10.3.1 for details.)

(a) f(x) =
1

cos(x)− 1

(b) f(x) =
cos(x)

sin(x) + 1

(c) f(x) =
√

tan2(x)− 1

(d) f(x) =
√

2− sec(x)

(e) f(x) = csc(2x)

(f) f(x) =
sin(x)

2 + cos(x)

(g) f(x) = 3 csc(x) + 4 sec(x)

8. With the help of your classmates, determine the number of solutions to sin(x) = 1
2 in [0, 2π).

Then find the number of solutions to sin(2x) = 1
2 , sin(3x) = 1

2 and sin(4x) = 1
2 in [0, 2π).

A pattern should emerge. Explain how this pattern would help you solve equations like
sin(11x) = 1

2 . Now consider sin
(
x
2

)
= 1

2 , sin
(

3x
2

)
= 1

2 and sin
(

5x
2

)
= 1

2 . What do you find?

Replace
1

2
with −1 and repeat the whole exploration.
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10.7.2 Answers

1. (a) x =
kπ

5

x = 0,
π

5
,

2π

5
,

3π

5
,

4π

5
, π,

6π

5
,

7π

5
,

8π

5
,

9π

5

(b) x =
π

9
+

2kπ

3
or x =

5π

9
+

2kπ

3

x =
π

9
,
5π

9
,
7π

9
,
11π

9
,
13π

9
,
17π

9

(c) x =
π

24
+
kπ

6

x =
π

24
,
5π

24
,
3π

8
,
13π

24
,
17π

24
,
7π

8
,
25π

24
,

29π

24
,
11π

8
,
37π

24
,
41π

24
,
15π

8

(d) x =
3π

8
+
kπ

2

x =
3π

8
,
7π

8
,
11π

8
,
15π

8

(e) x =
π

12
+

2kπ

3
or x =

7π

12
+

2kπ

3

x =
π

12
,
7π

12
,
3π

4
,
5π

4
,
17π

12
,
23π

12

(f) x =
π

3
+
kπ

2

x =
π

3
,
5π

6
,
4π

3
,
11π

6

(g) x =
3π

4
+ 6kπ or x =

9π

4
+ 6kπ

x =
3π

4

(h) x = −π
3

+ kπ

x =
2π

3
,
5π

3

(i) x =
3π

4
+ kπ or x =

13π

12
+ kπ

x =
π

12
,
3π

4
,
13π

12
,
7π

4

(j) x = −19π

12
+ 2kπ or x =

π

12
+ 2kπ

x =
π

12
,
5π

12

(k) x =
5π

8
+
kπ

2

x =
π

8
,
5π

8
,
9π

8
,
13π

8

(l) x =
π

3
+ kπ or x =

2π

3
+ kπ

x =
π

3
,
2π

3
,
4π

3
,
5π

3

(m) x =
π

6
+ kπ or x =

5π

6
+ kπ

x =
π

6
,
5π

6
,
7π

6
,
11π

6

(n) x =
π

4
+
kπ

2

x =
π

4
,
3π

4
,
5π

4
,
7π

4

(o) x =
π

3
+ kπ or x =

2π

3
+ kπ

x =
π

3
,
2π

3
,
4π

3
,
5π

3

2. (a) x =
π

4
,
5π

4

(b) x = 0,
π

3
, π,

5π

3

(c) x =
π

6
,
π

2
,
5π

6
,
3π

2

(d) x =
π

6
,
5π

6
,
3π

2

(e) x = 0,
2π

3
,
4π

3

(f) x = 0,
π

3
,
2π

3
, π,

4π

3
,
5π

3

(g) x =
π

3
,
5π

3

(h) x =
π

2
,
3π

2

(i) x =
π

6
,
π

2
,
5π

6
,
3π

2

(j) x =
π

6
,
5π

6
,
7π

6
,
3π

2
,
11π

6
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(k) x = 0,
π

7
,
2π

7
,
3π

7
,
4π

7
,
5π

7
,
6π

7
, π,

8π

7
,

9π

7
,
10π

7
,
11π

7
,
12π

7
,
13π

7
(l) x = 0

(m) x =
π

48
,
11π

48
,
13π

48
,
23π

48
,
25π

48
,
35π

48
,

37π

48
,
47π

48
,
49π

48
,
59π

48
,
61π

48
,
71π

48
,

73π

48
,
83π

48
,
85π

48
,
95π

48

(n) x = 0,
π

2

(o) x = 0,
π

3
,
2π

3
, π,

4π

3
,
5π

3

(p) x = 0,
π

8
,
3π

8
,
5π

8
,
7π

8
, π,

9π

8
,
11π

8
,

13π

8
,
15π

8

(q) x =
π

7
,
π

3
,

3π

7
,

5π

7
, π,

9π

7
,

11π

7
,

5π

3
,

13π

7

(r) x =
π

8
,
5π

8
,
9π

8
,
13π

8

(s) x =
π

6
,
5π

18
,
5π

6
,
17π

18
,
3π

2
,
29π

18

(t) x =
2π

7
,

4π

7
,

6π

7
,

8π

7
,

10π

7
,

12π

7
,
π

5
,

3π

5
, π,

7π

5
,

9π

5

3. (a) [π, 2π]

(b)
[π

3
,
π

2

)
∪
[

4π

3
,
3π

2

)
(c)

[
0,
π

3

]
∪
[

2π

3
,
4π

3

]
∪
[

5π

3
, 2π

]
(d)

[
0,
π

4

)
∪
(

3π

4
,
5π

4

)
∪
(

7π

4
, 2π

]

(e)

[
π

4
,
3π

4

]
∪
[

5π

4
,
7π

4

]

(f)
[
0,
π

2

)
∪
(

11π

6
, 2π

]

(g)
(

0,
π

3

]
∪
[

2π

3
, π

)
∪
(
π,

4π

3

]
∪
[

5π

3
, 2π

)
4. (a)

(
−π

6
,
π

6

)
(b)

[
−π,−π

2

)
∪
[
−π

3
,
π

3

]
∪
(π

2
, π
]

(c)

(
−2π

3
,−π

3

)
∪
(
π

3
,
2π

3

)
(d)

(
−π,−π

4

]
∪
(

0,
3π

4

]

(e)

[
−3π

4
,−π

4

]

5. (a)

(
−2π,−3π

2

)
∪
(
−3π

2
,−π

)
∪
(

0,
π

2

)
∪
(π

2
, π
)

(b)
[
−

7π

4
,−

3π

2

)
∪
(
−

3π

2
,−

5π

4

]
∪
[
−

3π

4
,−

π

2

)
∪
(
−
π

2
,−

π

4

]
∪
[π

4
,
π

2

)
∪
(
π

2
,

3π

4

]
∪
[

5π

4
,

3π

2

)
∪
(

3π

2
,

7π

4

]

(c)

[
−2π,−5π

3

]
∪
[
−π,−π

3

]
∪
[
0,
π

3

]
∪
[
π,

5π

3

]
(d)

[
−11π

6
,−7π

6

]
∪
[
π

6
,
5π

6

]
∪,
{
−π

2
,
3π

2

}
6. (a) x = arcsin(0.3502) ≈ 0.3578

x = π − arcsin(0.3502) ≈ 2.784

(b) x = π − arcsin(−0.721) ≈ 3.9468

x = 2π + arcsin(−0.721) ≈ 5.4780

(c) x = arccos(0.9824) ≈ 0.1879

x = 2π − arccos(0.9824) ≈ 6.0953

(d) x = arccos(−0.5637) ≈ 2.1697

x = 2π − arccos(−0.5637) ≈ 4.1135

(e) x = arctan(117) ≈ 1.5622

x = π + arctan(117) ≈ 4.7038
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(f) x = π + arctan(−0.6109) ≈ 2.5932

x = 2π + arctan(−0.6109) ≈ 5.7348

(g) x = arcsin

(
−1 +

√
5

2

)
≈ 0.6662

x = π − arcsin

(
−1 +

√
5

2

)
≈ 2.4754

(h) No solution

7. (a)
∞⋃

k=−∞
(2kπ, (2k + 2)π)

(b)
∞⋃

k=−∞

(
(4k − 1)π

2
,
(4k + 3)π

2

)

(c)
∞⋃

k=−∞

{[
(4k + 1)π

4
,
(2k + 1)π

2

)
∪
(

(2k + 1)π

2
,
(4k + 3)π

4

]}

(d)
∞⋃

k=−∞

{[
(6k − 1)π

3
,
(6k + 1)π

3

]
∪
(

(4k + 1)π

2
,
(4k + 3)π

2

)}

(e)

∞⋃
k=−∞

(
kπ

2
,
(k + 1)π

2

)
(f) (−∞,∞)

(g)

∞⋃
k=−∞

(
kπ

2
,
(k + 1)π

2

)



Chapter 11

Applications of Trigonometry

11.1 Applications of Sinusoids

In the same way exponential functions can be used to model a wide variety of phenomena in nature,1

the cosine and sine functions can be used to model their fair share of natural behaviors. In section
10.5, we introduced the concept of a sinusoid as a function which can be written either in the form
C(x) = A cos(ωx+φ)+B for ω > 0 or equivalently, in the form S(x) = A sin(ωx+φ)+B for ω > 0.
At the time, we remained undecided as to which form we preferred, but the time for such indecision
is over. For clarity of exposition we focus on the sine function2 in this section and switch to the
independent variable t, since the applications in this section are time-dependent. We reintroduce
and summarize all of the important facts and definitions about this form of the sinusoid below.

Properties of the Sinusoid S(t) = A sin(ωt+ φ) +B

• The amplitude is |A|

• The angular frequency is ω and the ordinary frequency is f =
ω

2π

• The period is T =
1

f
=

2π

ω

• The phase is φ and the phase shift is −φ
ω

• The vertical shift or baseline is B

Along with knowing these formulas, it is helpful to remember what these quantities mean in context.
The amplitude measures the maximum displacement of the sine wave from its baseline (determined
by the vertical shift), the period is the length of time it takes to complete one cycle of the sinusoid,
the angular frequency tells how many cycles are completed over an interval of length 2π, and the
ordinary frequency measures how many cycles occur per unit of time. The phase indicates what

1See Section 6.5.
2Sine haters can use the co-function identity cos

(
π
2
− θ
)

= sin(θ) to turn all of the sines into cosines.
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angle φ corresponds to t = 0, and the phase shift represents how much of a ‘head start’ the sinusoid
has over the un-shifted sine function. The figure below is repeated from Section 10.5.

amplitude

baseline

period

In Section 10.1.1, we introduced the concept of circular motion and in Section 10.2.1, we developed
formulas for circular motion. Our first foray into sinusoidal motion puts these notions to good use.

Example 11.1.1. Recall from Exercise 8 in Section 10.1 that The Giant Wheel at Cedar Point is
a circle with diameter 128 feet which sits on an 8 foot tall platform making its overall height 136
feet. It completes two revolutions in 2 minutes and 7 seconds. Assuming that the riders are at the
edge of the circle, find a sinusoid which describes the height of the passengers above the ground t
seconds after they pass the point on the wheel closest to the ground.
Solution. We sketch the problem situation below and assume a counter-clockwise rotation.3

O

P

Q

θ

h

3Otherwise, we could just observe the motion of the wheel from the other side.
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We know from the equations given on page 627 in Section 10.2.1 that the y-coordinate for counter-
clockwise motion on a circle of radius r centered at the origin with constant angular velocity
(frequency) ω is given by y = r sin(ωt). Here, t = 0 corresponds to the point (r, 0) so that θ,
the angle measuring the amount of rotation, is in standard position. In our case, the diameter of
the wheel is 128 feet, so the radius r = 64 feet. Since the wheel completes two revolutions in 2
minutes and 7 seconds (which is 127 seconds) the period T = 1

2(127) = 127
2 seconds. Hence, the

angular frequency is ω = 2π
T = 4π

127 radians per second. Putting these two pieces of information
together, we have that y = 64 sin

(
4π
127 t

)
describes the y-coordinate on the Giant Wheel after t

seconds, assuming it is centered at (0, 0) with t = 0 corresponding to the point Q. In order to find
an expression for h, we take the point O in the figure as the origin. Since the base of the Giant
Wheel ride is 8 feet above the ground and the Giant Wheel itself has a radius of 64 feet, its center
is 72 feet above the ground. To account for this vertical shift upward,4 we add 72 to our formula
for y to obtain the new formula h = y + 72 = 64 sin

(
4π
127 t

)
+ 72. Next, we need to adjust things so

that t = 0 corresponds to the point P instead of the point Q. This is where the phase comes into
play. Geometrically, we need to shift the angle θ in the figure back π

2 radians. From Section 10.2.1,
we know θ = ωt = 4π

127 t, so we (temporarily) write the height in terms of θ as h = 64 sin (θ) + 72.
Subtracting π

2 from θ gives the final answer h(t) = 64 sin
(
θ − π

2

)
+ 72 = 64 sin

(
4π
127 t−

π
2

)
+ 72. We

can check the reasonableness of our answer by graphing y = h(t) over the interval
[
0, 127

2

]
.

t

y

127
2

8

72

136

A few remarks about Example 11.1.1 are in order. First, note that the amplitude of 64 in our
answer corresponds to the radius of the Giant Wheel. This means that passengers on the Giant
Wheel never stray more than 64 feet vertically from the center of the Wheel, which makes sense.
Second, the phase shift of our answer works out to be π/2

4π/127 = 127
8 = 15.875. This represents the

‘time delay’ (in seconds) we introduce by starting the motion at the point P as opposed to the
point Q. Said differently, passengers which ‘start’ at P take 15.875 seconds to ‘catch up’ to the
point Q.

Our next example revisits the daylight data first introduced in Section 2.5, Exercise 4b.

4We are readjusting our ‘baseline’ from y = 0 to y = 72.
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Example 11.1.2. According to the U.S. Naval Observatory website, the number of hours H of
daylight that Fairbanks, Alaska received on the 21st day of the nth month of 2009 is given below.
Here t = 1 represents January 21, 2009, t = 2 represents February 21, 2009, and so on.

Month
Number 1 2 3 4 5 6 7 8 9 10 11 12
Hours of
Daylight 5.8 9.3 12.4 15.9 19.4 21.8 19.4 15.6 12.4 9.1 5.6 3.3

1. Find a sinusoid which models these data and use a graphing utility to graph your answer
along with the data.

2. Compare your answer to part 1 to one obtained using the regression feature of a calculator.

Solution.

1. To get a feel for the data, we plot it below.

t

H

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

12

14

16

18

20

22

The data certainly appear sinusoidal,5 but when it comes down to it, fitting a sinusoid to
data manually is not an exact science. We do our best to find the constants A, ω, φ and B
so that the function H(t) = A sin(ωt + φ) + B closely matches the data. We first go after
the vertical shift B whose value determines the baseline. In a typical sinusoid, the value of B
is the average of the maximum and minimum values. So here we take B = 3.3+21.8

2 = 12.55.
Next is the amplitude A which is the displacement from the baseline to the maximum (and
minimum) values. We find A = 21.8 − 12.55 = 12.55 − 3.3 = 9.25. At this point, we have
H(t) = 9.25 sin(ωt + φ) + 12.55. Next, we go after the angular frequency ω. Since the data
collected is over the span of a year (12 months), we take the period T = 12 months.6 This

5Okay, it appears to be the ‘∧’ shape we saw in some of the graphs in Section 2.2. Just humor us.
6Even though the data collected lies in the interval [1, 12], which has a length of 11, we need to think of the data

point at t = 1 as a representative sample of the amount of daylight for every day in January. That is, it represents
H(t) over the interval [0, 1]. Similarly, t = 2 is a sample of H(t) over [1, 2], and so forth.

http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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means ω = 2π
T = 2π

12 = π
6 . The last quantity to find is the phase φ. Unlike the previous

example, it is easier in this case to find the phase shift −φ
ω . Since we picked A > 0, the phase

shift corresponds to the first value of t with H(t) = 12.55 (the baseline value).7 Here, we
choose t = 3, since its corresponding H value of 12.4 is closer to 12.55 than the next value,
15.9, which corresponds to t = 4. Hence, −φ

ω = 3, so φ = −3ω = −3
(
π
6

)
= −π

2 . We have
H(t) = 9.25 sin

(
π
6 t−

π
2

)
+ 12.55. Below is a graph of our data with the curve y = H(t).

2. Using the ‘SinReg’ command, we graph the calculator’s regression below.

While both models seem to be reasonable fits to the data, the calculator model is possibly
the better fit. The calculator does not give us an r2 value like it did for linear regressions
in Section 2.5, nor does it give us an R2 value like it did for quadratic, cubic and quartic
regressions as in Section 3.1. The reason for this, much like the reason for the absence of R2

for the logistic model in Section 6.5, is beyond the scope of this course. We’ll just have to
use our own good judgment when choosing the best sinusoid model.

11.1.1 Harmonic Motion

One of the major applications of sinusoids in Science and Engineering is the study of harmonic
motion. The equations for harmonic motion can be used to describe a wide range of phenomena,
from the motion of an object on a spring, to the response of an electronic circuit. In this subsection,
we restrict our attention to modeling a simple spring system. Before we jump into the Mathematics,
there are some Physics terms and concepts we need to discuss. In Physics, ‘mass’ is defined as a
measure of an object’s resistance to straight-line motion whereas ‘weight’ is the amount of force

7See the figure on page 748.
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(pull) gravity exerts on an object. An object’s mass cannot change,8 while its weight could change.
An object which weighs 6 pounds on the surface of the Earth would weigh 1 pound on the surface
of the Moon, but its mass is the same in both places. In the English system of units, ‘pounds’ (lbs.)
is a measure of force (weight), and the corresponding unit of mass is the ‘slug’. In the SI system,
the unit of force is ‘Newtons’ (N) and the associated unit of mass is the ‘kilogram’ (kg). We convert
between mass and weight using the formula9 w = mg. Here, w is the weight of the object, m is the
mass and g is the acceleration due to gravity. In the English system, g = 32 feet

second2 , and in the SI

system, g = 9.8 meters
second2 . Hence, on Earth a mass of 1 slug weighs 32 lbs. and a mass of 1 kg weighs

9.8 N.10 Suppose we attach an object with mass m to a spring as depicted below. The weight of
the object will stretch the spring. The system is said to be in ‘equilibrium’ when the weight of the
object is perfectly balanced with the restorative force of the spring. How far the spring stretches
to reach equilibrium depends on the spring’s ‘spring constant’. Usually denoted by the letter k,
the spring constant relates the force F applied to the spring to the amount d the spring stretches
in accordance with Hooke’s Law11 F = kd. If the object is released above or below the equilibrium
position, or if the object is released with an upward or downward velocity, the object will bounce
up and down on the end of the spring until some external force stops it. If we let x(t) denote the
object’s displacement from the equilibrium position at time t, then x(t) = 0 means the object is at
the equilibrium position, x(t) < 0 means the object is above the equilibrium position, and x(t) > 0
means the object is below the equilibrium position. The function x(t) is called the ‘equation of
motion’ of the object.12

x(t) = 0 at the x(t) < 0 above the x(t) > 0 below the
equilibrium position equilibrium position equilibrium position

If we ignore all other influences on the system except gravity and the spring force, then Physics
tells us that gravity and the spring force will battle each other forever and the object will oscillate
indefinitely. In this case, we describe the motion as ‘free’ (meaning there is no external force causing
the motion) and ‘undamped’ (meaning we ignore friction caused by surrounding medium, which

8Well, assuming the object isn’t subjected to relativistic speeds . . .
9This is a consequence of Newton’s Second Law of Motion F = ma where F is force, m is mass and a is acceleration.

In our present setting, the force involved is weight which is caused by the acceleration due to gravity.
10Note that 1 pound = 1 slug foot

second2 and 1 Newton = 1 kg meter
second2 .

11Look familiar? We saw Hooke’s Law in Section 4.3.1.
12To keep units compatible, if we are using the English system, we use feet (ft.) to measure displacement. If we

are in the SI system, we measure displacement in meters (m). Time is always measured in seconds (s).

http://en.wikipedia.org/wiki/Hooke's_law
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in our case is air). The following theorem, which comes from Differential Equations, gives x(t) as
a function of the mass m of the object, the spring constant k, the initial displacement x0 of the
object and initial velocity v0 of the object. As with x(t), x0 = 0 means the object is released from
the equilibrium position, x0 < 0 means the object is released above the equilibrium position and
x0 > 0 means the object is released below the equilibrium position. As far as the initial velocity v0

is concerned, v0 = 0 means the object is released ‘from rest,’ v0 < 0 means the object is heading
upwards and v0 > 0 means the object is heading downwards.13

Theorem 11.1. Equation for Free Undamped Harmonic Motion: Suppose an object of
mass m is suspended from a spring with spring constant k. If the initial displacement from the
equilibrium position is x0 and the initial velocity of the object is v0, then the displacement x from
the equilibrium position at time t is given by x(t) = A sin(ωt+ φ) where

• ω =

√
k

m
and A =

√
x2

0 +
(v0

ω

)2

• A sin(φ) = x0 and Aω cos(φ) = v0.

It is a great exercise in ‘dimensional analysis’ to verify that the formulas given in Theorem 11.1
work out so that ω has units 1

s and A has units ft. or m, depending on which system we choose.

Example 11.1.3. Suppose an object weighing 64 pounds stretches a spring 8 feet.

1. If the object is attached to the spring and released 3 feet below the equilibrium position from
rest, find the equation of motion of the object, x(t). When does the object first pass through
the equilibrium position? Is the object heading upwards or downwards at this instant?

2. If the object is attached to the spring and released 3 feet below the equilibrium position with
an upward velocity of 8 feet per second, find the equation of motion of the object, x(t). What
is the longest distance the object travels above the equilibrium position? When does this first
happen? Confirm your result using a graphing utility.

Solution. In order to use the formulas in Theorem 11.1, we first need to determine the spring
constant k and the mass of the object m. To find k, we use Hooke’s Law F = kd. We know the
object weighs 64 lbs. and stretches the spring 8 ft.. Using F = 64 and d = 8, we get 64 = k · 8, or
k = 8 lbs.

ft. . To find m, we use w = mg with w = 64 lbs. and g = 32 ft.
s2

. We get m = 2 slugs. We can
now proceed to apply Theorem 11.1.

1. With k = 8 and m = 2, we get ω =
√

k
m =

√
8
2 = 2. We are told that the object is released

3 feet below the equilibrium position ‘from rest.’ This means x0 = 3 and v0 = 0. Therefore,

A =
√
x2

0 +
(
v0
ω

)2
=
√

32 + 02 = 3. To determine the phase φ, we have A sin(φ) = x0,

13The sign conventions here are carried over from Physics. If not for the spring, the object would fall towards the
ground, which is the ‘natural’ or ‘positive’ direction. Since the spring force acts in direct opposition to gravity, any
movement upwards is considered ‘negative’.
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which in this case gives 3 sin(φ) = 3 so sin(φ) = 1. Only φ = π
2 and angles coterminal to it

satisfy this condition, so we pick14 the phase to be φ = π
2 . Hence, the equation of motion

is x(t) = 3 sin
(
2t+ π

2

)
. To find when the object passes through the equilibrium position we

solve x(t) = 3 sin
(
2t+ π

2

)
= 0. Going through the usual analysis we find t = −π

4 + π
2k for

integers k. Since we are interested in the first time the object passes through the equilibrium
position, we look for the smallest positive t value which in this case is t = π

4 ≈ 0.78 seconds
after the start of the motion. Common sense suggests that if we release the object below the
equilibrium position, the object should be traveling upwards when it first passes through it.
To check this answer, we graph one cycle of x(t). Since our applied domain in this situation
is t ≥ 0, and the period of x(t) is T = 2π

ω = 2π
2 = π, we graph x(t) over the interval [0, π].

Remembering that x(t) > 0 means the object is below the equilibrium position and x(t) < 0
means the object is above the equilibrium position, the fact our graph is crossing through the
t-axis from positive x to negative x at t = π

4 confirms our answer.

2. The only difference between this problem and the previous problem is that we now release
the object with an upward velocity of 8 ft

s . We still have ω = 2 and x0 = 3, but now
we have v0 = −8, the negative indicating the velocity is directed upwards. Here, we get

A =
√
x2

0 +
(
v0
ω

)2
=
√

32 + (−4)2 = 5. From A sin(φ) = x0, we get 5 sin(φ) = 3 which gives

sin(φ) = 3
5 . From Aω cos(φ) = v0, we get 10 cos(φ) = −8, or cos(φ) = −4

5 . This means
that φ is a Quadrant II angle which we can describe in terms of either arcsine or arccosine.
Since x(t) is expressed in terms of sine, we choose to express φ = π − arcsin

(
3
5

)
. Hence,

x(t) = 5 sin
(
2t+

[
π − arcsin

(
3
5

)])
. Since the amplitude of x(t) is 5, the object will travel

at most 5 feet above the equilibrium position. To find when this happens, we solve the
equation x(t) = 5 sin

(
2t+

[
π − arcsin

(
3
5

)])
= −5, the negative once again signifying that

the object is above the equilibrium position. Going through the usual machinations, we get
t = 1

2 arcsin
(

3
5

)
+ π

4 + πk for integers k. The smallest of these values occurs when k = 0,
that is, t = 1

2 arcsin
(

3
5

)
+ π

4 ≈ 1.107 seconds after the start of the motion. To check our
answer using the calculator, we graph y = 5 sin

(
2x+

[
π − arcsin

(
3
5

)])
on a graphing utility

and confirm the coordinates of the first relative minimum to be approximately (1.107,−5).

t

x

π
4

π
2

3π
4

π

−3

−2

−1

1

2

3

x(t) = 3 sin
(
2t+ π

2

)
y = 5 sin

(
2x+

[
π − arcsin

(
3
5

)])

14For confirmation, we note that Aω cos(φ) = v0, which in this case reduces to 6 cos(φ) = 0.
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It is possible, though beyond the scope of this course, to model the effects of friction and other
external forces acting on the system.15 While we may not have the Physics and Calculus background
to derive equations of motion for these scenarios, we can certainly analyze them. We examine three
cases in the following example.

Example 11.1.4.

1. Write x(t) = 5e−t/5 cos(t) + 5e−t/5
√

3 sin(t) in the form x(t) = A(t) sin(ωt + φ). Graph x(t)
using a graphing utility.

2. Write x(t) = (t+ 3)
√

2 cos(2t) + (t+ 3)
√

2 sin(2t) in the form x(t) = A(t) sin(ωt+ φ). Graph
x(t) using a graphing utility.

3. Find the period of x(t) = 5 sin(6t)− 5 sin (8t). Graph x(t) using a graphing utility.

Solution.

1. We start rewriting x(t) = 5e−t/5 cos(t) + 5e−t/5
√

3 sin(t) by factoring out 5e−t/5 from both
terms to get x(t) = 5e−t/5

(
cos(t) +

√
3 sin(t)

)
. We convert what’s left in parentheses to

the required form using the formulas introduced in Exercise 4 from Section 10.5. We find(
cos(t) +

√
3 sin(t)

)
= 2 sin

(
t+ π

3

)
so that x(t) = 10e−t/5 sin

(
t+ π

3

)
. Graphing this on the

calculator as y = 10e−x/5 sin
(
x+ π

3

)
reveals some interesting behavior. The sinusoidal nature

continues indefinitely, but it is being attenuated. In the sinusoid A sin(ωx+φ), the coefficient
A of the sine function is the amplitude. In the case of y = 10e−x/5 sin

(
x+ π

3

)
, we can think

of the function A(x) = 10e−x/5 as the amplitude. As x→∞, 10e−x/5 → 0 which means the
amplitude continues to shrink towards zero. Indeed, if we graph y = ±10e−x/5 along with
y = 10e−x/5 sin

(
x+ π

3

)
, we see this attenuation taking place. This equation corresponds to

the motion of an object on a spring where there is a slight force which acts to ‘damp’, or slow
the motion. An example of this kind of force would be the friction of the object against the
air. In this model, the object oscillates forever, but with smaller and smaller amplitude.

y = 10e−x/5 sin
(
x+ π

3

)
y = 10e−x/5 sin

(
x+ π

3

)
, y = ±10e−x/5

2. Proceeding as in the first example, we factor out (t + 3)
√

2 from each term in the function
x(t) = (t+ 3)

√
2 cos(2t) + (t+ 3)

√
2 sin(2t) to get x(t) = (t+ 3)

√
2(cos(2t) + sin(2t)). We find

15Take a good Differential Equations class to see this!
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(cos(2t) + sin(2t)) =
√

2 sin
(
2t+ π

4

)
, so x(t) = 2(t + 3) sin

(
2t+ π

4

)
. Graphing this on the

calculator as y = 2(x + 3) sin
(
2x+ π

4

)
, we find the sinusoid’s amplitude growing. Since our

amplitude function here is A(x) = 2(x+ 3) = 2x+ 6, which continues to grow without bound
as x → ∞, this is hardly surprising. The phenomenon illustrated here is ‘forced’ motion.
That is, we imagine that the entire apparatus on which the spring is attached is oscillating
as well. In this case, we are witnessing a ‘resonance’ effect – the frequency of the external
oscillation matches the frequency of the motion of the object on the spring.16

y = 2(x+ 3) sin
(
2x+ π

4

)
y = 2(x+ 3) sin

(
2x+ π

4

)
, y = ±2(x+ 3)

3. Last, but not least, we come to x(t) = 5 sin(6t)−5 sin(8t). To find the period of this function,
we need to determine the length of the smallest interval on which both f(t) = 5 sin(6t) and
g(t) = 5 sin(8t) complete a whole number of cycles. To do this, we take the ratio of their
frequencies and reduce to lowest terms: 6

8 = 3
4 . This tells us that for every 3 cycles f makes,

g makes 4. In other words, the period of x(t) is three times the period of f(t) (which is
four times the period of g(t)), or π. We graph y = 5 sin(6x) − 5 sin(8x) over [0, π] on the
calculator to check this. This equation of motion also results from ‘forced’ motion, but here
the frequency of the external oscillation is different than that of the object on the spring.
Since the sinusoids here have different frequencies, they are ‘out of sync’ and do not amplify
each other as in the previous example. Taking things a step further, we can use a sum to
product identity to rewrite x(t) = 5 sin(6t)− 5 sin(8t) as x(t) = −10 sin(t) cos(7t). The lower
frequency factor in this expression, −10 sin(t), plays an interesting role in the graph of x(t).
Below we graph y = 5 sin(6x)− 5 sin(8x) and y = ±10 sin(x) over [0, 2π]. This is an example
of the ‘beat’ phenomena, and the curious reader is invited to explore this concept as well.17

y = 5 sin(6x)− 5 sin(8x) over [0, π] y = 5 sin(6x)− 5 sin(8x) and
y = ±10 sin(x) over [0, 2π]

16The reader is invited to investigate the destructive implications of resonance.
17A good place to start is this article on beats.

http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Beat_(acoustics)
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11.1.2 Exercises

1. The sounds we hear are made up of mechanical waves. The note ‘A’ above the note ‘middle
C’ is a sound wave with ordinary frequency f = 440 Hertz = 440 cycles

second . Find a sinusoid which
models this note, assuming that the amplitude is 1 and the phase shift is 0.

2. The voltage V in an alternating current source has amplitude 220
√

2 and ordinary frequency
f = 60 Hertz. Find a sinusoid which models this voltage. Assume that the phase is 0.

3. The London Eye is a popular tourist attraction in London, England and is one of the largest
Ferris Wheels in the world. It has a diameter of 135 meters and makes one revolution (counter-
clockwise) every 30 minutes. It is constructed so that the lowest part of the Eye reaches ground
level, enabling passengers to simply walk on to, and off of, the ride. Find a sinsuoid which
models the height h of the passenger above the ground in meters t minutes after they board
the Eye at ground level.

4. On page 627 in Section 10.2.1, we found the x-coordinate of counter-clockwise motion on a
circle of radius r with angular frequency ω to be x = r cos(ωt), where t = 0 corresponds to
the point (r, 0). Suppose we are in the situation of Exercise 3 above. Find a sinsusoid which
models the horizontal displacement x of the passenger from the center of the Eye in meters
t minutes after they board the Eye. Here we take x(t) > 0 to mean the passenger is to the
right of the center, while x(t) < 0 means the passenger is to the left of the center.

5. The table below lists the average temperature of Lake Erie as measured in Cleveland, Ohio
on the first of the month for each month during the years 1971 – 2000.18 For example, t = 3
represents the average of the temperatures recorded for Lake Erie on every March 1 for the
years 1971 through 2000.

Month
Number, t 1 2 3 4 5 6 7 8 9 10 11 12
Temperature
(◦ F), T 36 33 34 38 47 57 67 74 73 67 56 46

(a) Using the techniques discussed in Example 11.1.2, fit a sinusoid to these data.

(b) Using a graphing utility, graph your model along with the data set to judge the reason-
ableness of the fit.

(c) Use the model you found in part 5a to predict the average temperature recorded for
Lake Erie on April 15th and September 15th during the years 1971–2000.19

(d) Compare your results to those obtained using a graphing utility.

18See this website: http://www.erh.noaa.gov/cle/climate/cle/normals/laketempcle.html.
19The computed average is 41◦F for April 15th and 71◦F for September 15th.

http://en.wikipedia.org/wiki/London_Eye
http://www.erh.noaa.gov/cle/climate/cle/normals/laketempcle.html
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6. The fraction of the moon illuminated at midnight Eastern Standard Time on the tth day of
June, 2009 is given in the table below.20

Day of
June, t 3 6 9 12 15 18 21 24 27 30
Fraction
Illuminated, F 0.81 0.98 0.98 0.83 0.57 0.27 0.04 0.03 0.26 0.58

(a) Using the techniques discussed in Example 11.1.2, fit a sinusoid to these data.21

(b) Using a graphing utility, graph your model along with the data set to judge the reason-
ableness of the fit.

(c) Use the model you found in part 6a to predict the fraction of the moon illuminated on
June 1, 2009. 22

(d) Compare your results to those obtained using a graphing utility.

7. Suppose an object weighing 10 pounds is suspended from the ceiling by a spring which
stretches 2 feet to its equilibrium position when the object is attached.

(a) Find the spring constant k in lbs.
ft. and the mass of the object in slugs.

(b) Find the equation of motion of the object if it is released from 1 foot below the equilibrium
position from rest. When is the first time the object passes through the equilibrium
position? In which direction is it heading?

(c) Find the equation of motion of the object if it is released from 6 inches above the
equilibrium position with a downward velocity of 2 feet per second. Find when the
object passes through the equilibrium position heading downwards for the third time.

8. With the help of your classmates, research the phenomena mentioned in Example 11.1.4,
namely resonance and beats.

9. With the help of your classmates, research Amplitude Modulation and Frequency Modulation.

10. What other things in the world might be roughly sinusoidal? Look to see what models you
can find for them and share your results with your class.

20See this website: http://www.usno.navy.mil/USNO/astronomical-applications/data-services/frac-moon-ill.
21You may want to plot the data before you find the phase shift.
22The listed fraction is 0.62.

http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Beat_(acoustics)
http://en.wikipedia.org/wiki/Amplitude_modulation
http://en.wikipedia.org/wiki/Frequency_modulation
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/frac-moon-ill
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11.1.3 Answers

1. S(t) = sin (880πt)

2. V (t) = 220
√

2 sin (120πt)

3. h(t) = 67.5 sin
(
π
15 t−

π
2

)
+ 67.5

4. x(t) = 67.5 cos
(
π
15 t−

π
2

)
= 67.5 sin

(
π
15 t
)

5. (a) T (t) = 20.5 sin
(
π
6 t− π

)
+ 53.5

(b) Our function and the data set are graphed below. The sinusoid seems to be shifted to
the right of our data.

(c) The average temperature on April 15th is approximately T (4.5) ≈ 39.00◦F and the
average temperature on September 15th is approximately T (9.5) ≈ 73.38◦F.

(d) Using a graphing calculator, we get the following

This model predicts the average temperature for April 15th to be approximately 42.43◦F
and the average temperature on September 15th to be approximately 70.05◦F. This
model appears to be more accurate.

6. (a) Based on the shape of the data, we either choose A < 0 or we find the second value of
t which closely approximates the ‘baseline’ value, F = 0.505. We choose the latter to
obtain F (t) = 0.475 sin

(
π
15 t− 2π

)
+ 0.505 = 0.475 sin

(
π
15 t
)

+ 0.505

(b) Our function and the data set are graphed below. It’s a pretty good fit.
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(c) The fraction of the moon illuminated on June 1st, 2009 is approximately F (1) ≈ 0.60

(d) Using a graphing calculator, we get the following.

This model predicts that the fraction of the moon illuminated on June 1st, 2009 is
approximately 0.59. This appears to be a better fit to the data than our first model.

7. (a) k = 5 lbs.
ft. and m = 5

16 slugs

(b) x(t) = sin
(
4t+ π

2

)
. The object first passes through the equilibrium point when t = π

8 ≈
0.39 seconds after the motion starts. At this time, the object is heading upwards.

(c) x(t) =
√

2
2 sin

(
4t+ 7π

4

)
. The object passes through the equilibrium point heading down-

wards for the third time when t = 17π
16 ≈ 3.34 seconds.
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11.2 The Law of Sines

Trigonometry literally means ‘measuring triangles’ and with Chapter 10 under our belts, we are
more than prepared to do just that. The main goal of this section and the next is to develop
theorems which allow us to ‘solve’ triangles – that is, find the length of each side of a triangle
and the measure of each of its angles. In Sections 10.2, 10.3 and 10.6, we’ve had some experience
solving right triangles. The following example reviews what we know.

Example 11.2.1. Given a right triangle with a hypotenuse of length 7 units and one leg of length
4 units, find the length of the remaining side and the measures of the remaining angles. Express
the angles in decimal degrees, rounded to the nearest hundreth of a degree.

Solution. For definitiveness, we label the triangle below.

b = 4

a

α

β

c
=

7

To find the length of the missing side a, we use the Pythagorean Theorem to get a2 + 42 = 72

which then yields a =
√

33 units. Now that all three sides of the triangle are known, there are
several ways we can find α using the inverse trigonometric functions. To decrease the chances of
propagating error, however, we stick to using the data given to us in the problem. In this case, the
lengths 4 and 7 were given, so we want to relate these to α. According to Theorem 10.4, cos(α) = 4

7 .
Since α is an acute angle, α = arccos

(
4
7

)
radians. Converting to degrees, we find α ≈ 55.15◦. Now

that we have the measure of angle α, we could find the measure of angle β using the fact that α
and β are complements so α + β = 90◦. Once again, we opt to use the data given to us in the
problem. According to Theorem 10.4, we have that sin(β) = 4

7 so β = arcsin
(

4
7

)
radians and we

have β ≈ 34.85◦.

A few remarks about Example 11.2.1 are in order. First, we adhere to the convention that a lower
case Greek letter denotes an angle1 and the corresponding lowercase English letter represents the
side2 opposite that angle. Thus, a is the side opposite α, b is the side opposite β and c is the side
opposite γ. Taken together, the pairs (α, a), (β, b) and (γ, c) are called angle-side opposite pairs.
Second, as mentioned earlier, we will strive to solve for quantities using the original data given in
the problem whenever possible. While this is not always the easiest or fastest way to proceed, it

1as well as the measure of said angle
2as well as the length of said side
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minimizes the chances of propagated error.3 Third, since many of the applications which require
solving triangles ‘in the wild’ rely on degree measure, we shall adopt this convention for the time
being.4 The Pythagorean Theorem along with Theorems 10.4 and 10.10 allow us to easily handle
any given right triangle problem, but what if the triangle isn’t a right triangle? In certain cases,
we can use the Law of Sines to help.

Theorem 11.2. The Law of Sines: Given a triangle with angle-side opposite pairs (α, a), (β, b)
and (γ, c), the following ratios hold

sin(α)

a
=

sin(β)

b
=

sin(γ)

c

The proof of the Law of Sines can be broken into three cases. For our first case, consider the
triangle 4ABC below, all of whose angles are acute, with angle-side opposite pairs (α, a), (β, b)
and (γ, c). If we drop an altitude from vertex B, we divide the triangle into two right triangles:
4ABQ and 4BCQ. If we call the length of the altitude h (for height), we get from Theorem 10.4
that sin(α) = h

c and sin(γ) = h
a so that h = c sin(α) = a sin(γ). After some rearrangement of the

last equation, we get sin(α)
a = sin(γ)

c . If we drop an altitude from vertex A, we can proceed as above

using the triangles 4ABQ and 4ACQ to get sin(β)
b = sin(γ)

c , completing the proof for this case.

a

b

c

α

β

γ

A C

B

ac

α γ

A C

B

Q

h

b

c
β

γ

A C

B

Q

h′

For our next case consider the triangle 4ABC below with obtuse angle α. Extending an altitude
from vertex A gives two right triangles, as in the previous case: 4ABQ and 4ACQ. Proceeding
as before, we get h = b sin(γ) and h = c sin(β) so that sin(β)

b = sin(γ)
c .

a

b

c α

γ

β

A

B

C

a

b

c

γ

β

A

B

C

Q

h

Dropping an altitude from vertex B also generates two right triangles, 4ABQ and 4BCQ. We
know that sin(α′) = h′

c so that h′ = c sin(α′). Since α′ = 180◦ − α, sin(α′) = sin(α), so in fact,

we have h′ = c sin(α). Proceeding to 4BCQ, we get sin(γ) = h′

a so h′ = a sin(γ). Putting this

together with the previous equation, we get sin(γ)
c = sin(α)

a , and we are finished with this case.

3Your Science teachers should thank us for this.
4Don’t worry! Radians will be back before you know it!
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a

b

c

αα′ γ

β

A

B

CQ

h′

The remaining case is when 4ABC is a right triangle. In this case, the Law of Sines reduces to
the formulas given in Theorem 10.4 and is left to the reader. In order to use the Law of Sines to
solve a triangle, we need at least one angle-side opposite pair. The next example showcases some
of the power, and the pitfalls, of the Law of Sines.

Example 11.2.2. Solve the following triangles. Give exact answers and decimal approximations
(rounded to hundredths) and sketch the triangle.

1. α = 120◦, a = 7 units, β = 45◦

2. α = 85◦, β = 30◦, c = 5.25 units

3. α = 30◦, a = 1 units, c = 4 units

4. α = 30◦, a = 2 units, c = 4 units

5. α = 30◦, a = 3 units, c = 4 units

6. α = 30◦, a = 4 units, c = 4 units

Solution.

1. Knowing an angle-side opposite pair, namely α and a, we may proceed in using the Law of

Sines. Since β = 45◦, we get sin(45◦)
b = sin(120◦)

7 or b = 7 sin(45◦)
sin(120◦) = 7

√
6

3 ≈ 5.72 units. Now that
we have two angle-side pairs, it is time to find the third. To find γ, we use the fact that the
sum of the measures of the angles in a triangle is 180◦. Hence, γ = 180◦ − 120◦ − 45◦ = 15◦.
To find c, we have no choice but to used the derived value γ = 15◦, yet we can minimize the
propagation of error here by using the given angle-side opposite pair (α, a). The Law of Sines

gives us sin(15◦)
c = sin(120◦)

7 so that c = 7 sin(15◦)
sin(120◦) ≈ 2.09 units. We sketch this triangle below.

2. In this example, we are not immediately given an angle-side opposite pair, but as we have
the measures of α and β, we can solve for γ since γ = 180◦ − 85◦ − 30◦ = 65◦. As in the
previous example, we are forced to use a derived value in our computations since the only
angle-side pair available is (γ, c). The Law of Sines gives sin(85◦)

a = sin(65◦)
5.25 . After the usual

rearrangement, we get a = 5.25 sin(85◦)
sin(65◦) ≈ 5.77 units. To find b we use the angle-side pair (γ, c)

which yields sin(30◦)
b = sin(65◦)

5.25 hence b = 5.25 sin(30◦)
sin(65◦) ≈ 2.90 units.
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a = 7

b ≈ 5.72

c ≈ 2.09 α = 120◦
γ = 15◦

β = 45◦

a ≈ 5.77

b ≈ 2.90

c = 5.25

α = 85◦ γ = 65◦

β = 30◦

Triangle for number 1 Triangle for number 2

3. Since we are given (α, a) and c, we use the Law of Sines to find the measure of γ. We start

with sin(γ)
4 = sin(30◦)

1 and get sin(γ) = 4 sin (30◦) = 2. Since the range of the sine function is
[−1, 1], there is no real number with sin(γ) = 2. Geometrically, we see that side a is just too
short to make a triangle. The next three examples keep the same values for the measure of
α and the length of c while varying the length of a. We will discuss this case in more detail
after we see what happens in those cases.

4. In this case, we have the measure of α = 30◦, a = 2 and c = 4. Using the Law of Sines,
we get sin(γ)

4 = sin(30◦)
2 so sin(γ) = 2 sin (30◦) = 1. Now γ is an angle in a triangle which

also contains α = 30◦. This means that γ must measure between 0◦ and 150◦ in order
to fit inside the triangle with α. The only angle that satisfies this requirement and has
sin(γ) = 1 is γ = 90◦. In other words, we have a right triangle. We find the measure of β
to be β = 180◦ − 30◦ − 90◦ = 60◦ and then determine b using the Law of Sines. We find
b = 2 sin(60◦)

sin(30◦) = 2
√

3 ≈ 3.46 units. In this case, the side a is precisely long enough to form a
unique right triangle.

a = 1c = 4

α = 30◦

a = 2c = 4

b ≈ 3.46

α = 30◦

β = 60◦

Diagram for number 3 Triangle for number 4

5. Proceeding as we have in the previous two examples, we use the Law of Sines to find γ. In this
case, we have sin(γ)

4 = sin(30◦)
3 or sin(γ) = 4 sin(30◦)

3 = 2
3 . Since γ lies in a triangle with α = 30◦,

we must have that 0◦ < γ < 150◦. There are two angles γ that fall in this range and have
sin(γ) = 2

3 : γ = arcsin
(

2
3

)
radians ≈ 41.81◦ and γ = π − arcsin

(
2
3

)
radians ≈ 138.19◦. At

this point, we pause to see if it makes sense that we actually have two viable cases to consider.
As we have discussed, both candidates for γ are ‘compatible’ with the given angle-side pair
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(α, a) = (30◦, 3) in that both choices for γ can fit in a triangle with α and both have a sine of
2
3 . The only other given piece of information is that c = 4 units. Since c > a, it must be true
that γ, which is opposite c, has greater measure than α which is opposite a. In both cases,
γ > α, so both candidates for γ are compatible with this last piece of given information as
well. Thus have two triangles on our hands. In the case γ = arcsin

(
2
3

)
radians ≈ 41.81◦, we

find5 β ≈ 180◦− 30◦− 41.81◦ = 108.19◦. Using the Law of Sines with the angle-side opposite
pair (α, a) and β, we find b ≈ 3 sin(108.19◦)

sin(30◦) ≈ 5.70 units. In the case γ = π−arcsin
(

2
3

)
radians

≈ 138.19◦, we repeat the exact same steps and find β ≈ 11.81◦ and b ≈ 1.23 units.6 Both
triangles are drawn below.

a = 3c = 4

α = 30◦

β ≈ 108.19◦

γ ≈ 41.81◦

b ≈ 5.70

a = 3

c = 4

α = 30◦

β ≈ 11.81◦

γ ≈ 138.19◦

b ≈ 1.23

6. For this last problem, we repeat the usual Law of Sines routine to find that sin(γ)
4 = sin(30◦)

4 so
that sin(γ) = 1

2 . Since γ must inhabit a triangle with α = 30◦, we must have 0◦ < γ < 150◦.
Since the measure of γ must be strictly less than 150◦, there is just one angle which satisfies
both required conditions, namely γ = 30◦. So β = 180◦ − 30◦ − 30◦ = 120◦ and, using the
Law of Sines one last time, b = 4 sin(120◦)

sin(30◦) = 4
√

3 ≈ 6.93 units.

a = 4c = 4

α = 30◦

β = 120◦

γ = 30◦

b ≈ 6.93

Some remarks about Example 11.2.2 are in order. We first note that if we are given the measures
of two of the angles in a triangle, say α and β, the measure of the third angle γ is uniquely
determined using the equation γ = 180◦ − α − β. Knowing the measures of all three angles of a
triangle completely determines its shape. If in addition we are given the length of one of the sides

5To find an exact expression for β, we convert everything back to radians: α = 30◦ = π
6

radians, γ = arcsin
(

2
3

)
radians and 180◦ = π radians. Hence, β = π − π

6
− arcsin

(
2
3

)
= 5π

6
− arcsin

(
2
3

)
radians ≈ 108.19◦.

6An exact answer for β in this case is β = arcsin
(

2
3

)
− π

6
radians ≈ 11.81◦.
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of the triangle, we can then use the Law of Sines to find the lengths of the remaining two sides
to determine the size of the triangle. Such is the case in numbers 1 and 2 above. In number 1,
the given side is adjacent to just one of the angles – this is called the ‘Angle-Angle-Side’ (AAS)
case.7 In number 2, the given side is adjacent to both angles which means we are in the so-called
‘Angle-Side-Angle’ (ASA) case. If, on the other hand, we are given the measure of just one of the
angles in the triangle along with the length of two sides, only one of which is adjacent to the given
angle, we are in the ‘Angle-Side-Side’ (ASS) case.8 In number 3, the length of the one given side a
was too short to even form a triangle; in number 4, the length of a was just long enough to form a
right triangle; in 5, a was long enough, but not too long, so that two triangles were possible; and
in number 6, side a was long enough to form a triangle but too long to swing back and form two.
These four cases exemplify all of the possibilities in the Angle-Side-Side case which are summarized
in the following theorem.

Theorem 11.3. Suppose (α, a) and (γ, c) are intended to be angle-side pairs in a triangle where
α, a and c are given. Let h = c sin(α)

• If a < h, then no triangle exists which satisfies the given criteria.

• If a = h, then γ = 90◦ so exactly one (right) triangle exists which satisfies the criteria.

• If h < a < c, then two distinct triangles exist which satisfy the given criteria.

• If a ≥ c, then γ is acute and exactly one triangle exists which satisfies the given criteria

Theorem 11.3 is proved on a case-by-case basis. If a < h, then a < c sin(α). If a triangle were

to exist, the Law of Sines would have sin(γ)
c = sin(α)

a so that sin(γ) = c sin(α)
a > a

a = 1, which is
impossible. In the figure below, we see geometrically why this is the case.

c

α

a

h = c sin(α)

c

α

a = h = c sin(α)

a < h, no triangle a = h, γ = 90◦

Simply put, if a < h the side a is too short to connect to form a triangle. This means if a ≥ h,
we are always guaranteed to have at least one triangle, and the remaining parts of the theorem
tell us what kind and how many triangles to expect in each case. If a = h, then a = c sin(α) and

7If this sounds familiar, it should. From high school Geometry, we know there are four congruence conditions for
triangles: Angle-Angle-Side (AAS), Angle-Side-Angle (ASA), Side-Angle-Side (SAS) and Side-Side-Side (SSS). If we
are given information about a triangle that meets one of these four criteria, then we are guaranteed that exactly one
triangle exists which satisfies the given criteria.

8In more reputable books, this is called the ‘Side-Side-Angle’ or SSA case.
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the Law of Sines gives sin(α)
a = sin(γ)

c so that sin(γ) = c sin(α)
a = a

a = 1. Here, γ = 90◦ as required.

Moving along, now suppose h < a < c. As before, the Law of Sines9 gives sin(γ) = c sin(α)
a . Since

h < a, c sin(α) < a or c sin(α)
a < 1 which means there are two solutions to sin(γ) = c sin(α)

a : an
acute angle which we’ll call γ0, and its supplement, 180◦ − γ0. We need to argue that each of
these angles ‘fit’ into a triangle with α. Since (α, a) and (γ0, c) are angle-side opposite pairs, the
assumption c > a in this case gives us γ0 > α. Since γ0 is acute, we must have that α is acute as
well. This means one triangle can contain both α and γ0, giving us one of the triangles promised in
the theorem. If we manipulate the inequality γ0 > α a bit, we have 180◦−γ0 < 180◦−α which gives
(180◦ − γ0) + α < 180◦. This proves a triangle can contain both of the angles α and (180◦ − γ0),
giving us the second triangle predicted in the theorem. To prove the last case in the theorem, we
assume a ≥ c. Then α ≥ γ, which forces γ to be an acute angle. Hence, we get only one triangle
in this case, completing the proof.

aac

h

α γ0γ0

h
ac

α γ

h < a < c, two triangles a ≥ c, one triangle

One last comment before we use the Law of Sines to solve an application problem. In the Angle-
Side-Side case, if you are given an obtuse angle to begin with then it is impossible to have the two
triangle case. Think about this before reading further.

Example 11.2.3. Sasquatch Island lies off the coast of Ippizuti Lake. Two sightings, taken 5 miles
apart, are made to the island. The angle between the shore and the island at the first observation
point is 30◦ and at the second point the angle is 45◦. Assuming a straight coastline, find the
distance from the second observation point to the island. What point on the shore is closest to the
island? How far is the island from this point?

Solution. We sketch the problem below with the first observation point labeled as P and the
second as Q. In order to use the Law of Signs to find the distance d from Q to the island, we first
need to find the measure of β which is the angle opposite the side of length 5 miles. To that end,
we note that the angles γ and 45◦ are supplemental, so that γ = 180◦ − 45◦ = 135◦. We can now
find β = 180◦− 30◦− γ = 180◦− 30◦− 135◦ = 15◦. By the Law of Sines, we have sin(30◦)

d = sin(15◦)
5

which gives d = 5 sin(30◦)
sin(15◦) ≈ 9.66 miles. Next, to find the point on the coast closest to the island,

which we’ve labeled as C, we need to find the perpendicular distance from the island to the coast.10

9Remember, we have already argued that a triangle exists in this case!
10Do you see why C must lie to the right of Q?



768 Applications of Trigonometry

Let x denote the distance from the second observation point Q to the point C and let y denote the
distance from C to the island. Using Theorem 10.4, we get sin (45◦) = y

d . After some rearranging,

we find y = d sin (45◦) ≈ 9.66
(√

2
2

)
≈ 6.83 miles. Hence, the island is approximately 6.83 miles

from the coast. To find the distance from Q to C, we note that β = 180◦ − 90◦ − 45◦ = 45◦ so
by symmetry,11 we get x = y ≈ 6.83 miles. Hence, the point on the shore closest to the island is
approximately 6.83 miles down the coast from the second observation point.

45◦30◦
γ

β

P Q

5 miles

d ≈ 9.66 miles

Shoreline

Sasquatch Island

45◦

β

d ≈ 9.66 miles

x miles

y miles

Q C

Sasquatch Island

We close this section with a new formula to compute the area enclosed by a triangle. Its proof uses
the same cases and diagrams as the proof of the Law of Sines and is left as an exercise.

Theorem 11.4. Suppose (α, a), (β, b) and (γ, c) are the angle-side opposite pairs of a triangle.
Then the area A enclosed by the triangle is given by

A =
1

2
bc sin(α) =

1

2
ac sin(β) =

1

2
ab sin(γ)

Example 11.2.4. Find the area of the triangle in Example 11.2.2 number 1.

Solution. From our work in Example 11.2.2 number 1, we have all three angles and all three sides
to work with. However, to minimize propagated error, we choose A = 1

2ac sin(β) from Theorem
11.4 because it uses the most pieces of given information. We are given a = 7 and β = 45◦, and we

calculated c = 7 sin(15◦)
sin(120◦) . Using these values, we find A = 1

2(7)
(

7 sin(15◦)
sin(120◦)

)
sin (45◦) =≈ 5.18 square

units. The reader is encouraged to check this answer against the results obtained using the other
formulas in Theorem 11.4.

11Or by Theorem 10.4 again . . .
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11.2.1 Exercises

1. Solve for the remaining side(s) and angle(s) if possible.

(a) α = 13◦, β = 17◦, a = 5

(b) α = 73.2◦, β = 54.1◦, a = 117

(c) α = 95◦, β = 85◦, a = 33.33

(d) α = 95◦, β = 62◦, a = 33.33

(e) α = 117◦, a = 35, b = 42

(f) α = 117◦, a = 45, b = 42

(g) α = 68.7◦, a = 88, b = 92

(h) α = 68.7◦, a = 70, b = 90

(i) α = 30◦, a = 7, b = 14

(j) α = 42◦, a = 17, b = 23.5

(k) α = 42◦, a = 39, b = 23.5

(l) α = 6◦, a = 57, b = 100

(m) γ = 53◦, α = 53◦, c = 28.01

(n) β = 102◦, b = 16.75, c = 13

(o) β = 102◦, b = 16.75, c = 18

(p) β = 102◦, γ = 35◦, b = 16.75

(q) γ = 74.6◦, c = 3, a = 3.05

(r) β = 29.13◦, γ = 83.95◦, b = 314.15

(s) γ = 120◦, β = 61◦, c = 4

(t) α = 50◦, a = 25, b = 12.5

2. (Another Classic Story Problem: Bearings) In this series of exercises we introduce and work
with the navigation tool known as bearings. Simply put, a bearing is the direction you are
heading according to a compass. The classic nomenclature for bearings, however, is not given
as an angle in standard position, so we must first understand the notation. A bearing is
given as an acute angle of rotation (to the east or to the west) away from the north-south
(up and down) line of a compass rose. For example, N40◦E (read “40◦ east of north”) is a
bearing which is rotated clockwise 40◦ from due north. If we imagine standing at the origin in
the Cartesian Plane, this bearing would have us heading into Quadrant I along the terminal
side of θ = 50◦. Similarly, S15◦W would point into Quadrant III along the terminal side of
θ = 255◦ because we started out pointing due south (along θ = 270◦) and rotated clockwise
15◦ back to 255◦. Counter-clockwise rotations would be found in the bearings N60◦W (which
is on the terminal side of θ = 150◦) and S27◦E (which lies along the terminal side of θ = 297◦).
These four bearings are drawn in the plane below.

N

E

S

W

N40◦E

40◦
N60◦W

60◦

S15◦W

15◦

S27◦E

27◦
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The cardinal directions north, south, east and west are usually not given as bearings in the
fashion described above, but rather, one just refers to them as ‘due north’, ‘due south’, ‘due
east’ and ‘due west’, respectively, and it is assumed that you know which quadrantal angle
goes with each cardinal direction. (Hint: Look at the diagram above.)

(a) Find the angle θ in standard position with 0◦ ≤ θ < 360◦ which corresponds to each of
the bearings given below.

i. due west

ii. S83◦E

iii. N5.5◦E

iv. due south

v. N31.25◦W

vi. S72◦41′12′′W12

vii. N45◦E

viii. S45◦W

(b) A hiker starts walking due west from Sasquatch Point and gets to the Chupacabra
Trailhead before she realizes that she hasn’t reset her pedometer. From the Chupacabra
Trailhead she hikes for 5 miles along a bearing of N53◦W which brings her to the Muffin
Ridge Observatory. From there, she knows a bearing of S65◦E will take her straight
back to Sasquatch Point. How far will she have to walk to get from the Muffin Ridge
Observatory to Sasquach Point? What is the distance between Sasquatch Point and the
Chupacabra Trailhead?

3. The grade of a road is much like the pitch of a roof (See Example 10.6.6) in that it expresses
the ratio of rise/run. In the case of a road, this ratio is always positive because it is measured
going uphill and it is usually given as a percentage. For example, a road which rises 7 feet for
every 100 feet of (horizontal) forward progress is said to have a 7% grade. However, if we want
to apply any Trigonometry to a story problem involving roads going uphill or downhill, we
need to view the grade as an angle with respect to the horizontal. In the exercises below, we
first have you change road grades into angles and then use the Law of Sines in an application.

(a) Using a right triangle with a horizontal leg of length 100 and vertical leg with length 7,
show that a 7% grade means that the road (hypotenuse) makes about a 4◦ angle with
the horizontal. (It will not be exactly 4◦, but it’s pretty close.)

(b) What grade is given by a 9.65◦ angle made by the road and the horizontal?13

(c) Along a long, straight stretch of mountain road with a 7% grade, you see a tall tree
standing perfectly plumb alongside the road.14 From a point 500 feet downhill from the
tree, the angle of inclination from the road to the top of the tree is 6◦. Use the Law of
Sines to find the height of the tree. (Hint: First show that the tree makes a 94◦ angle
with the road.)

4. Prove that the Law of Sines holds when 4ABC is a right triangle.

12See Example 10.1.1 in Section 10.1 for a review of the DMS system.
13I have friends who live in Pacifica, CA and their road is actually this steep. It’s not a nice road to drive.
14The word ‘plumb’ here means that the tree is perpendicular to the horizontal.
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5. Discuss with your classmates why the Law of Sines cannot be used to find the angles in the
triangle when only the three sides are given. Also discuss what happens if only two sides and
the angle between them are given. (Said another way, explain why the Law of Sines cannot
be used in the SSS and SAS cases.)

6. Discuss with your classmates why knowing only the three angles of a triangle is not enough
to determine any of the sides.

7. Given α = 30◦ and b = 10, choose four different values for a so that

(a) the information yields no triangle

(b) the information yields exactly one right triangle

(c) the information yields two distinct triangles

(d) the information yields exactly one obtuse triangle

Explain why you cannot choose a in such a way as to have α = 30◦, b = 10 and your choice
of a yield only one triangle where that unique triangle has three acute angles.

8. Use the cases and diagrams in the proof of the Law of Sines (Theorem 11.2) to prove the
area formulas given in Theorem 11.4. Why do those formulas yield square units when four
quantities are being multiplied together?

9. Find the area of the triangles given in Exercises 1a, 1m and 1t above.
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11.2.2 Answers

1. (a)
α = 13◦ β = 17◦ γ = 150◦

a = 5 b ≈ 6.50 c ≈ 11.11

(b)
α = 73.2◦ β = 54.1◦ γ = 52.7◦

a = 117 b ≈ 99.00 c ≈ 97.22

(c)
Information does not
produce a triangle

(d)
α = 95◦ β = 62◦ γ = 23◦

a = 33.33 b ≈ 29.54 c ≈ 13.07

(e)
Information does not
produce a triangle

(f)
α = 117◦ β ≈ 56.3◦ γ ≈ 6.7◦

a = 45 b = 42 c ≈ 5.89

(g)
α = 68.7◦ β ≈ 76.9◦ γ ≈ 34.4◦

a = 88 b = 92 c ≈ 53.36

α = 68.7◦ β ≈ 103.1◦ γ ≈ 8.2◦

a = 88 b = 92 c ≈ 13.47

(h)
Information does not
produce a triangle

(i)
α = 30◦ β = 90◦ γ = 60◦

a = 7 b = 14 c = 7
√

3

(j)
α = 42◦ β ≈ 67.66◦ γ ≈ 70.34◦

a = 17 b = 23.5 c ≈ 23.93

α = 42◦ β ≈ 112.34◦ γ ≈ 25.66◦

a = 17 b = 23.5 c ≈ 11.00

(k)
α = 42◦ β ≈ 23.78◦ γ ≈ 114.22◦

a = 39 b = 23.5 c ≈ 53.15

(l)
α = 6◦ β ≈ 169.43◦ γ ≈ 4.57◦

a = 57 b = 100 c ≈ 43.45

α = 6◦ β ≈ 10.57◦ γ ≈ 163.43◦

a = 57 b = 100 c ≈ 155.51

(m)
α = 53◦ β = 74◦ γ = 53◦

a = 28.01 b ≈ 33.71 c = 28.01

(n)
α ≈ 28.61◦ β = 102◦ γ ≈ 49.39◦

a ≈ 8.20 b = 16.75 c = 13

(o)
Information does not
produce a triangle

(p)
α = 43◦ β = 102◦ γ = 35◦

a ≈ 11.68 b = 16.75 c ≈ 9.82

(q)
α ≈ 78.59◦ β ≈ 26.81◦ γ = 74.6◦

a = 3.05 b ≈ 1.40 c = 3

α ≈ 101.41◦ β ≈ 3.99◦ γ = 74.6◦

a = 3.05 b ≈ 0.217 c = 3

(r)
α = 66.92◦ β = 29.13◦ γ = 83.95◦

a ≈ 593.69 b = 314.15 c ≈ 641.75

(s)
Information does not
produce a triangle

(t)
α = 50◦ β ≈ 22.52◦ γ ≈ 107.48◦

a = 25 b = 12.5 c ≈ 31.13

2. (a) i. θ = 180◦

ii. θ = 353◦
iii. θ = 84.5◦

iv. θ = 270◦
v. θ = 121.25◦

vi. θ = 197◦18′48′′
vii. θ = 45◦

viii. θ = 225◦

(b) The distance from the Muffin Ridge Observatory to Sasquach Point is about 7.12 miles.
The distance from Sasquatch Point to the Chupacabra Trailhead is about 2.46 miles.

3. (a) arctan
(

7
100

)
≈ 4.004◦ (b) Approx. 17% (c) Approx. 53 feet

9. The area of the triangle from Exercise 1a is about 8.1 square units.
The area of the triangle from Exercise 1m is about 377.1 square units.
The area of the triangle from Exercise 1t is 149 square units.
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11.3 The Law of Cosines

In Section 11.2, we developed the Law of Sines (Theorem 11.2) to enable us to solve triangles in
the ‘Angle-Angle-Side’ (AAS), the ‘Angle-Side-Angle’ (ASA) and the ambiguous ‘Angle-Side-Side’
(ASS) cases. In this section, we develop the Law of Cosines which readily handles solving triangles
in the ‘Side-Angle-Side’ (SAS) and ‘Side-Side-Side’ cases.1 We state and prove the theorem below.

Theorem 11.5. Law of Cosines: Given a triangle with angle-side opposite pairs (α, a), (β, b)
and (γ, c), the following equations hold

a2 = b2 + c2 − 2bc cos(α) b2 = a2 + c2 − 2ac cos(β) c2 = a2 + b2 − 2ab cos(γ)

To prove the theorem, we consider a generic triangle with the vertex of angle α at the origin with
side b positioned along the positive x-axis.

a

b

c

α

A = (0, 0) C = (b, 0)

B = (c cos(α), c sin(α))

From this set-up, we immediately find that the coordinates of A and C are A(0, 0) and C(b, 0).
From Theorem 10.3, we know that since the point B(x, y) lies on a circle of radius c, the coordinates
of B are B(x, y) = B(c cos(α), c sin(α)). (This would be true even if α were an obtuse or right angle
so although we have drawn the case when α is acute, the following computations hold for any angle
α drawn in standard position where 0 < α < 180◦.) We note that the distance between the points
B and C is none other than the length of side a. Using the distance formula, Equation 1.1, we get

1Here, ‘Side-Angle-Side’ means that we are given two sides and the ‘included’ angle - that is, the given angle is
adjacent to both of the given sides.
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a =
√

(c cos(α)− b)2 + (c sin(α)− 0)2

a2 =
(√

(c cos(α)− b)2 + c2 sin2(α)
)2

a2 = (c cos(α)− b)2 + c2 sin2(α)

a2 = c2 cos2(α)− 2bc cos(α) + b2 + c2 sin2(α)

a2 = c2
(
cos2(α) + sin2(α)

)
+ b2 − 2bc cos(α)

a2 = c2(1) + b2 − 2bc cos(α) Since cos2(α) + sin2(α) = 1

a2 = c2 + b2 − 2bc cos(α)

The remaining formulas given in Theorem 11.5 can be shown by simply reorienting the triangle
to place a different vertex at the origin. We leave these details to the reader. What’s important
about a and α in the above proof is that (α, a) is an angle-side opposite pair and b and c are the
sides adjacent to α – the same can be said of any other angle-side opposite pair in the triangle.
Notice that the proof of the Law of Cosines relies on the distance formula which has its roots in the
Pythagorean Theorem. That being said, the Law of Cosines can be thought of as a generalization
of the Pythagorean Theorem. If we have a triangle in which γ = 90◦, then cos(γ) = cos (90◦) = 0
so we get the familiar relationship c2 = a2 +b2. What this means is that in the larger mathematical
sense, the Law of Cosines and the Pythagorean Theorem amount to pretty much the same thing.2

Example 11.3.1. Solve the following triangles. Give exact answers and decimal approximations
(rounded to hundredths) and sketch the triangle.

1. β = 50◦, a = 7 units, c = 2 units 2. a = 4 units, b = 7 units, c = 5 units

Solution.

1. We are given the lengths of two sides, a = 7 and c = 2, and the measure of the included
angle, β = 50◦, so the Law of Cosines applies.3 We get b2 = 72 + 22 − 2(7)(2) cos (50◦)
which yields b =

√
53− 28 cos (50◦) ≈ 5.92 units. In order to determine the measures of

the remaining angles α and γ, we are forced to used the derived value for b. There are two
ways to proceed at this point. We could use the Law of Cosines again, or, since we have the
angle-side opposite pair (β, b) we could use the Law of Sines. We will discuss both strategies
in turn. In either case, we follow the rule of thumb ‘Find the larger angle first.’4 Since a > c,
this means α > γ, so we set about finding α first. If we choose the Law of Cosines route, it
is helpful to rearrange the formulas given in Theorem 11.5. Solving a2 = b2 + c2 − 2bc cos(α)

for cos(α) we get cos(α) = b2+c2−a2

2bc . Plugging in a = 7, b =
√

53− 28 cos (50◦) and c = 2, we

get cos(α) = 2−7 cos(50◦)√
53−28 cos(50◦)

. Since α is an angle in a triangle, we know the radian measure

of α must lie between 0 and π radians. This matches the range of the arccosine function, so

2This shouldn’t come as too much of a shock. All of the theorems in Trigonometry can ultimately be traced back
to the definition of the circular functions along with the distance formula and hence, the Pythagorean Theorem.

3There is no way to obtain an angle-side opposite pair, so the Law of Sines cannot be used at this point.
4If you go the Law of Sines route, this can help avoid needless ambiguity.
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we have α = arccos

(
2−7 cos(50◦)√
53−28 cos(50◦)

)
radians ≈ 114.99◦. At this point, we could trust our

approximation for α and find γ using γ = 180◦ − α − β ≈ 180◦ − 114.99◦ − 50◦ = 15.01◦. If
we want to minimize propagation of error, however, we could run through the Law of Cosines
again,5 in this case using cos(γ) = a2+b2−c2

2ab . Plugging in a = 7, b =
√

53− 28 cos (50◦) and

c = 2, we get γ = arccos

(
7−2 cos(50◦)√
53−28 cos(50◦)

)
radians ≈ 15.01◦. We sketch the triangle below.

a = 7

b ≈ 5.92

c = 2 α ≈ 114.99◦
γ ≈ 15.01◦

β = 50◦

Now suppose instead of using the Law of Cosines to determine α, we use the Law of Sines.
Once b is determined, we have the angle-side opposite pair (β, b). Along with a, which is
given, we find ourselves in the dreaded Angle-Side-Side (ASS) case. The Law of Sines gives

us sin(α)
a = sin(β)

b , or sin(α) = a sin(β)
b . Plugging in a = 7, β = 50◦ and b =

√
53− 28 cos (50◦),

we get sin(α) = 7 sin(50◦)√
53−28 cos(50◦)

. The usual calculations yield the possibilities α ≈ 65.01◦ or

α ≈ 180◦ − 65.01◦ = 114.99◦. Both of these values for α are consistent with the angle-side
pair (β, b) in that there is more than enough room for either of these choices of α to reside
in a triangle with β = 50◦, and both of these choices of α are greater than β, which agrees
with the observation that a > b. However, if α ≈ 65.01◦ then it follows that γ ≈ 64.99◦

which means α ≈ γ. This doesn’t make sense since a (the side opposite α) has length 7 units
while c (the side opposite γ) has length 2 units. Hence, we are lead to the conclusion that
α ≈ 114.99◦ and we find via the usual calculations that γ ≈ 15.01◦.6

2. Here, we are given the lengths of all three sides.7 Since the largest side given is b = 7 units, we
go after angle β first. Rearranging b2 = a+2+c2−2ac cos(β), we find cos(β) = a2+c2−b2

2ac = −1
5 ,

so we get β = arccos
(
−1

5

)
radians ≈ 101.54◦. Proceeding similarly for the remaining two

angles, we find γ = arccos
(

5
7

)
radians ≈ 44.42◦ and α = arccos

(
29
35

)
radians ≈ 34.05◦.

a = 4c = 5

α ≈ 34.05◦

β ≈ 101.54◦

γ ≈ 44.42◦

b = 7
5Your instructor will let you know which procedure to use. It all boils down to how much you trust your calculator.
6Carl thinks it’s easier to just use Law of Cosines as often as needed. Why wrestle with the ambiguous Angle-

Side-Side (ASS) case if you can avoid it?
7Again, you have no angle-side opposite pairs so you cannot use the Law of Sines.
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We note that, depending on how many decimal places are carried through successive calculations,
and depending on which approach is used to solve the problem, the approximate answers you
obtain may differ slightly from those the authors obtain in the Examples and the Exercises. A
great example of this is number 2 in Example 11.3.1, where the approximate values we record for
the measures of the angles sum to 180.01◦, which is geometrically impossible. Next, we have an
application of the Law of Cosines.

Example 11.3.2. A researcher wishes to determine the width of a vernal pond below. From a point
P , he finds the distance to the eastern-most point of the pond to be 950 feet, while the distance to
the western-most point of the pond from P is 1000 feet. If the angle between the two lines of sight
is 60◦, find the width of the pond.

950 feet

1000 feet

60◦

P

Solution. We are given the lengths of two sides and the measure of an included angle, so we may
apply the Law of Cosines to find the length of the missing side opposite the given angle. Calling
this length w (for width), we get w2 = 9502 + 10002 − 2(950)(1000) cos (60◦) = 952500 from which
we get w =

√
952500 ≈ 976 feet.

In Section 11.2, we used the proof of the Law of Sines to develop Theorem 11.4 as an alternate
formula for the area enclosed by a triangle. In this section, we use the Law of Cosines to prove
Heron’s Formula – a formula which computes the area enclosed by a triangle using only the lengths
of its sides.

Theorem 11.6. Heron’s Formula: Suppose a, b and c denote the lengths of the three sides of
a triangle. Let s be the semiperimeter of the triangle, that is, let s = 1

2(a+ b+ c). Then the area
A enclosed by the triangle is given by

A =
√
s(s− a)(s− b)(s− c)

We begin proving Theorem 11.6 using Theorem 11.4. Using the convention that the angle γ is
opposite the side c, we have A = 1

2ab sin(γ) from Theorem 11.4. In order to simplify computations,
we start manipulating the expression for A2.
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A2 =

(
1

2
ab sin(γ)

)2

=
1

4
a2b2 sin2(γ)

=
a2b2

4

(
1− cos2(γ)

)
since sin2(γ) = 1− cos2(γ).

Using the Law of Cosines, we have cos(γ) = a2+b2−c2
2ab . Substituting yields

A2 =
a2b2

4

(
1− cos2(γ)

)
=

a2b2

4

[
1−

(
a2 + b2 − c2

2ab

)2
]

=
a2b2

4

[
1−

(
a2 + b2 − c2

)2
4a2b2

]

=
a2b2

4

[
4a2b2 −

(
a2 + b2 − c2

)2
4a2b2

]

=
4a2b2 −

(
a2 + b2 − c2

)2
16

=
(2ab)2 −

(
a2 + b2 − c2

)2
16

=

(
2ab−

[
a2 + b2 − c2

]) (
2ab+

[
a2 + b2 − c2

])
16

difference of squares.

=

(
c2 − a2 + 2ab− b2

) (
a2 + 2ab+ b2 − c2

)
16

=

(
c2 −

[
a2 − 2ab+ b2

]) ([
a2 + 2ab+ b2

]
− c2

)
16

=

(
c2 − (a− b)2

) (
(a+ b)2 − c2

)
16

perfect square trinomials.

=
(c− (a− b))(c+ (a− b))((a+ b)− c)((a+ b) + c)

16
difference of squares.

=
(b+ c− a)(a+ c− b)(a+ b− c)(a+ b+ c)

16

=
(b+ c− a)

2
· (a+ c− b)

2
· (a+ b− c)

2
· (a+ b+ c)

2

At this stage, we recognize the last factor as the semiperimeter, s = 1
2(a + b + c) = a+b+c

2 . To
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complete the proof, we note that

(s− a) =
a+ b+ c

2
− a

=
a+ b+ c− 2a

2

=
b+ c− a

2

Similarly, we find (s− b) = a+c−b
2 and (s− c) = a+b−c

2 . Hence, we get

A2 =
(b+ c− a)

2
· (a+ c− b)

2
· (a+ b− c)

2
· (a+ b+ c)

2

= (s− a)(s− b)(s− c)s

so that A =
√
s(s− a)(s− b)(s− c) as required.

Example 11.3.3. Find the area enclosed of the triangle in Example 11.3.1 number 2.

Solution. We are given a = 4, b = 7 and c = 5. Using these values, we find s = 1
2(4 + 7 + 5) = 8,

(s − a) = 8 − 4 = 4, (s − b) = 8 − 7 = 1 and (s − c) = 8 − 5 = 3. Using Heron’s Formula, we get
A =

√
s(s− a)(s− b)(s− c) =

√
(8)(4)(1)(3) =

√
96 = 4

√
6 ≈ 9.80 square units.
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11.3.1 Exercises

1. Use the Law of Cosines to find the remaining side(s) and angle(s) if possible.

(a) a = 7, b = 12, γ = 59.3◦

(b) α = 104◦, b = 25, c = 37

(c) a = 153, β = 8.2◦, c = 153

(d) a = 3, b = 4, γ = 90◦

(e) α = 120◦, b = 3, c = 4

(f) a = 7, b = 10, c = 13

(g) a = 1, b = 2, c = 5

(h) a = 300, b = 302, c = 48

(i) a = 5, b = 5, c = 5

(j) a = 5, b = 12, ; c = 13

2. Solve for the remaining side(s) and angle(s), if possible, using any appropriate technique.

(a) a = 18, α = 63◦, b = 20

(b) a = 37, b = 45, c = 26

(c) a = 16, α = 63◦, b = 20

(d) a = 22, α = 63◦, b = 20

(e) α = 42◦, b = 117, c = 88

(f) β = 7◦, γ = 170◦, c = 98.6

3. Find the area of the triangles given in Exercises 1f, 1h and 1j above.

4. The hour hand on my antique Seth Thomas schoolhouse clock in 4 inches long and the minute
hand is 5.5 inches long. Find the distance between the ends of the hands when the clock reads
four o’clock.

5. From the Pedimaxus International Airport a tour helicopter can fly to Cliffs of Insanity Point
by following a bearing of N8.2◦E for 192 miles and it can fly to Bigfoot Falls by following
a bearing of S68.5◦E for 207 miles.8 Find the distance between Cliffs of Insanity Point and
Bigfoot Falls.

6. Cliffs of Insanity Point and Bigfoot Falls from Exericse 5 above both lie on a straight stretch
of the Great Sasquatch Canyon. What bearing would the tour helicopter need to follow to
go directly from Bigfoot Falls to Cliffs of Insanity Point?

7. From a point 300 feet above level ground in a firetower, a ranger spots two fires in the Yeti
National Forest. The angle of depression9 made by the line of sight from the ranger to the
first fire is 2.5◦ and the angle of depression made by line of sight from the ranger to the second
fire is 1.3◦. The angle formed by the two lines of sight is 117◦. Find the distance between the
two fires. (Hint: In order to use the 117◦ angle between the lines of sight, you will first need
to use right angle Trigonometry to find the lengths of the lines of sight. This will give you a
Side-Angle-Side case in which to apply the Law of Cosines.)

8Please refer to Exercise 2 in Section 11.2 for an introduction to bearings.
9See Exercise 8 in Section 10.3 for the definition of this angle.
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8. If you apply the Law of Cosines to the ambiguous Angle-Side-Side (ASS) case, the result
is a quadratic equation whose variable is that of the missing side. If the equation has no
positive real zeros then the information given does not yield a triangle. If the equation has
only one positive real zero then exactly one triangle is formed and if the equation has two
distinct positive real zeros then two distinct triangles are formed. Apply the Law of Cosines
to exercises 2a, 2c and 2d above in order to demonstrate this result.

9. Discuss with your classmates why Heron’s Formula yields an area in square units even though
four lengths are being multiplied together.
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11.3.2 Answers

1. (a)
α ≈ 35.54◦ β ≈ 85.16◦ γ = 59.3◦

a = 7 b = 12 c ≈ 10.36

(b)
α = 104◦ β ≈ 29.40◦ γ ≈ 46.60◦

a ≈ 49.41 b = 25 c = 37

(c)
α ≈ 85.90◦ β = 8.2◦ γ ≈ 85.90◦

a = 153 b ≈ 21.88 c = 153

(d)
α ≈ 36.87◦ β ≈ 53.13◦ γ = 90◦

a = 3 b = 4 c = 5

(e)
α = 120◦ β ≈ 25.28◦ γ ≈ 34.72◦

a =
√

37 b = 3 c = 4

(f)
α ≈ 32.31◦ β ≈ 49.58◦ γ ≈ 98.21◦

a = 7 b = 10 c = 13

(g)
Information does not
produce a triangle

(h)
α ≈ 83.05◦ β ≈ 87.81◦ γ ≈ 9.14◦

a = 300 b = 302 c = 48

(i)
α = 60◦ β = 60◦ γ = 60◦

a = 5 b = 5 c = 5

(j)
α ≈ 22.62◦ β ≈ 67.38◦ γ = 90◦

a = 5 b = 12 c = 13

2. (a)
α = 63◦ β ≈ 98.11◦ γ ≈ 18.89◦

a = 18 b = 20 c ≈ 6.54

α = 63◦ β ≈ 81.89◦ γ ≈ 35.11◦

a = 18 b = 20 c ≈ 11.62

(b)
α ≈ 55.30◦ β ≈ 89.40◦ γ ≈ 35.30◦

a = 37 b = 45 c = 26

(c)
Information does not
produce a triangle

(d)
α = 63◦ β ≈ 54.1◦ γ ≈ 62.9◦

a = 22 b = 20 c ≈ 21.98

(e)
α = 42◦ β ≈ 89.23◦ γ ≈ 48.77◦

a ≈ 78.30 b = 117 c = 88

(f)
α ≈ 3◦ β = 7◦ γ = 170◦

a ≈ 29.72 b ≈ 69.2 c = 98.6

3. The area of the triangle given in Exercise 1f is
√

1200 ≈ 34.64 square units.
The area of the triangle given in Exercise 1h is

√
51764375 ≈ 7194.75 square units.

The area of the triangle given in Exercise 1j is exactly 30 square units.

4. The distance between the ends of the hands at four o’clock is about 8.26 inches.

5. About 313 miles

6. N32.4◦W

7. The fires are about 17456 feet apart. (Try to avoid rounding errors.)
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11.4 Polar Coordinates

In Section 1.1, we introduced the Cartesian coordinates of a point in the plane as a means of
assigning ordered pairs of numbers to points in the plane. We defined the Cartesian coordinate
plane using two number lines – one horizontal and one vertical – which intersect at right angles at a
point we called the ‘origin’. To plot a point, say P (−4, 2), we start at the origin, travel horizontally
to the left 4 units, then up 2 units. Alternatively, we could start at the origin, travel up 2 units,
then to the left 4 units and arrive at the same location. For the most part, the ‘motions’ of the
Cartesian system (over and up) describe a rectangle, and most points be thought of as the corner
diagonally across the rectangle from the origin.1 For this reason, the Cartesian coordinates of a
point are often called ‘rectangular’ coordinates.

x

y

P (−4, 2)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

3

4

In this section, we introduce a new system for assigning coordinates to points in the plane – polar
coordinates. We start with a point, called the pole, and a ray called the polar axis.

Pole Polar Axis

Polar coordinates consist of a pair of numbers, (r, θ), where r represents a directed distance from
the pole2 and θ is a measure of rotation from the polar axis. If we wished to plot the point P with
polar coordinates

(
4, 5π

6

)
, we’d start at the pole, move out along the polar axis 4 units, then rotate

5π
6 radians counter-clockwise.

Pole

r = 4

Pole

θ = 5π
6

Pole

P
(
4, 5π

6

)

We may also visualize this process by thinking of the rotation first.3 To plot P
(
4, 5π

6

)
this way,

we rotate 5π
6 counter-clockwise from the polar axis, then move outwards from the pole 4 units.

Essentially we are locating a point on the terminal side of 5π
6 which is 4 units away from the pole.

1Excluding, of course, points with one or both coordinates 0.
2We will explain more about this momentarily.
3As with anything in Mathematics, the more ways you have to look at something, the better. The authors

encourage the reader to take time to think about both approaches to plotting points given in polar coordinates.
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Pole

θ = 5π
6

Pole

θ = 5π
6

Pole

P
(
4, 5π

6

)

If r < 0, we begin by moving in the opposite direction on the polar axis from the pole. For example,
to plot Q

(
−3.5, π4

)
we have

Pole

r = −3.5

Poleθ = π
4

Pole

Q
(
−3.5, π

4

)

If we interpret the angle first, we rotate π
4 radians, then move back through the pole 3.5 units.

Here we are locating a point 3.5 units away from the pole on the terminal side of 5π
4 , not π

4 .

Pole

θ = π
4

Pole

θ = π
4

Pole

Q
(
−3.5, π

4

)
As you may have guessed, θ < 0 means the rotation away from the polar axis is clockwise instead
of counter-clockwise. Hence, to plot R

(
3.5,−3π

4

)
Pole

r = 3.5

Pole

θ = − 3π
4

Pole

R
(
3.5,− 3π

4

)

From an ‘angles first’ approach, we rotate −3π
4 then move out 3.5 units from the pole. We see R is

the point on the terminal side of θ = −3π
4 which is 3.5 units from the pole.

Pole

θ = − 3π
4

Pole

θ = − 3π
4

Pole

R
(
3.5,− 3π

4

)
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The points Q and R above are, in fact, the same point despite the fact their polar coordinate
representations are different. Unlike Cartesian coordinates where (a, b) and (c, d) represent the
same point if and only if a = c and b = d, a point can be represented by infinitely many polar
coordinate pairs. We explore this notion more in the following example.

Example 11.4.1. For each point in polar coordinates given below plot the point and then give two
additional expressions for the point, one of which has r > 0 and the other with r < 0.

1. P (2, 240◦) 2. P
(
−4, 7π

6

)
3. P

(
117,−5π

2

)
4. P

(
−3,−π

4

)
Solution.

1. Whether we move 2 units along the polar axis and then rotate 240◦ or rotate 240◦ then move
out 2 units from the pole, we plot P (2, 240◦) below.

Pole

θ = 240◦

Pole

P (2, 240◦)

We now set about finding alternate descriptions (r, θ) for the point P . Since P is 2 units from
the pole, r = ±2. Next, we choose angles θ for each of the r values. The given representation
for P is (2, 240◦) so the angle θ we choose for the r = 2 case must be coterminal with 240◦.
(Can you see why?) One such angle is θ = −120◦ so one answer for this case is (2,−120◦). For
the case r = −2, we visualize our rotation starting 2 units to the left of the pole. From this
position, we need only to rotate θ = 60◦ to arrive at location coterminal with 240◦. Hence,
our answer here is (−2, 60◦). We check our answers by plotting them.

P (2,−120◦)

Pole

θ = −120◦

P (−2, 60◦)

Pole
θ = 60◦

2. We plot
(
−4, 7π

6

)
by first moving 4 units to the left of the pole and then rotating 7π

6 radians.
Since r = −4 < 0, we find our point lies 4 units from the pole on the terminal side of π

6 .

Pole

θ = 7π
6

Pole

P
(
−4, 7π

6

)
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To find alternate descriptions for P , we note that the distance from P to the pole is 4 units, so
any representation (r, θ) for P must have r = ±4. As we noted above, P lies on the terminal
side of π6 , so this, coupled with r = 4, gives us

(
4, π6

)
as one of our answers. To find a different

representation for P with r = −4, we may choose any angle coterminal with the angle in the
original representation of P

(
−4, 7π

6

)
. We pick −5π

6 and get
(
−4,−5π

6

)
as our second answer.

θ = π
6

P
(
4, π

6

)

Pole

θ = − 5π
6

P
(
−4,− 5π

6

)

Pole

3. To plot P
(
117,−5π

2

)
, we move along the polar axis 117 units from the pole and rotate

clockwise 5π
2 radians as illustrated below.

Pole

θ = − 5π
2

Pole

P
(
117,− 5π

2

)

Since P is 117 units from the pole, any representation (r, θ) for P satisfies r = ±117. For the
r = 117 case, we can take θ to be any angle coterminal with −5π

2 . In this case, we choose
θ = 3π

2 , and get
(
117, 3π

2

)
as one answer. For the r = −117 case, we visualize moving left 117

units from the pole and then rotating through an angle θ to reach P . We find θ = π
2 satisfies

this requirement, so our second answer is
(
−117, π2

)
.

Pole

θ = 3π
2

P
(
117, 3π

2

)

Pole

θ = π
2

P
(
−117, π

2

)
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4. We move three units to the left of the pole and follow up with a clockwise rotation of π
4

radians to plot P
(
−3,−π

4

)
. We see that P lies on the terminal side of 3π

4 .

Pole

θ = −π
4

Pole

P
(
−3,−π

4

)

Since P lies on the terminal side of 3π
4 , one alternative representation for P is

(
3, 3π

4

)
. To

find a different representation for P with r = −3, we may choose any angle coterminal with
−π

4 . We choose θ = 7π
4 for our final answer

(
−3, 7π

4

)
.

Pole

P
(
3, 3π

4

)
θ = 3π

4

Pole

P
(
−3, 7π

4

)
θ = 7π

4

Now that we have had some practice with plotting points in polar coordinates, it should come as
no surprise that any given point expressed in polar coordinates has infinitely many other represen-
tations in polar coordinates. The following result characterizes when two sets of polar coordinates
determine the same point in the plane. It could be considered as a definition or a theorem, depend-
ing on your point of view. We state it as a property of the polar coordinate system.

Equivalent Representations of Points in Polar Coordinates

Suppose (r, θ) and (r′, θ′) are polar coordinates where r 6= 0, r′ 6= 0 and the angles are measured
in radians. Then (r, θ) and (r′, θ′) determine the same point P if and only if one of the following
is true:

• r′ = r and θ′ = θ + 2πk for some integer k

• r′ = −r and θ′ = θ + (2k + 1)π for some integer k

All polar coordinates of the form (0, θ) represent the pole regardless of the value of θ.

The key to understanding this result, and indeed the whole polar coordinate system, is to keep in
mind that (r, θ) means (directed distance from pole, angle of rotation). If r = 0, then no matter
how much rotation is performed, the point never leaves the pole. Thus (0, θ) is the pole for all
values of θ. Now let’s assume that neither r nor r′ is zero. If (r, θ) and (r′, θ′) determine the same
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point P then the (non-zero) distance from P to the pole in each case must be the same. Since this
distance is controlled by the first coordinate, we have that either r′ = r or r′ = −r. If r′ = r, then
when plotting (r, θ) and (r′, θ′), the angles θ and θ′ have the same initial side. Hence, if (r, θ) and
(r′, θ′) determine the same point, we must have that θ′ is coterminal with θ. We know that this
means θ′ = θ + 2πk for some integer k, as required. If, on the other hand, r′ = −r, then when
plotting (r, θ) and (r′, θ′), the initial side of θ′ is rotated π radians away from the initial side of
θ. In this case, θ′ must be coterminal with π + θ. Hence, θ′ = π + θ + 2πk which we rewrite as
θ′ = θ+(2k+1)π for some integer k. Conversely, if r′ = r and θ′ = θ+2πk for some integer k, then
the points P (r, θ) and P ′ (r′, θ′) lie the same (directed) distance from the pole on the terminal sides
of coterminal angles, and hence are the same point. Now suppose r′ = −r and θ′ = θ + (2k + 1)π
for some integer k. To plot P , we first move a directed distance r from the pole; to plot P ′, our
first step is to move the same distance from the pole as P , but in the opposite direction. At this
intermediate stage, we have two points equidistant from the pole rotated exactly π radians apart.
Since θ′ = θ+ (2k+ 1)π = (θ + π) + 2πk for some integer k, we see that θ′ is coterminal to (θ + π)
and it is this extra π radians of rotation which aligns the points P and P ′.

Next, we marry the polar coordinate system with the Cartesian (rectangular) coordinate system.
To do so, we identify the pole and polar axis in the polar system to the origin and positive x-axis,
respectively, in the rectangular system. We get the following result.

Theorem 11.7. Conversion Between Rectangular and Polar Coordinates: Suppose P is
represented in rectangular coordinates as (x, y) and in polar coordinates as (r, θ). Then

• x = r cos(θ) and y = r sin(θ)

• x2 + y2 = r2 and tan(θ) =
y

x
(provided x 6= 0)

In the case r > 0, Theorem 11.7 is an immediate consequence of Theorem 10.3 along with the
quotient identity tan(θ) = sin(θ)

cos(θ) . If r < 0, then we know an alternate representation for (r, θ)

is (−r, θ + π). Since cos(θ + π) = − cos(θ) and sin(θ + π) = − sin(θ), applying the theorem to
(−r, θ + π) gives x = (−r) cos(θ + π) = (−r)(− cos(θ)) = r cos(θ) and y = (−r) sin(θ + π) =
(−r)(− sin(θ)) = r sin(θ). Moreover, x2 + y2 = (−r)2 = r2, and y

x = tan(θ + π) = tan(θ), so the
theorem is true in this case, too. The remaining case is r = 0, in which case (r, θ) = (0, θ) is the
pole. Since the pole is identified with the origin (0, 0) in rectangular coordinates, the theorem in
this case amounts to checking ‘0 = 0.’ The following example puts Theorem 11.7 to good use.

Example 11.4.2. Convert each point in rectangular coordinates given below into polar coordinates
with r ≥ 0 and 0 ≤ θ < 2π. Use exact values if possible and round any approximate values to two
decimal places. Check your answer by converting them back to rectangular coordinates.

1. P
(
2,−2

√
3
)

2. Q(−3,−3) 3. R(0,−3) 4. S(−3, 4)

Solution.

1. Even though we are not explicitly told to do so, we can avoid many common mistakes by taking
the time to plot the points before we do any calculations. Plotting P

(
2,−2

√
3
)

shows that



788 Applications of Trigonometry

it lies in Quadrant IV. With x = 2 and y = −2
√

3, we get r2 = x2 + y2 = (2)2 +
(
−2
√

3
)2

=
4 + 12 = 16 so r = ±4. Since we are asked for r ≥ 0, we choose r = 4. To find θ, we have

that tan(θ) = y
x = −2

√
3

2 = −
√

3. This tells us θ has a reference angle of π
3 , and since P

lies in Quadrant IV, we know θ is a Quadrant IV angle. We are asked to have 0 ≤ θ < 2π,
so we choose θ = 5π

3 . Hence, our answer is
(
4, 5π

3

)
. To check, we convert (r, θ) =

(
4, 5π

3

)
back to rectangular coordinates and we find x = r cos(θ) = 4 cos

(
5π
3

)
= 4

(
1
2

)
= 2 and

y = r sin(θ) = 4 sin
(

5π
3

)
= 4

(
−
√

3
2

)
= −2

√
3, as required.

2. The point Q(−3,−3) lies in Quadrant III. Using x = y = −3, we get r2 = (−3)2 +(−3)2 = 18
so r = ±

√
18 = ±3

√
2. Since we are asked for r ≥ 0, we choose r = 3

√
2. We find

tan(θ) = −3
−3 = 1, which means θ has a reference angle of π

4 . Since Q lies in Quadrant III,

we choose θ = 5π
4 , which satisfies the requirement that 0 ≤ θ < 2π. Our final answer is

(r, θ) =
(
3
√

2, 5π
4

)
. To check, we find x = r cos(θ) = (3

√
2) cos

(
5π
4

)
= (3

√
2)
(
−
√

2
2

)
= −3

and y = r sin(θ) = (3
√

2) sin
(

5π
4

)
= (3
√

2)
(
−
√

2
2

)
= −3, so we are done.

x

y

P

θ = 5π
3

x

y

Q

θ = 5π
4

P has rectangular coordinates (2,−2
√

3) Q has rectangular coordinates (−3,−3)

P has polar coordinates
(
4, 5π

3

)
Q has polar coordinates

(
3
√

2, 5π
4

)
3. The point R(0,−3) lies along the negative y-axis. While we could go through the usual

computations4 to find the polar form of R, in this case we can find the polar coordinates of R
using the definition. Since the pole is identified with the origin, we can easily tell the point R
is 3 units from the pole, which means in the polar representation (r, θ) of R we know r = ±3.
Since we require r ≥ 0, we choose r = 3. Concerning θ, the angle θ = 3π

2 satisfies 0 ≤ θ < 2π
with its terminal side along the negative y-axis, so our answer is

(
3, 3π

2

)
. To check, we note

x = r cos(θ) = 3 cos
(

3π
2

)
= (3)(0) = 0 and y = r sin(θ) = 3 sin

(
3π
2

)
= 3(−1) = −3.

4. The point S(−3, 4) lies in Quadrant II. With x = −3 and y = 4, we get r2 = (−3)2 +(4)2 = 25
so r = ±5. As usual, we choose r = 5 ≥ 0 and proceed to determine θ. We have tan(θ) =

4Since x = 0, we would have to determine θ geometrically.
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y
x = 4

−3 = −4
3 , and since this isn’t the tangent of one the common angles, we resort to using

the arctangent function. Using a reference angle approach,5 we find α = arctan
(

4
3

)
is the

reference angle for θ. Since θ lies in Quadrant II and must satisfy 0 ≤ θ < 2π, we choose
θ = π − arctan

(
4
3

)
radians. Hence, our answer is (r, θ) =

(
5, π − arctan

(
4
3

))
≈ (5, 2.21). To

check our answers requires a bit of tenacity since we need to simplify expressions of the form:
cos
(
π − arctan

(
4
3

))
and sin

(
π − arctan

(
4
3

))
. These are good review exercises and are hence

left to the reader. We find cos
(
π − arctan

(
4
3

))
= −3

5 and sin
(
π − arctan

(
4
3

))
= 4

5 , so that
x = r cos(θ) = (5)

(
−3

5

)
= −3 and y = r sin(θ) = (5)

(
4
5

)
= 4 which confirms our answer.

x

y

R

θ = 3π
2

x

y

S

θ = π − arctan
(

4
3

)

R has rectangular coordinates (0,−3) S has rectangular coordinates (−3, 4)
R has polar coordinates

(
3, 3π

2

)
S has polar coordinates

(
5, π − arctan

(
4
3

))
Now that we’ve had practice converting representations of points between the rectangular and polar
coordinate systems, we now set about converting equations from one system to another. Just as
we’ve used equations in x and y to represent relations in rectangular coordinates, equations in the
variables r and θ represent relations in polar coordinates. We convert equations between the two
systems using Theorem 11.7 as the next example illustrates.

Example 11.4.3.

1. Convert each equation in rectangular coordinates into an equation in polar coordinates.

(a) (x− 3)2 + y2 = 9 (b) y = −x (c) y = x2

2. Convert each equation in polar coordinates into an equation in rectangular coordinates.

(a) r = −3 (b) θ = 4π
3 (c) r = 1− cos(θ)

5See Example 10.6.5 in Section 10.6.3.
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Solution.

1. One strategy to convert an equation from rectangular to polar coordinates is to replace every
occurrence of x with r cos(θ) and every occurrence of y with r sin(θ) and use identities to
simplify. This is the technique we employ below.

(a) We start by substituting x = r cos(θ) and y = sin(θ) into (x−3)2+y2 = 9 and simplifying.
With no real direction in which to proceed, we follow our mathematical instincts and
see where they take us.6

(r cos(θ)− 3)2 + (r sin(θ))2 = 9

r2 cos2(θ)− 6r cos(θ) + 9 + r2 sin2(θ) = 9

r2
(
cos2(θ) + sin2(θ)

)
− 6r cos(θ) = 0 Subtract 9 from both sides.

r2 − 6r cos(θ) = 0 Since cos2(θ) + sin2(θ) = 1

r(r − 6 cos(θ)) = 0 Factor.

We get r = 0 or r = 6 cos(θ). From Section 7.2 we know the equation (x− 3)2 + y2 = 9
describes a circle, and since r = 0 describes just a point (namely the pole/origin), we
choose r = 6 cos(θ) for our final answer.7

(b) Substituting x = r cos(θ) and y = r sin(θ) into y = −x gives r cos(θ) = −r sin(θ).
Rearranging, we get r cos(θ) + r sin(θ) = 0 or r(cos(θ) + sin(θ)) = 0. This gives r = 0 or
cos(θ) + sin(θ) = 0. Solving the latter equation for θ, we get θ = −π

4 + πk for integers
k. As we did in the previous example, we take a step back and think geometrically.
We know y = −x describes a line through the origin. As before, r = 0 describes the
origin, but nothing else. Consider the equation θ = −π

4 . In this equation, the variable
r is free,8 meaning it can assume any and all values including r = 0. If we imagine
plotting points (r,−π

4 ) for all conceivable values of r (positive, negative and zero), we
are essentially drawing the line containing the terminal side of θ = −π

4 which is none
other than y = −x. Hence, we can take as our final answer θ = −π

4 here.9

(c) We substitute x = r cos(θ) and y = r sin(θ) into y = x2 and get r sin(θ) = (r cos(θ))2, or
r2 cos2(θ)− r sin(θ) = 0. Factoring, we get r(r cos2(θ)− sin(θ)) = 0 so that either r = 0
or r cos2(θ) = sin(θ). We can solve the latter equation for r by dividing both sides of
the equation by cos2(θ), but as a general rule, we never divide through by a quantity
that may be 0. In this particular case, we are safe since if cos2(θ) = 0, then cos(θ) = 0,
and for the equation r cos2(θ) = sin(θ) to hold, then sin(θ) would also have to be 0.
Since there are no angles with both cos(θ) = 0 and sin(θ) = 0, we are not losing any

6Experience is the mother of all instinct, and necessity is the mother of invention. Study this example and see
what techniques are employed, then try your best to get your answers in the homework to match Jeff’s.

7Note that when we substitute θ = π
2

into r = 6 cos(θ), we recover the point r = 0, so we aren’t losing anything
by disregarding r = 0.

8See Section 8.1.
9We could take it to be any of θ = −π

4
+ πk for integers k.
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information by dividing both sides of r cos2(θ) = sin(θ) by cos2(θ). Doing so, we get

r = sin(θ)
cos2(θ)

, or r = sec(θ) tan(θ). As before, the r = 0 case is recovered in the solution

r = sec(θ) tan(θ) (let θ = 0), so we state the latter as our final answer.

2. As a general rule, converting equations from polar to rectangular coordinates isn’t as straight
forward as the reverse process. We could solve r2 = x2 + y2 for r to get r = ±

√
x2 + y2

and solving tan(θ) = y
x requires the arctangent function to get θ = arctan

( y
x

)
+ πk for

integers k. Neither of these expressions for r and θ are especially user-friendly, so we opt for
a second strategy – rearrange the given polar equation so that the expressions r2 = x2 + y2,
r cos(θ) = x, r sin(θ) = y and/or tan(θ) = y

x present themselves.

(a) Starting with r = −3, we can square both sides to get r2 = (−3)2 or r2 = 9. We may now
substitute r2 = x2 + y2 to get the equation x2 + y2 = 9. As we have seen,10 squaring an
equation does not, in general, produce an equivalent equation. The concern here is that
the equation r2 = 9 might be satisfied by more points than r = −3. On the surface, this
appears to be the case since r2 = 9 is equivalent to r = ±3, not just r = −3. However,
any point with polar coordinates (3, θ) can be represented as (−3, θ + π), which means
any point (r, θ) whose polar coordinates satisfy the relation r = ±3 has an equivalent11

representation which satisfies r = −3.

(b) We take the tangent of both sides the equation θ = 4π
3 to get tan(θ) = tan

(
4π
3

)
=
√

3.

Since tan(θ) = y
x , we get y

x =
√

3 or y = x
√

3. Of course, we pause a moment to wonder

if, geometrically, the equations θ = 4π
3 and y = x

√
3 generate the same set of points.12

The same argument presented in number 1b applies equally well here so we are done.

(c) Once again, we need to manipulate r = 1 − cos(θ) a bit before using the conversion
formulas given in Theorem 11.7. We could square both sides of this equation like we did
in part 2a above to obtain an r2 on the left hand side, but that does nothing helpful for
the right hand side. Instead, we multiply both sides by r to obtain r2 = r − r cos(θ).
We now have an r2 and an r cos(θ) in the equation, which we can easily handle, but
we also have another r to deal with. Rewriting the equation as r = r2 + r cos(θ)

and squaring both sides yields r2 =
(
r2 + r cos(θ)

)2
. Substituting r2 = x2 + y2 and

r cos(θ) = x gives x2 + y2 =
(
x2 + y2 + x

)2
. Once again, we have performed some

10Exercise 3 in Section 5.3, for instance . . .
11Here, ‘equivalent’ means they represent the same point in the plane. As ordered pairs, (3, 0) and (−3, π) are

different, but when interpreted as polar coordinates, they correspond to the same point in the plane. Mathematically
speaking, relations are sets of ordered pairs, so the equations r2 = 9 and r = −3 represent different relations since
they correspond to different sets of ordered pairs. Since polar coordinates were defined geometrically to describe the
location of points in the plane, however, we concern ourselves only with ensuring that the sets of points in the plane
generated by two equations are the same. This was not an issue, by the way, when we first defined relations as sets
of points in the plane in Section 1.2. Back then, a point in the plane was identified with a unique ordered pair given
by its Cartesian coordinates.

12In addition to taking the tangent of both sides of an equation (There are infinitely many solutions to tan(θ) =
√

3,
and θ = 4π

3
is only one of them!), we also went from y

x
=
√

3, in which x cannot be 0, to y = x
√

3 in which we assume
x can be 0.
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algebraic maneuvers which may have altered the set of points described by the original
equation. First, we multiplied both sides by r. This means that now r = 0 is a viable
solution to the equation. In the original equation, r = 1−cos(θ), we see that θ = 0 gives
r = 0, so the multiplication by r doesn’t introduce any new points. The squaring of
both sides of this equation is also a reason to pause. Are there points with coordinates
(r, θ) which satisfy r2 =

(
r2 + r cos(θ)

)2
but do not satisfy r = r2 + r cos(θ)? Suppose

(r′, θ′) satisfies r2 =
(
r2 + r cos(θ)

)2
. Then r′ = ±

(
(r′)2 + r′ cos(θ′)

)
. If we have that

r′ = (r′)2+r′ cos(θ′), we are done. What if r′ = −
(
(r′)2 + r′ cos(θ′)

)
= −(r′)2−r′ cos(θ′)?

We claim that the coordinates (−r′, θ′ + π), which determine the same point as (r′, θ′),
satisfy r = r2 + r cos(θ). We substitute r = −r′ and θ = θ′ + π into r = r2 + r cos(θ) to
see if we get a true statement.

−r′ ?
= (−r′)2 + (−r′ cos(θ′ + π))

−
(
−(r′)2 − r′ cos(θ′)

) ?
= (r′)2 − r′ cos(θ′ + π) Since r′ = −(r′)2 − r′ cos(θ′)

(r′)2 + r′ cos(θ′)
?
= (r′)2 − r′(− cos(θ′)) Since cos(θ′ + π) = − cos(θ′)

(r′)2 + r′ cos(θ′)
X
= (r′)2 + r′ cos(θ′)

Since both sides worked out to be equal, (−r′, θ′ + π) satisfies r = r2 + r cos(θ) which

means that any point (r, θ) which satisfies r2 =
(
r2 + r cos(θ)

)2
has a representation

which satisfies r = r2 + r cos(θ), and we are done.

In practice, much of the pedantic verification of the equivalence of equations in Example 11.4.3 is
left unsaid. Indeed, in most textbooks, squaring equations like r = −3 to arrive at r2 = 9 happens
without a second thought. Your instructor will ultimately decide how much, if any, justification is
warranted. If you take anything away from Example 11.4.3, it should be that relatively nice things
in rectangular coordinates, such as y = x2, can turn ugly in polar coordinates, and vice-versa. In the
next section, we devote our attention to graphing equations like the ones given in Example 11.4.3
number 2 on the Cartesian coordinate plane without converting back to rectangular coordinates.
If nothing else, number 2c above shows the price we pay if we insist on always converting to back
to the more familiar rectangular coordinate system.
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11.4.1 Exercises

1. For each point in polar coordinates given below plot the point and then give three different
expressions for the point such that

• r < 0 and 0 ≤ θ < 2π • r > 0 and θ < 0 • r > 0 and θ ≥ 2π

(a)
(

2,
π

3

)
(b)

(
5,

7π

4

) (c)

(
1

3
,
3π

2

)
(d)

(
12,−7π

6

) (e) (−20, 3π)

(f)

(
−4,

5π

4

)
2. Convert each point in polar coordinates given below into rectangular coordinates. Use exact

values if possible and round any approximate values to two decimal places.

(a)

(
5,

7π

4

)
(b)

(
2,
π

3

) (c)

(
11,−7π

6

)
(d) (−20, 3π)

(e)

(
3

5
,
π

2

)
(f) (−7.8, 0.937)

3. Convert each point in rectangular coordinates given below into polar coordinates with r ≥ 0
and 0 ≤ θ < 2π. Use exact values if possible and round any approximate values to two
decimal places.

(a) (0, 5)

(b) (3,
√

3)

(c) (7,−7)

(d) (−8, 1)

(e) (−3,−
√

3)

(f) (−3, 0)

4. Convert each equation in polar coordinates (r, θ) given below into an equation in rectangular
coordinates (x, y).

(a) r = 7

(b) θ =
2π

3

(c) r = 4 cos(θ)

(d) r2 = sin(2θ)

(e) r = 1− 2 cos(θ)

(f) r = 1 + sin(θ)

5. Convert each equation in rectangular coordinates (x, y) given below into an in equation polar
coordinates (r, θ).

(a) x = −3

(b) y = 7

(c) x2 + y2 = 117

(d) y = 4x− 19

(e) y = −3x2

(f) x2 + (y − 3)2 = 9

6. Convert the origin (0, 0) into polar coordinates in four different ways.

7. With the help of your classmates, use the Law of Cosines to develop a formula for the distance
between two points in polar coordinates.
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11.4.2 Answers

1. (a)
(

2,
π

3

)
,

(
−2,

4π

3

)
(

2,−5π

3

)
,

(
2,

7π

3

)

x

y

−1 1 2

1

2

(b)

(
5,

7π

4

)
,

(
−5,

3π

4

)
(

5,−π
4

)
,

(
5,

15π

4

)
x

y

−1 1 2 3

−3

−2

−1

1

(c)

(
1

3
,
3π

2

)
,

(
−1

3
,
π

2

)
(

1

3
,−π

2

)
,

(
1

3
,
7π

2

)

x

y

1

1

(d)

(
12,−7π

6

)
,

(
−12,

11π

6

)
(

12,
5π

6

)
,

(
12,

17π

6

)

x

y

−12 −9 −6 −3

3

6
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(e) (−20, 3π), (−20, π)
(20,−2π), (20, 4π)

x

y

−20 −10 10 20

−1

1

(f)

(
−4,

5π

4

)
,
(

4,
π

4

)
(

4,−7π

4

)
,

(
4,

9π

4

)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

2. (a)

(
5
√

2

2
,−5
√

2

2

)
(b)

(
1,
√

3
) (c)

(
−11
√

3

2
,
11

2

)
(d) (20, 0)

(e)

(
0,

3

5

)
(f) (−4.62,−6.29)

3. (a)
(

5,
π

2

)
(b)

(√
12,

π

6

) (c)

(
7
√

2,
7π

4

)
(d)

(√
65, 3.02

) (e)

(√
12,

7π

6

)
(f) (3, π)

4. (a) x2 + y2 = 49

(b) y = −
√

3x

(c) (x− 2)2 + y2 = 4

(d)
(
x2 + y2

)2
= 2xy

(e)
(
x2 + 2x+ y2

)2
= x2 + y2

(f)
(
x2 + y2 + y

)2
= x2 + y2

5. (a) r = 3 sec(θ)

(b) r = 7 csc(θ)

(c) r =
√

117

(d) r =
19

4 cos(θ)− sin(θ)

(e) r = −1

3
tan(θ) sec(θ)

(f) r = 6 sin(θ)

6. Any point of the form (0, θ) will work, e.g. (0, π), (0,−117),

(
0,

23π

4

)
and (0, 0).
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11.5 Graphs of Polar Equations

In this section, we discuss how to graph equations in polar coordinates on the rectangular coordinate
plane. Since any given point in the plane has infinitely many different representations in polar
coordinates, our ‘Fundamental Graphing Principle’ in this section is not as clean as it was for
graphs of rectangular equations on page 22. We state it below for completeness.

The Fundamental Graphing Principle for Polar Equations
The graph of an equation in polar coordinates is the set of points which satisfy the equation.
That is, a point P (r, θ) is on the graph of an equation if and only if there is a representation of
P , say (r′, θ′), such that r′ and θ′ satisfy the equation.

Our first example focuses on the some of the more structurally simple polar equations.

Example 11.5.1. Graph the following polar equations.

1. r = 4 2. r = −3
√

2 3. θ = 5π
4 4. θ = −3π

2

Solution. In each of these equations, only one of the variables r and θ is present making the other
variable free.1 This makes these graphs easier to visualize than others.

1. In the equation r = 4, θ is free. The graph of this equation is, therefore, all points which
have a polar coordinate representation (4, θ), for any choice of θ. Graphically this translates
into tracing out all of the points 4 units away from the origin. This is exactly the definition
of circle, centered at the origin, with a radius of 4.

x

y

θ > 0

θ < 0
x

y

−4 4

−4

4

In r = 4, θ is free The graph of r = 4

2. Once again we have θ being free in the equation r = −3
√

2. Plotting all of the points of the
form (−3

√
2, θ) gives us a circle of radius 3

√
2 centered at the origin.

1See the discussion in Example 11.4.3 number 2a.
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x

y

θ < 0

θ > 0
x

y

−4 4

−4

4

In r = −3
√

2, θ is free The graph of r = −3
√

2

3. In the equation θ = 5π
4 , r is free, so we plot all of the points with polar representation

(
r, 5π

4

)
.

What we find is that we are tracing out the line which contains the terminal side of θ = 5π
4

when plotted in standard position.

x

y

r < 0

r > 0

r = 0

θ = 5π
4

x

y

−4 4

−4

4

In θ = 5π
4 , r is free The graph of θ = 5π

4

4. As in the previous example, the variable r is free in the equation θ = −3π
2 . Plotting

(
r,−3π

2

)
for various values of r shows us that we are tracing out the y-axis.
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x

y

r > 0

r < 0

r = 0

θ = − 3π
2

x

y

−4 4

−4

4

In θ = −3π
2 , r is free The graph of θ = −3π

2

Hopefully, our experience in Example 11.5.1 makes the following result clear.

Theorem 11.8. Graphs of Constant r and θ: Suppose a and α are constants, a 6= 0.

• The graph of the polar equation r = a on the Cartesian plane is a circle centered at the
origin of radius |a|.

• The graph of the polar equation θ = α on the Cartesian plane is the line containing the
terminal side of α when plotted in standard position.

Suppose we wish to graph r = 6 cos(θ). A reasonable way to start is to treat θ as the independent
variable, r as the dependent variable, evaluate r = f(θ) at some ‘friendly’ values of θ and plot the
resulting points.2 We generate the table below.

θ r = 6 cos(θ) (r, θ)

0 6 (6, 0)

π
4 3

√
2

(
3
√

2, π4
)

π
2 0

(
0, π2

)
3π
4 −3

√
2
(
−3
√

2, 3π
4

)
π −6 (−6, π)

5π
4 −3

√
2
(
−3
√

2, 5π
4

)
3π
2 0

(
0, 3π

2

)
7π
4 3

√
2

(
3
√

2, 7π
4

)
2π 6 (6, 2π)

x

y

3 6

−3

3

2For a review of these concepts and this process, see Sections 1.5 and 1.7.
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Despite having nine ordered pairs, we only get four distinct points on the graph. For this reason,
we employ a slightly different strategy. We graph one cycle of r = 6 cos(θ) on the θr plane3 and use
it to help graph the equation on the xy-plane. We see that as θ ranges from 0 to π

2 , r ranges from 6
to 0. In the xy-plane, this means that the curve starts 6 units from the origin on the positive x-axis
(θ = 0) and gradually returns to the origin by the time the curve reaches the y-axis (θ = π

2 ). The
arrows drawn in the figure below are meant to help you visualize this process. In the θr-plane, the
arrows are drawn from the θ-axis to the curve r = 6 cos(θ). In the xy-plane, each of these arrows
starts at the origin and is rotated through the corresponding angle θ, in accordance with how we
plot polar coordinates. It is a less-precise way to generate the graph than computing the actual
function values, but it is markedly faster.

π
2

π 3π
2

2π

−6

−3

3

6

θ

r

x

y

θ runs from 0 to π
2

Next, we repeat the process as θ ranges from π
2 to π. Here, the r values are all negative. This

means that in the xy-plane, instead of graphing in Quadrant II, we graph in Quadrant IV, with all
of the angle rotations starting from the negative x-axis.

π
2

π 3π
2

2π

−6

−3

3

6

θ

r

x

y

θ runs from π
2

to π

r < 0 so we plot here

As θ ranges from π to 3π
2 , the r values are still negative, which means the graph is traced out in

Quadrant I instead of Quadrant III. Since the |r| for these values of θ match the r values for θ in

3The graph looks exactly like y = 6 cos(x) in the xy-plane, and for good reason. At this stage, we are just graphing
the relationship between r and θ before we interpret them as polar coordinates (r, θ) on the xy-plane.
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[
0, π2

]
, we have that the curve begins to retrace itself at this point. Proceeding further, we find

that when 3π
2 ≤ θ ≤ 2π, we retrace the portion of the curve in Quadrant IV that we first traced

out as π
2 ≤ θ ≤ π. The reader is invited to verify that plotting any range of θ outside the interval

[0, π] results in retracting some portion of the curve.4 We present the final graph below.

π
2

π

−6

−3

3

6

θ

r

x

y

3 6

−3

3

r = 6 cos(θ) in the θr-plane r = 6 cos(θ) in the xy-plane

Example 11.5.2. Graph the following polar equations.

1. r = 4− 2 sin(θ) 2. r = 2 + 4 cos(θ) 3. r = 5 sin(2θ) 4. r2 = 16 cos(2θ)

Solution.

1. We first plot the fundamental cycle of r = 4 − 2 sin(θ) on the θr axes. To help us visualize
what is going on graphically, we divide up [0, 2π] into the usual four subintervals

[
0, π2

]
,
[
π
2 , π

]
,[

π, 3π
2

]
and

[
3π
2 , 2π

]
, and proceed as we did above. As θ ranges from 0 to π

2 , r decreases from
4 to 2. This means that the curve in the xy-plane starts 4 units from the origin on the positive
x-axis and gradually pulls in towards the origin as it moves towards the positive y-axis.

π
2

π 3π
2

2π

2

4

6

θ

r

x

y

θ runs from 0 to π
2

4The graph of r = 6 cos(θ) looks suspiciously like a circle, for good reason. See number 1a in Example 11.4.3.
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Next, as θ runs from π
2 to π, we see that r increases from 2 to 4. Picking up where we left

off, we gradually pull the graph away from the origin until we reach the negative x-axis.

π
2

π 3π
2

2π

2

4

6

θ

r

x

y

θ runs from π
2

to π

Over the interval
[
π, 3π

2

]
, we see that r increases from 4 to 6. On the xy-plane, the curve

sweeps out away from the origin as it travels from the negative x-axis to the negative y-axis.

π
2

π 3π
2

2π

2

4

6

θ

r

x

y

θ runs from π to 3π
2

Finally, as θ takes on values from 3π
2 to 2π, r decreases from 6 back to 4. The graph on the

xy-plane pulls in from the negative y-axis to finish where we started.

π
2

π 3π
2

2π

2

4

6

θ

r

x

y

θ runs from 3π
2

to 2π

We leave it to the reader to verify that plotting points corresponding to values of θ outside
the interval [0, 2π] results in retracing portions of the curve, so we are finished.
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π
2

π 3π
2

2π

2

4

6

θ

r

x

y

−4 4

−6

2

r = 4− 2 sin(θ) in the θr-plane r = 4− 2 sin(θ) in the xy-plane.

2. The first thing to note when graphing r = 2 + 4 cos(θ) on the θr-plane over the interval
[0, 2π] is that the graph crosses through the θ-axis. This corresponds to the graph of the
curve passing through the origin in the xy-plane, and our first task is to determine when this
happens. Setting r = 0 we get 2 + 4 cos(θ) = 0, or cos(θ) = −1

2 . Solving for θ in [0, 2π]
gives θ = 2π

3 and θ = 4π
3 . Since these values of θ are important geometrically, we break the

interval [0, 2π] into six subintervals:
[
0, π2

]
,
[
π
2 ,

2π
3

]
,
[

2π
3 , π

]
,
[
π, 4π

3

]
,
[

4π
3 ,

3π
2

]
and

[
3π
2 , 2π

]
. As

θ ranges from 0 to π
2 , r decreases from 6 to 2. Plotting this on the xy-plane, we start 6 units

out from the origin on the positive x-axis and slowly pull in towards the positive y-axis.

π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y

θ runs from 0 to π
2

On the interval
[
π
2 ,

2π
3

]
, r decreases from 2 to 0, which means the graph is heading into (and

will eventually cross through) the origin. Not only do we reach the origin when θ = 2π
3 , a

theorem from Calculus5 states that the curve hugs the line θ = 2π
3 as it approaches the origin.

5The ‘tangents at the pole’ theorem from second semester Calculus.
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π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y

θ = 2π
3

On the interval
[

2π
3 , π

]
, r ranges from 0 to −2. Since r ≤ 0, the curve passes through the

origin in the xy-plane, following the line θ = 2π
3 and continues upwards through Quadrant IV

towards the positive x-axis.6 Since |r| is increasing from 0 to 2, the curve pulls away from
the origin to finish at a point on the positive x-axis.

π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y
θ = 2π

3

Next, as θ progresses from π to 4π
3 , r ranges from −2 to 0. Since r ≤ 0, we continue our

graph in the first quadrant, heading into the origin along the line θ = 4π
3 .

6Recall that one way to visualize plotting polar coordinates (r, θ) with r < 0 is to start the rotation from the left
side of the pole - in this case, the negative x-axis. Rotating between 2π

3
and π radians from the negative x-axis in

this case determines the region between the line θ = 2π
3

and the x-axis in Quadrant IV.
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π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y

θ = 4π
3

On the interval
[

4π
3 ,

3π
2

]
, r returns to positive values and increases from 0 to 2. We hug the

line θ = 4π
3 as we move through the origin and head towards negative y-axis.

π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y

θ = 4π
3

As we round out the interval, we find that as θ runs through 3π
2 to 2π, r increases from 2 out

to 6, and we end up back where we started, 6 units from the origin on the positive x-axis.

π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y

θ runs from 3π
2

to 2π
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Again, we invite the reader to show that plotting the curve for values of θ outside [0, 2π]
results in retracing a portion of the curve already traced. Our final graph is below.

π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y

2 6

−2

2

θ = 4π
3

θ = 2π
3

r = 2 + 4 cos(θ) in the θr-plane r = 2 + 4 cos(θ) in the xy-plane

3. As usual, we start by graphing a fundamental cycle of r = 5 sin(2θ) in the θr-plane, which in
this case, occurs as θ ranges from 0 to π. We partition our interval into subintervals to help
us with the graphing, namely

[
0, π4

]
,
[
π
4 ,

π
2

]
,
[
π
2 ,

3π
4

]
and

[
3π
4 , π

]
. As θ ranges from 0 to π

4 , r
increases from 0 to 5. This means that the graph of r = 5 sin(2θ) in the xy-plane starts at
the origin and gradually sweeps out so it is 5 units away from the origin on the line θ = π

4 .

π
4

π
2

3π
4

π

−5

5

θ

r

x

y

Next, we see that r decreases from 5 to 0 as θ runs through
[
π
4 ,

π
2

]
, and furthermore, r is

heading negative as θ crosses π
2 . Hence, we draw the curve hugging the line θ = π

2 (the y-axis)
as the curve heads to the origin.
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π
4

π
2

3π
4

π

−5

5

θ

r

x

y

As θ runs from π
2 to 3π

4 , r becomes negative and ranges from 0 to −5. Since r ≤ 0, the curve
pulls away from the negative y-axis into Quadrant IV.

π
4

π
2

3π
4

π

−5

5

θ

r

x

y

For 3π
4 ≤ θ ≤ π, r increases from −5 to 0, so the curve pulls back to the origin.

π
4

π
2

3π
4

π

−5

5

θ

r

x

y
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Even though we have finished with one complete cycle of r = 5 sin(θ), if we continue plotting
beyond θ = π, we find that the curve continues into the third quadrant! Below we present a
graph of a second cycle of r = 5 sin(θ) which continues on from the first. The boxed labels
on the θ-axis correspond to the portions with matching labels on the curve in the xy-plane.

π 5π
4

3π
2

7π
4

2π

−5

5

θ

r

1 2 3 4
x

y

1

2

3

4

We have the final graph below.

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−5

5

θ

r

x

y

−5 5

−5

5

r = 5 sin(2θ) in the θr-plane r = 5 sin(2θ) in the xy-plane

4. Graphing r2 = 16 cos(2θ) is complicated by the r2, so we solve to get r = ±
√

16 cos(2θ) =
±4
√

cos(2θ). How do we sketch such a curve? First off, we sketch a fundamental period
of r = cos(2θ) which we have dotted in the figure below. When cos(2θ) < 0,

√
cos(2θ) is

undefined, so we don’t have any values on the interval
(
π
4 ,

3π
4

)
. On the intervals which remain,

cos(2θ) ranges from 0 to 1, inclusive. Hence,
√

cos(2θ) ranges from 0 to 1 as well.7 From
this, we know r = ±4

√
cos(2θ) ranges continuously from 0 to ±4, respectively. Below we

graph both r = 4
√

cos(2θ) and r = −4
√

cos(2θ) on the θr plane and use them to sketch the
corresponding pieces of the curve r2 = 16 cos(2θ) in the xy-plane. As we have seen in earlier

7Owing to the relationship between y = x and y =
√
x over [0, 1], we also know

√
cos(2θ) ≥ cos(2θ) wherever the

former is defined.
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examples, the lines θ = π
4 and θ = 3π

4 , which are the zeros of the functions r = ±4
√

cos(2θ),
serve as guides for us to draw the curve as is passes through the origin.

π
4

π
2

3π
4

π

−4

4

θ

r

1

2 3

4

x

y

1

2

3

4

θ = π
4θ = 3π

4

r = 4
√

cos(2θ) and

r = −4
√

cos(2θ)

As we plot points corresponding to values of θ outside of the interval [0, π], we find ourselves
retracing parts of the curve,8 so our final answer is below.

π
4

π
2

3π
4

π

−4

4

θ

r

x

y

−4 4

−4

4 θ = π
4θ = 3π

4

r = ±4
√

cos(2θ) r2 = 16 cos(2θ)
in the θr-plane in the xy-plane

A few remarks are in order. First, there is no relation, in general, between the period of the
function f(θ) and the length of the interval required to sketch the complete graph of r = f(θ) in
the xy-plane. As we saw on page 799, despite the fact that the period of f(θ) = 6 cos(θ) is 2π, we
sketched the complete graph of r = 6 cos(θ) in the xy-plane just using the values of θ as θ ranged
from 0 to π. In Example 11.5.2, number 3, the period of f(θ) = 5 sin(2θ) is π, but in order to obtain
the complete graph of r = 5 sin(2θ), we needed to run θ from 0 to 2π. While many of the ‘common’
polar graphs can be grouped in to families,9 the authors truly feel that taking the time to work
through each graph in the manner presented here is the best way to not only understand the polar

8In this case, we could have generated the entire graph by using just the plot r = 4
√

cos(2θ), but graphed over
the interval [0, 2π] in the θr-plane. We leave the details to the reader.

9Numbers 1 and 2 in Example 11.5.2 are examples of ‘limaçons,’ number 3 is an example of a ‘polar rose,’ and
number 4 is the famous ‘Lemniscate of Bernoulli.’

http://en.wikipedia.org/wiki/Limacon
http://en.wikipedia.org/wiki/Rose_(mathematics)
http://en.wikipedia.org/wiki/Lemniscate_of_Bernoulli
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coordinate system, but also prepare you for what is needed in Calculus. Second, the symmetry
seen in the examples is also a common occurrence when graphing polar equations. In addition to
the usual kinds of symmetry discussed up to this point in the text (symmetry about each axis and
the origin), it is possible to talk about rotational symmetry. We leave the discussion of symmetry
to the Exercises. In our next example, we are given the task of finding the intersection points of
polar curves. According to the Fundamental Graphing Principle for Polar Equations on page 796,
in order for a point P to be on the graph of a polar equation, it must have a representation P (r, θ)
which satisfies the equation. What complicates matters in polar coordinates is that any given point
has infinitely many representations. As a result, if a point P is on the graph of two different polar
equations, it is entirely possible that the representation P (r, θ) which satisfies one of the equations
does not satisfy the other equation. Here, more than ever, we need to rely on the Geometry as
much as the Algebra to find our solutions.

Example 11.5.3. Find the points of intersection of the graphs of the following polar equations.

1. r = 2 sin(θ) and r = 2− 2 sin(θ)

2. r = 2 and r = 3 cos(θ)

3. r = 3 and r = 6 cos(2θ)

4. r = 3 sin
(
θ
2

)
and r = 3 cos

(
θ
2

)
Solution.

1. Following the procedure in Example 11.5.2, we graph r = 2 sin(θ) and find it to be a circle
centered at the point with rectangular coordinates (0, 1) with a radius of 1. The graph of
r = 2− 2 sin(θ) is a special kind of limaçon called a ‘cardioid.’10

x

y

−2 2

−4

2

r = 2− 2 sin(θ) and r = 2 sin(θ)

It appears as if there are three intersection points: one in the first quadrant, one in the second
quadrant, and the origin. Our next task is to find polar representations of these points. In

10Presumably, the name is derived from its resemblance to a stylized human heart.

http://en.wikipedia.org/wiki/Cardioid


810 Applications of Trigonometry

order for a point P to be on the graph of r = 2 sin(θ), it must have a representation P (r, θ)
which satisfies r = 2 sin(θ). If P is also on the graph of r = 2−2 sin(θ), then P has a (possibly
different) representation P (r′, θ′) which satisfies r′ = 2 sin(θ′). We first try to see if we can
find any points which have a single representation P (r, θ) that satisfies both r = 2 sin(θ) and
r = 2 − 2 sin(θ). Assuming such a pair (r, θ) exists, then equating11 the expressions for r
gives 2 sin(θ) = 2 − 2 sin(θ) or sin(θ) = 1

2 . From this, we get θ = π
6 + 2πk or θ = 5π

6 + 2πk
for integers k. Plugging θ = π

6 into r = 2 sin(θ), we get r = 2 sin
(
π
6

)
= 2

(
1
2

)
= 1, which

is also the value we obtain when we substitute it into r = 2 − 2 sin(θ). Hence,
(
1, π6

)
is one

representation for the point of intersection in the first quadrant. For the point of intersection
in the second quadrant, we try θ = 5π

6 . Both equations give us the point
(
1, 5π

6

)
, so this is

our answer here. What about the origin? We know from Section 11.4 that the pole may be
represented as (0, θ) for any angle θ. On the graph of r = 2 sin(θ), we start at the origin when
θ = 0 and return to it at θ = π, and as the reader can verify, we are at the origin exactly
when θ = πk for integers k. On the curve r = 2− 2 sin(θ), however, we reach the origin when
θ = π

2 , and more generally, when θ = π
2 + 2πk for integers k. There is no integer value of k

for which πk = π
2 + 2πk which means while the origin is on both graphs, the point is never

reached simultaneously. In any case, we have determined the three points of intersection to
be
(
1, π6

)
,
(
1, 5π

6

)
and the origin.

2. As before, we make a quick sketch of r = 2 and r = 3 cos(θ) to get feel for the number and
location of the intersection points. The graph of r = 2 is a circle, centered at the origin, with
a radius of 2. The graph of r = 3 cos(θ) is also a circle - but this one is centered at the point
with rectangular coordinates

(
3
2 , 0
)

and has a radius of 3
2 .

x

y

−2 2 3

−2

2

r = 2 and r = 3 cos(θ)

We have two intersection points to find, one in Quadrant I and one in Quadrant IV. Pro-
ceeding as above, we first determine if any of the intersection points P have a represen-
tation (r, θ) which satisfies both r = 2 and r = 3 cos(θ). Equating these two expressions
for r, we get cos(θ) = 2

3 . To solve this equation, we need the arccosine function. We get

11We are really using the technique of substitution to solve the system of equations

{
r = 2 sin(θ)
r = 2− 2 sin(θ)
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θ = arccos
(

2
3

)
+2πk or θ = 2π−arccos

(
2
3

)
+2πk for integers k. From these solutions, we get(

2, arccos
(

2
3

))
as one representation for our answer in Quadrant I, and

(
2, 2π − arccos

(
2
3

))
as one representation for our answer in Quadrant IV. The reader is encouraged to check these
results algebraically and geometrically.

3. Proceeding as above, we first graph r = 3 and r = 6 cos(2θ) to get an idea of how many
intersection points to expect and where they lie. The graph of r = 3 is a circle centered at
the origin with a radius of 3 and the graph of r = 6 cos(2θ) is another four-leafed rose.12

x

y

−6 −3 3 6

−6

−3

3

6

r = 3 and r = 6 cos(2θ)

It appears as if there are eight points of intersection - two in each quadrant. We first look to
see if there any points P (r, θ) with a representation that satisfies both r = 3 and r = 6 cos(2θ).
For these points, 6 cos(2θ) = 3 or cos(2θ) = 1

2 . Solving, we get θ = π
6 + πk or θ = 5π

6 + πk
for integers k. Out of all of these solutions, we obtain just four distinct points represented
by
(
3, π6

)
,
(
3, 5π

6

)
,
(
3, 7π

6

)
and

(
3, 11π

6

)
. To determine the coordinates of the remaining four

points, we have to consider how the representations of the points of intersection can differ. We
know from Section 11.4 that if (r, θ) and (r′, θ′) represent the same point and r 6= 0, then either
r = r′ or r = −r′. If r = r′, then θ′ = θ+ 2πk, so one possibility is that an intersection point
P has a representation (r, θ) which satisfies r = 3 and another representation (r, θ+ 2πk) for
some integer, k which satisfies r = 6 cos(2θ). At this point, we replace every occurrence θ in
the equation r = 6 cos(2θ) with (θ+2πk) and then see if, by equating the resulting expressions
for r, we get any more solutions for θ.13 Since cos(2(θ+ 2πk)) = cos(2θ+ 4πk) = cos(2θ) for
every integer k, however, the equation r = 6 cos(2(θ + 2πk)) reduces to the same equation
we had before, r = 6 cos(2θ), which means we get no additional solutions. Moving on to
the case where r = −r′, we have that θ′ = θ + (2k + 1)π for integers k. We look to see
if we can find points P which have a representation (r, θ) that satisfies r = 3 and another,

12See Example 11.5.2 number 3.
13The authors have chosen to replace θ with θ+2πk in the equation r = 6 cos(2θ) for illustration purposes only. We

could have just as easily chosen to do this substitution in the equation r = 3. Since there is no θ in r = 3, however,
this case would reduce to the previous case instantly. The reader is encouraged to follow this latter procedure in the
interests of efficiency.
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(−r, θ + (2k + 1)π), that satisfies r = 6 cos(2θ). To do this, we substitute14 (−r) for r and
(θ + (2k + 1)π) for θ in the equation r = 6 cos(2θ) and get −r = 6 cos(2(θ + (2k + 1)π)).
Since cos(2(θ+ (2k+ 1)π)) = cos(2θ+ (2k+ 1)(2π)) = cos(2θ) for all integers k, the equation
−r = 6 cos(2(θ + (2k + 1)π)) reduces to −r = 6 cos(2θ), or r = −6 cos(2θ). Coupling this
equation with r = 3 gives −6 cos(2θ) = 3 or cos(2θ) = −1

2 . We get θ = π
3 +πk or θ = 2π

3 +πk.
From these solutions, we obtain15 the remaining four intersection points with representations(
−3, π3

)
,
(
−3, 2π

3

)
,
(
−3, 4π

3

)
and

(
−3, 5π

3

)
, which we can readily check graphically.

4. As usual, we begin by graphing r = 3 sin
(
θ
2

)
and r = 3 cos

(
θ
2

)
. Using the techniques

presented in Example 11.5.2, we find that we need to plot both functions as θ ranges from
0 to 4π to obtain the complete graph. To our surprise and/or delight, it appears as if these
two equations describe the same curve!

x

y

−3 3

−3

3

r = 3 sin
(
θ
2

)
and r = 3 cos

(
θ
2

)
appear to determine the same curve in the xy-plane

To verify this incredible claim,16 we need to show that, in fact, the graphs of these two
equations intersect at all points on the plane. Suppose P has a representation (r, θ) which
satisfies both r = 3 sin

(
θ
2

)
and r = 3 cos

(
θ
2

)
. Equating these two expressions for r gives

the equation 3 sin
(
θ
2

)
= 3 cos

(
θ
2

)
. While normally we discourage dividing by a variable

expression (in case it could be 0), we note here that if 3 cos
(
θ
2

)
= 0, then for our equation

to hold, 3 sin
(
θ
2

)
= 0 as well. Since no angles have both cosine and sine equal to zero,

we are safe to divide both sides of the equation 3 sin
(
θ
2

)
= 3 cos

(
θ
2

)
by 3 cos

(
θ
2

)
to get

tan
(
θ
2

)
= 1 which gives θ = π

2 + 2πk for integers k. From these solutions, however, we

14Again, we could have easily chosen to substitute these into r = 3 which would give −r = 3, or r = −3.
15We obtain these representations by substituting the values for θ into r = 6 cos(2θ), once again, for illustration

purposes. (We feel most students would take this approach.) Again, in the interests of efficiency, we could ‘plug’
these values for θ into r = 3 (where there is no θ) and get the list of points:

(
3, π

3

)
,
(
3, 2π

3

)
,
(
3, 4π

3

)
and

(
3, 5π

3

)
.

While it is not true that
(
3, π

3

)
represents the same point as

(
−3, π

3

)
, we still get the same set of solutions.

16A quick sketch of r = 3 sin
(
θ
2

)
and r = 3 cos

(
θ
2

)
in the θr-plane will convince you that, viewed as functions of r,

these are two different animals.
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get only one intersection point which can be represented by
(

3
√

2
2 , π2

)
. We now investigate

other representations for the intersection points. Suppose P is an intersection point with
a representation (r, θ) which satisfies r = 3 sin

(
θ
2

)
and the same point P has a different

representation (r, θ + 2πk) for some integer k which satisfies r = 3 cos
(
θ
2

)
. Substituting

into the latter, we get r = 3 cos
(

1
2 [θ + 2πk]

)
= 3 cos

(
θ
2 + πk

)
. Using the sum formula for

cosine, we expand 3 cos
(
θ
2 + πk

)
= 3 cos

(
θ
2

)
cos(πk) − 3 sin

(
θ
2

)
sin (πk) = ±3 cos

(
θ
2

)
, since

sin(πk) = 0 for all integers k, and cos (πk) = ±1 for all integers k. If k is an even integer,
we get the same equation r = 3 cos

(
θ
2

)
as before. If k is odd, we get r = −3 cos

(
θ
2

)
. This

latter expression for r leads to the equation 3 sin
(
θ
2

)
= −3 cos

(
θ
2

)
, or tan

(
θ
2

)
= −1. Solving,

we get θ = −π
2 + 2πk for integers k, which gives the intersection point

(
3
√

2
2 ,−π

2

)
. Next,

we assume P has a representation (r, θ) which satisfies r = 3 sin
(
θ
2

)
and a representation

(−r, θ + (2k + 1)π) which satisfies r = 3 cos
(
θ
2

)
for some integer k. Substituting (−r) for

r and (θ + (2k + 1)π) in for θ into r = 3 cos
(
θ
2

)
gives −r = 3 cos

(
1
2 [θ + (2k + 1)π]

)
. Once

again, we use the sum formula for cosine to get

cos
(

1
2 [θ + (2k + 1)π]

)
= cos

(
θ
2 + (2k+1)π

2

)
= cos

(
θ
2

)
cos
(

(2k+1)π
2

)
− sin

(
θ
2

)
sin
(

(2k+1)π
2

)
= ± sin

(
θ
2

)
where the last equality is true since cos

(
(2k+1)π

2

)
= 0 and sin

(
(2k+1)π

2

)
= ±1 for integers k.

Hence, −r = 3 cos
(

1
2 [θ + (2k + 1)π]

)
can be rewritten as r = ±3 sin

(
θ
2

)
. If we choose k = 0,

then sin
(

(2k+1)π
2

)
= sin

(
π
2

)
= 1, and the equation −r = 3 cos

(
1
2 [θ + (2k + 1)π]

)
in this case

reduces to −r = −3 sin
(
θ
2

)
, or r = 3 sin

(
θ
2

)
which is the other equation under consideration!

What this means is that if a polar representation (r, θ) for the point P satisfies r = 3 sin( θ2),

then the representation (−r, θ + π) for P automatically satisfies r = 3 cos
(
θ
2

)
. Hence the

equations r = 3 sin( θ2) and r = 3 cos( θ2) determine the same set of points in the plane.

Our work in Example 11.5.3 justifies the following.

Guidelines for Finding Points of Intersection of Graphs of Polar Equations
To find the points of intersection of the graphs of two polar equations E1 and E2:

• Sketch the graphs of E1 and E2. Check to see if the curves intersect at the origin (pole).

• Solve for pairs (r, θ) which satisfy both E1 and E2.

• Substitute (θ+ 2πk) for θ in either one of E1 or E2 (but not both) and solve for pairs (r, θ)
which satisfy both equations. Keep in mind that k is an integer.

• Substitute (−r) for r and (θ+ (2k+ 1)π) for θ in either one of E1 or E2 (but not both) and
solve for pairs (r, θ) which satisfy both equations. Keep in mind that k is an integer.
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Our last example ties together graphing and points of intersection to describe regions in the plane.

Example 11.5.4. Sketch the region in the xy-plane described by the following sets.

1.
{

(r, θ) : 0 ≤ r ≤ 5 sin(2θ), 0 ≤ θ ≤ π
2

}
2.
{

(r, θ) : 3 ≤ r ≤ 6 cos(2θ), 0 ≤ θ ≤ π
6

}
3.
{

(r, θ) : 2 + 4 cos(θ) ≤ r ≤ 0, 2π
3 ≤ θ ≤

4π
3

}
4.
{

(r, θ) : 0 ≤ r ≤ 2 sin(θ), 0 ≤ θ ≤ π
6

}
∪
{

(r, θ) : 0 ≤ r ≤ 2− 2 sin(θ), π6 ≤ θ ≤
π
2

}
Solution. Our first step in these problems is to sketch the graphs of the polar equations involved
to get a sense of the geometric situation. Since all of the equations in this example are found in
either Example 11.5.2 or Example 11.5.3, most of the work is done for us.

1. We know from Example 11.5.2 number 3 that the graph of r = 5 sin(2θ) is a rose. Moreover,
we know from our work there that as 0 ≤ θ ≤ π

2 , we are tracing out the ‘leaf’ of the rose
which lies in the first quadrant. The inequality 0 ≤ r ≤ 5 sin(2θ) means we want to capture
all of the points between the origin (r = 0) and the curve r = 5 sin(2θ) as θ runs through[
0, π2

]
. Hence, the region we seek is the leaf itself.

π
4

π
2

3π
4

π

−5

5

θ

r

x

y

{
(r, θ) : 0 ≤ r ≤ 5 sin(2θ), 0 ≤ θ ≤ π

2

}
2. We know from Example 11.5.3 number 3 that r = 3 and r = 6 cos(2θ) intersect at θ = π

6 , so
the region that is being described here is the set of points whose directed distance r from the
origin is at least 3 but no more than 6 cos(2θ) as θ runs from 0 to π

6 . In other words, we are
looking at the points outside or on the circle (since r ≥ 3) but inside or on the rose (since
r ≤ 6 cos(2θ)). We shade the region below.

x

y

θ = π
6

x

y

r = 3 and r = 6 cos(2θ)
{

(r, θ) : 3 ≤ r ≤ 6 cos(2θ), 0 ≤ θ ≤ π
6

}
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3. From Example 11.5.2 number 2, we know that the graph of r = 2 + 4 cos(θ) is a limaçon
whose ‘inner loop’ is traced out as θ runs through the given values 2π

3 to 4π
3 . Since the values

r takes on in this interval are non-positive, the inequality 2 + 4 cos(θ) ≤ r ≤ 0 makes sense,
and we are looking for all of the points between the pole r = 0 and the limaçon as θ ranges
over the interval

[
2π
3 ,

4π
3

]
. In other words, we shade in the inner loop of the limaçon.

π
2

π 3π
2

2π

−2

2

4

6

2π
3

4π
3

θ

r

x

y

θ = 4π
3

θ = 2π
3

{
(r, θ) : 2 + 4 cos(θ) ≤ r ≤ 0, 2π

3 ≤ θ ≤
4π
3

}
4. We have two regions described here connected with the union symbol ‘∪.’ We shade each

in turn and find our final answer by combining the two. In Example 11.5.3, number 1, we
found that the curves r = 2 sin(θ) and r = 2− 2 sin(θ) intersect when θ = π

6 . Hence, for the
first region,

{
(r, θ) : 0 ≤ r ≤ 2 sin(θ), 0 ≤ θ ≤ π

6

}
, we are shading the region between the origin

(r = 0) out to the circle (r = 2 sin(θ)) as θ ranges from 0 to π
6 , which is the angle of intersection

of the two curves. For the second region,
{

(r, θ) : 0 ≤ r ≤ 2− 2 sin(θ), π6 ≤ θ ≤
π
2

}
, θ picks

up where it left off at π
6 and continues to π

2 . In this case, however, we are shading from the
origin (r = 0) out to the cardioid r = 2−2 sin(θ) which pulls into the origin at θ = π

2 . Putting
these two regions together gives us our final answer.

x

y

1

1
θ = π

6

x

y

1

1

r = 2− 2 sin(θ) and r = 2 sin(θ)
{

(r, θ) : 0 ≤ r ≤ 2 sin(θ), 0 ≤ θ ≤ π
6

}
∪{

(r, θ) : 0 ≤ r ≤ 2− 2 sin(θ), π6 ≤ θ ≤
π
2

}
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11.5.1 Exercises

1. Plot the graphs of the following polar equations by hand. Carefully label your graphs.

(a) Circle: r = 6 sin(θ)

(b) Circle: r = 2 cos(θ)

(c) Rose: r = 2 sin(2θ)

(d) Rose: r = 4 cos(2θ)

(e) Rose: r = 5 sin(3θ)

(f) Rose: r = cos(5θ)

(g) Rose: r = sin(4θ)

(h) Rose: r = 3 cos(4θ)

(i) Cardioid: r = 3− 3 cos(θ)

(j) Cardioid: r = 5 + 5 sin(θ)

(k) Cardioid: r = 2 + 2 cos(θ)

(l) Cardioid: r = 1− sin(θ)

(m) Limaçon: r = 1− 2 cos(θ)

(n) Limaçon: r = 1− 2 sin(θ)

(o) Limaçon: r = 2
√

3 + 4 cos(θ)

(p) Limaçon: r = 2 + 7 sin(θ)

(q) Lemniscate: r2 = sin(2θ)

(r) Lemniscate: r2 = 4 cos(2θ)

2. Find the exact polar coordinates of the points of intersection of the following pairs of polar
equations. Remember to check for intersection at the pole.

(a) r = 2 sin(2θ) and r = 1

(b) r = 3 cos(θ) and r = 1 + cos(θ)

(c) r = 1 + sin(θ) and r = 1− cos(θ)

(d) r = 1− 2 cos(θ) and r = 1

(e) r = 3 cos(θ) and r = sin(θ)

(f) r2 = 2 sin(2θ) and r = 1

3. Sketch the region in the xy-plane described by the following sets.

(a)
{

(r, θ) : 1 + cos(θ) ≤ r ≤ 3 cos(θ), −π
3 ≤ θ ≤

π
3

}
(b)

{
(r, θ) : 1 ≤ r ≤

√
2 sin(2θ), 13π

12 ≤ θ ≤
17π
12

}
4. Use set-builder notation to describe the following polar regions.

(a) The left half of the circle r = 6 sin(θ)

(b) The top half of the cardioid r = 3− 3 cos(θ)

(c) The inside of the petal of the rose r = 3 cos(4θ) which lies on the x-axis

(d) The region which lies inside of the circle r = 3 cos(θ) but outside of the circle r = sin(θ)

5. With the help of your classmates, research cardioid microphones.

6. Back in Exercise 2 in Section 1.3, we gave you this link to a fascinating list of curves. Some of
these curves have polar representations which we invite you and your classmates to research.

http://en.wikipedia.org/wiki/List_of_curves
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7. While the authors truly believe that graphing polar curves by hand is fundamental to your
understanding of the polar coordinate system, we would be derelict in our duties if we totally
ignored the graphing calculator. Indeed, there are some important polar curves which are
simply too difficult to graph by hand and that makes the calculator an important tool for
your further studies in Mathematics, Science and Engineering. In this exercise, we give a brief
demonstration of how to use the graphing calculator to plot polar curves. The first thing you
must do is switch the MODE of your calculator to POL, which stands for “polar”.

This changes the “Y=” menu as seen above in the middle. Let’s plot the polar rose given
by r = 3 cos(4θ) from Exercise 1h above. We type the function into the “r=” menu as seen
above on the right. We need to set the viewing window so that the curve displays properly,
but when we look at the WINDOW menu, we find three extra lines.

In order for the calculator to be able to plot r = 3 cos(4θ) in the xy-plane, we need to tell
it not only the dimensions which x and y will assume, but we also what values of θ to use.
From our previous work, we know that we need 0 ≤ θ ≤ 2π, so we enter the data you see
above. (I’ll say more about the θ-step in just a moment.) Hitting GRAPH yields the curve
below on the left which doesn’t look quite right. The issue here is that the calculator screen
is 96 pixels wide but only 64 pixels tall. To get a true geometric perspective, we need to hit
ZOOM SQUARE (seen below in the middle) to produce a more accurate graph which we
present below on the right.
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In function mode, the calculator automatically divided the interval [Xmin, Xmax] into 96
equal subintervals. In polar mode, however, we must specify how to split up the interval
[θmin, θmax] using the θstep. For most graphs, a θstep of 0.1 is fine. If you make it too
small then the calculator takes a long time to graph. It you make it too big, you get chunky
garbage like this.

You’ll need to take the time to experiment with the settings so that you get a nice graph.
Here are some curves to get you started. Notice that some of them have explicit bounds on
θ and others do not.

(a) r = θ, 0 ≤ θ ≤ 12π

(b) r = ln(θ), 1 ≤ θ ≤ 12π

(c) r = e.1θ, 0 ≤ θ ≤ 12π

(d) r = θ3 − θ, −1.2 ≤ θ ≤ 1.2

(e) r = sin(5θ)− 3 cos(θ)

(f) r = sin3
(
θ
2

)
+ cos2

(
θ
3

)
(g) r = arctan(θ), −π ≤ θ ≤ π
(h) r = 1

1−cos(θ)

(i) r = 1
2−cos(θ)

(j) r = 1
2−3 cos(θ)

8. How many petals does the polar rose r = sin(2θ) have? What about r = sin(3θ), r = sin(4θ)
and r = sin(5θ)? With the help of your classmates, make a conjecture as to how many petals
the polar rose r = sin(nθ) has for any natural number n. Replace sine with cosine and repeat
the investigation. How many petals does r = cos(nθ) have for each natural number n?

9. Looking back through the graphs in the section, it’s clear that many polar curves enjoy various
forms of symmetry. However, classifying symmetry for polar curves is not as straight-forward
as it was for equations back on page 24. In this exercise we have you and your classmates
explore some of the more basic forms of symmetry seen in common polar curves.

(a) Show that if f is even17 then the graph of r = f(θ) is symmetric about the x-axis.

i. Show that f(θ) = 2 + 4 cos(θ) is even and verify that the graph of r = 2 + 4 cos(θ)
is indeed symmetric about the x-axis. (See Example 11.5.2 number 2.)

ii. Show that f(θ) = 3 sin
(
θ
2

)
is not even, yet the graph of r = 3 sin

(
θ
2

)
is symmetric

about the x-axis. (See Example 11.5.3 number 4.)

17Recall that this means f(−θ) = f(θ) for θ in the domain of f .
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(b) Show that if f is odd18 then the graph of r = f(θ) is symmetric about the origin.

i. Show that f(θ) = 5 sin(2θ) is odd and verify that the graph of r = 5 sin(2θ) is indeed
symmetric about the origin. (See Example 11.5.2 number 3.)

ii. Show that f(θ) = 3 cos
(
θ
2

)
is not odd, yet the graph of r = 3 cos

(
θ
2

)
is symmetric

about the origin. (See Example 11.5.3 number 4.)

(c) Show that if f(π − θ) = f(θ) for all θ in the domain of f then the graph of r = f(θ) is
symmetric about the y-axis.

i. For f(θ) = 4− 2 sin(θ), show that f(π− θ) = f(θ) and the graph of r = 4− 2 sin(θ)
is symmetric about the y-axis, as required. (See Example 11.5.2 number 1.)

ii. For f(θ) = 5 sin(2θ), show that f
(
π − π

4

)
6= f

(
π
4

)
, yet the graph of r = 5 sin(2θ) is

symmetric about the y-axis. (See Example 11.5.2 number 3.)

10. In Section 1.8, we discussed transformations of graphs. In this exercise we have you and your
classmates explore transformations of polar graphs.

(a) For exercises 10(a)i and 10(a)ii below, let f(θ) = cos(θ) and g(θ) = 2− sin(θ).

i. Using a graphing utility, compare the graph of r = f(θ) to each of the graphs of
r = f

(
θ + π

4

)
, r = f

(
θ + 3π

4

)
, r = f

(
θ − π

4

)
and r = f

(
θ − 3π

4

)
. Repeat this

process for g(θ). In general, how do you think the graph of r = f(θ + α) compares
with the graph of r = f(θ)?

ii. Using a graphing utility, compare the graph of r = f(θ) to each of the graphs of
r = 2f (θ), r = 1

2f (θ), r = −f (θ) and r = −3f(θ). Repeat this process for g(θ).
In general, how do you think the graph of r = k · f(θ) compares with the graph of
r = f(θ)? (Does it matter if k > 0 or k < 0?)

(b) In light of Exercise 9, how would the graph of r = f(−θ) compare with the graph of
r = f(θ) for a generic function f? What about the graphs of r = −f(θ) and r = f(θ)?
What about r = f(θ) and r = f(π − θ)? Test out your conjectures using a variety of
polar functions found in this section with the help of a graphing utility.

18Recall that this means f(−θ) = −f(θ) for θ in the domain of f .
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11.5.2 Answers

1. (a) Circle: r = 6 sin(θ)

x

y

−6 6

−6

6

(b) Circle: r = 2 cos(θ)

x

y

−2 2

−2

2

(c) Rose: r = 2 sin(2θ)

x

y

−2 2

−2

2

(d) Rose: r = 4 cos(2θ)

x

y

−4 4

−4

4

θ = π
4θ = 3π

4

(e) Rose: r = 5 sin(3θ)

x

y

−5 5

−5

5
θ = π

3θ = 2π
3

(f) Rose: r = cos(5θ)

x

y

−1 1

−1

1

θ = π
10

θ = 3π
10

θ = 7π
10

θ = 9π
10
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(g) Rose: r = sin(4θ)

x

y

−1 1

−1

1

θ = π
4θ = 3π

4

(h) Rose: r = 3 cos(4θ)

x

y

−3 3

−3

3

θ = π
8

θ = 3π
8

θ = 5π
8

θ = 7π
8

(i) Cardioid: r = 3− 3 cos(θ)

x

y

−6 −3 3 6

−6

−3

3

6

(j) Cardioid: r = 5 + 5 sin(θ)

x

y

−10 −5 5 10

−10

−5

5

10

(k) Cardioid: r = 2 + 2 cos(θ)

x

y

−4 −2 2 4

−4

−2

2

4

(l) Cardioid: r = 1− sin(θ)

x

y

−2 −1 1 2

−2

−1

1

2
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(m) Limaçon: r = 1− 2 cos(θ)

x

y

−3 −1 1 3

−3

−1

1

3
θ = π

3

θ = 5π
3

(n) Limaçon: r = 1− 2 sin(θ)

x

y

−3 −1 1 3

−3

−1

1

3

θ = π
6θ = 5π

6

(o) Limaçon: r = 2
√

3 + 4 cos(θ)

x

y

−2
√

3− 4 2
√

3 + 4

−2
√

3− 4

−2
√

3

2
√

3

2
√

3 + 4

θ = 7π
6

θ = 5π
6

(p) Limaçon: r = 2 + 7 sin(θ)

x

y

−9 −2 2 9

−9

5

9

θ = π + arcsin
(

2
7

)
θ = 2π − arcsin

(
2
7

)

(q) Lemniscate: r2 = sin(2θ)

x

y

−1 1

−1

1

(r) Lemniscate: r2 = 4 cos(2θ)

x

y

−2 2

−2

2

θ = π
4θ = 3π

4
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2. (a) r = 2 sin(2θ) and r = 1

x

y

−2 2

−2

2

(
1,
π

12

)
,

(
1,

5π

12

)
,

(
1,

13π

12

)
,(

1,
17π

12

)
,

(
−1,

7π

12

)
,

(
−1,

11π

12

)
,(

−1,
19π

12

)
,

(
−1,

23π

12

)

(b) r = 3 cos(θ) and r = 1 + cos(θ)

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

(
3

2
,
π

3

)
,

(
3

2
,
5π

3

)
, pole

(c) r = 1 + sin(θ) and r = 1− cos(θ)

x

y

−2 −1 1 2

−2

−1

1

2

Pole,

(
2 +
√

2

2
,
3π

4

)
,

(
2−
√

2

2
,
7π

4

)
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(d) r = 1− 2 cos(θ) and r = 1

x

y

−3 −1 1 3

−3

−1

1

3

(
1,
π

2

)
,

(
1,

3π

2

)
, (−1, 0)

(e) r = 3 cos(θ) and r = sin(θ)

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

(
3√
10
, arctan(3)

)
, pole

(f) r2 = 2 sin(2θ) and r = 1

x

y

−
√

2 −1 1
√

2

−
√

2

−1

1

√
2

(
1,
π

12

)
,

(
1,

5π

12

)
,

(
1,

13π

12

)
,

(
1,

17π

12

)
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3. (a)
{

(r, θ) : 1 + cos(θ) ≤ r ≤ 3 cos(θ), −π
3 ≤ θ ≤

π
3

}

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

(b)
{

(r, θ) : 1 ≤ r ≤
√

2 sin(2θ), 13π
12 ≤ θ ≤

17π
12

}

x

y

−
√

2 −1 1
√

2

−
√

2

−1

1

√
2

4. (a)
{

(r, θ) : 0 ≤ r ≤ 6 sin(θ), π2 ≤ θ ≤ π
}

(b) {(r, θ) : 0 ≤ r ≤ 3− 3 cos(θ), 0 ≤ θ ≤ π}
(c)

{
(r, θ) : 0 ≤ r ≤ 3 cos(4θ), −π

8 ≤ θ ≤
π
8

}
(d)

{
(r, θ) : 0 ≤ r ≤ 3 cos(θ), −π

2 ≤ θ ≤ 0
}
∪ {(r, θ) : sin(θ) ≤ r ≤ 3 cos(θ), 0 ≤ θ ≤ arctan(3)}
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11.6 Hooked on Conics Again

In this section, we revisit our friends the Conic Sections which were first introduced in Chapter 7.
The first part of the section is a follow-up to Example 8.3.3 in Section 8.3. In that example, we
saw that the graph of y = 2

x is actually a hyperbola. More specifically, it is the hyperbola obtained
by rotating the graph of x2 − y2 = 4 counter-clockwise through a 45◦ angle. Armed with polar
coordinates, we can generalize the process of rotating axes as shown below.

11.6.1 Rotation of Axes

Consider the x- and y-axes below along with the dashed x′- and y′-axes obtained by rotating the x-
and y-axes counter-clockwise through an angle θ and consider the point P (x, y). The coordinates
(x, y) are rectangular coordinates and are based on the x- and y-axes. Suppose we wished to find
rectangular coordinates based on the x′- and y′-axes. That is, we wish to determine P (x′, y′). While
this seems like a formidable challenge, it is nearly trivial if we use polar coordinates. Consider the
angle φ whose initial side is the positive x′-axis and whose terminal side contains the point P .

x

y

x′
y′

P (x, y) = P (x′, y′)

θ

θ

φ

We relate P (x, y) and P (x′, y′) by converting them to polar coordinates. Converting P (x, y) to
polar coordinates with r > 0 yields x = r cos(θ + φ) and y = r sin(θ + φ). To convert the point
P (x′, y′) into polar coordinates, we first match the polar axis with the positive x′-axis, choose the
same r > 0 (since the origin is the same in both systems) and get x′ = r cos(φ) and y′ = r sin(φ).
Using the sum formulas for sine and cosine, we have

x = r cos(θ + φ)

= r cos(θ) cos(φ)− r sin(θ) sin(φ) Sum formula for cosine

= (r cos(φ)) cos(θ)− (r sin(φ)) sin(θ)

= x′ cos(θ)− y′ sin(θ) Since x′ = r cos(φ) and y′ = r sin(φ)
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Similarly, using the sum formula for sine we get y = x′ sin(θ) +y′ cos(θ). These equations enable us
to easily convert points with x′y′-coordinates back into xy-coordinates. They also enable us to easily
convert equations in the variables x and y into equations in the variables in terms of x′ and y′.1 If
we want equations which enable us to convert points with xy-coordinates into x′y′-coordinates, we
need to solve the system {

x′ cos(θ)− y′ sin(θ) = x
x′ sin(θ) + y′ cos(θ) = y

for x′ and y′. Perhaps the cleanest way2 to solve this system is to write it as a matrix equation.
Using the machinery developed in Section 8.4, we write the above system as the matrix equation
AX ′ = X where

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, X ′ =

[
x′

y′

]
, X =

[
x
y

]
Since det(A) = (cos(θ))(cos(θ)) − (− sin(θ))(sin(θ)) = cos2(θ) + sin2(θ) = 1, the determinant of
A is not zero so A is invertible and X ′ = A−1X. Using the formula given in Equation 8.2 with
det(A) = 1, we find

A−1 =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
so that

X ′ = A−1X[
x′

y′

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
[
x′

y′

]
=

[
x cos(θ) + y sin(θ)
−x sin(θ) + y cos(θ)

]
From which we get x′ = x cos(θ) + y sin(θ) and y′ = −x sin(θ) + y cos(θ). To summarize,

Theorem 11.9. Rotation of Axes: Suppose the positive x and y axes are rotated counter-
clockwise through an angle θ to produce the axes x′ and y′, respectively. Then the coordinates
P (x, y) and P (x′, y′) are related by the following systems of equations{

x = x′ cos(θ)− y′ sin(θ)
y = x′ sin(θ) + y′ cos(θ)

and

{
x′ = x cos(θ) + y sin(θ)
y′ = −x sin(θ) + y cos(θ)

We put the formulas in Theorem 11.9 to good use in the following example.

1Sound familiar? In Section 11.4, the equations x = r cos(θ) and y = r sin(θ) make it easy to convert points
from polar coordinates into rectangular coordinates, and they make it easy to convert equations from rectangular
coordinates into polar coordinates.

2We could, of course, interchange the roles of x and x′, y and y′ and replace φ with −φ to get x′ and y′ in terms
of x and y, but that seems like cheating. The matrix A introduced here is revisited in the Exercises.
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Example 11.6.1. Suppose the x and y axes are both rotated counter-clockwise through an angle
θ = π

3 to produce the x′ and y′ axes, respectively.

1. Let P (x, y) = (2,−4) and find P (x′, y′). Check your answer algebraically and graphically.

2. Convert the equation 21x2 + 10xy
√

3 + 31y2 = 144 to an equation in x′ and y′ and graph.

Solution.

1. If P (x, y) = (2,−4) then x = 2 and y = −4. Using these values for x and y along with
θ = π

3 , Theorem 11.9 gives x′ = x cos(θ) + y sin(θ) = 2 cos
(
π
3

)
+ (−4) sin

(
π
3

)
which simplifies

to x′ = 1 − 2
√

3. Similarly, y′ = −x sin(θ) + y cos(θ) = (−2) sin
(
π
3

)
+ (−4) cos

(
π
3

)
which

gives y′ = −
√

3− 2 = −2−
√

3. Hence P (x′, y′) =
(
1− 2

√
3,−2−

√
3
)
. To check our answer

algebraically, we use the formulas in Theorem 11.9 to convert P (x′, y′) =
(
1− 2

√
3,−2−

√
3
)

back into x and y coordinates. We get

x = x′ cos(θ)− y′ sin(θ)

= (1− 2
√

3) cos
(
π
3

)
− (−2−

√
3) sin

(
π
3

)
=

(
1
2 −
√

3
)
−
(
−
√

3− 3
2

)
= 2

Similarly, using y = x′ sin(θ) + y′ cos(θ), we obtain y = −4 as required. To check our answer
graphically, we sketch in the x′-axis and y′-axis to see if the new coordinates P (x′, y′) =(
1− 2

√
3,−2−

√
3
)
≈ (−2.46,−3.73) seem reasonable. Our graph is below.

x

y

x′

y′

P (x, y) = (2,−4)
P (x′, y′) ≈ (−2.46,−3.73)

π
3

π
3

2. To convert the equation 21x2 +10xy
√

3+31y2 = 144 to an equation in the variables x′ and y′,

we substitute x = x′ cos
(
π
3

)
−y′ sin

(
π
3

)
= x′

2 −
y′
√

3
2 and y = x′ sin

(
π
3

)
+y′ cos

(
π
3

)
= x′

√
3

2 + y′

2
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and simplify. While this is by no means a trivial task, it is nothing more than a hefty dose
of Beginning Algebra. We will not go through the entire computation, but rather, the reader
should take the time to do it. Start by verifying that

x2 =
(x′)2

4
−x
′y′
√

3

2
+

3(y′)2

4
, xy =

(x′)2
√

3

4
−x
′y′

2
− (y′)2

√
3

4
, y2 =

3(x′)2

4
+
x′y′
√

3

2
+

(y′)2

4

To our surprise and delight, the equation 21x2 + 10xy
√

3 + 31y2 = 144 in xy-coordinates

reduces to 36(x′)2 + 16(y′)2 = 144, or (x′)2

4 + (y′)2

9 = 1 in x′y′-coordinates. The latter is an
ellipse centered at (0, 0) with vertices along the y′-axis with (x′y′-coordinates) (0,±3) and
whose minor axis has endpoints with (x′y′-coordinates) (±2, 0). We graph it below.

x

y

x′

y′

π
3

π
3

21x2 + 10xy
√

3 + 31y2 = 144

The elimination of the troublesome ‘xy’ term from the equation 21x2 + 10xy
√

3 + 31y2 = 144 in
Example 11.6.1 number 2 allowed us to graph the equation by hand using what we learned in
Chapter 7. It is natural to wonder if we can always do this. That is, given an equation of the form
Ax2+Bxy+Cy2+Dx+Ey+F = 0, with B 6= 0, is there an angle θ so that if we rotate the x and y-
axes counter-clockwise through that angle θ, the equation in the rotated variables x′ and y′ contains
no x′y′ term? To explore this conjecture, we make the usual substitutions x = x′ cos(θ)− y′ sin(θ)
and y = x′ sin(θ) + y′ cos(θ) into the equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 and set the
coefficient of the x′y′ term equal to 0. Terms containing x′y′ in this expression will come from the
first three terms of the equation: Ax2, Bxy and Cy2. We leave it to the reader to verify that

x2 = (x′)2 cos2(θ)− 2x′y′ cos(θ) sin(θ) + (y′)2 sin(θ)

xy = (x′)2 cos(θ) sin(θ) + x′y′
(
cos2(θ)− sin2(θ)

)
− (y′)2 cos(θ) sin(θ)

y2 = (x′)2 sin2(θ) + 2x′y′ cos(θ) sin(θ) + (y′)2 cos2(θ)
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The contribution to the x′y′-term fromAx2 is−2A cos(θ) sin(θ), fromBxy it isB
(
cos2(θ)− sin2(θ)

)
,

and from Cy2 it is 2C cos(θ) sin(θ). Equating the x′y′-term to 0, we get

−2A cos(θ) sin(θ) +B
(
cos2(θ)− sin2(θ)

)
+ 2C cos(θ) sin(θ) = 0

−A sin(2θ) +B cos(2θ) + C sin(2θ) = 0 Double Angle Identities

From this, we get B cos(2θ) = (A − C) sin(2θ), and our goal is to solve for θ in terms of the
coefficients A, B and C. Since we are assuming B 6= 0, we can divide both sides of this equation
by B. To solve for θ we would like to divide both sides of the equation by sin(2θ), provided of
course that we have assurances that sin(2θ) 6= 0. If sin(2θ) = 0, then we would have B cos(2θ) = 0,
and since B 6= 0, this would force cos(2θ) = 0. Since no angle θ can have both sin(2θ) = 0 and

cos(2θ) = 0, we can safely assume sin(2θ) 6= 0.3 We get cos(2θ)
sin(2θ) = A−C

B , or cot(2θ) = A−C
B . We have

just proved the following theorem.

Theorem 11.10. The equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 with B 6= 0 can be
transformed to an equation in variables x′ and y′ without any x′y′ terms by rotating the x and y
axes counter-clockwise through an angle θ which satisfies cot(2θ) = A−C

B .

We put Theorem 11.10 to good use in the following example.

Example 11.6.2. Graph the following equations.

1. 5x2 + 26xy + 5y2 − 16x
√

2 + 16y
√

2− 104 = 0

2. 16x2 + 24xy + 9y2 + 15x− 20y = 0

Solution.

1. Since the equation 5x2 + 26xy + 5y2 − 16x
√

2 + 16y
√

2 − 104 = 0 is already given to us
in the form required by Theorem 11.10, we identify A = 5, B = 26 and C = 5 so that
cot(2θ) = A−C

B = 5−5
26 = 0. This means cot(2θ) = 0 which gives θ = π

4 + π
2k for integers k.

We choose θ = π
4 so that our rotation equations are x = x′

√
2

2 − y′
√

2
2 and y = x′

√
2

2 + y′
√

2
2 .

The reader should verify that

x2 =
(x′)2

2
− x′y′ + (y′)2

2
, xy =

(x′)2

2
− (y′)2

2
, y2 =

(x′)2

2
+ x′y′ +

(y′)2

2

Making the other substitutions, we get that 5x2 + 26xy + 5y2 − 16x
√

2 + 16y
√

2 − 104 = 0

reduces to 18(x′)2 − 8(y′)2 + 32y′ − 104 = 0, or (x′)2

4 − (y′−2)2

9 = 1. The latter is the equation
of a hyperbola centered at the x′y′-coordinates (0, 2) opening in the x′ direction with vertices
(±2, 2) (in x′y′-coordinates) and asymptotes y′ = ±3

2x
′ + 2. We graph it below.

3The reader is invited to think about the case sin(2θ) = 0 geometrically. What happens to the axes in this case?
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2. From 16x2 + 24xy + 9y2 + 15x − 20y = 0, we get A = 16, B = 24 and C = 9 so that
cot(2θ) = 7

24 . Since this isn’t one of the values of the common angles, we will need to use
inverse functions. Ultimately, we need to find cos(θ) and sin(θ), which means we have two
options. If we use the arccotangent function immediately, after the usual calculations we
get θ = 1

2arccot
(

7
24

)
. To get cos(θ) and sin(θ) from this, we would need to use half angle

identities. Alternatively, we can start with cot(2θ) = 7
24 , use a double angle identity, and

then go after cos(θ) and sin(θ). We adopt the second approach. From cot(2θ) = 7
24 , we have

tan(2θ) = 24
7 . Using the double angle identity for tangent, we have 2 tan(θ)

1−tan2(θ)
= 24

7 , which

gives 24 tan2(θ)+14 tan(θ)−24 = 0. Factoring, we get 2(3 tan(θ)+4)(4 tan(θ)−3) = 0 which
gives tan(θ) = −4

3 or tan(θ) = 3
4 . While either of these values of tan(θ) satisfies the equation

cot(2θ) = 7
24 , we choose tan(θ) = 3

4 , since this produces an acute angle,4 θ = arctan
(

3
4

)
. To

find the rotation equations, we need cos(θ) = cos
(
arctan

(
3
4

))
and sin(θ) = sin

(
arctan

(
3
4

))
.

Using the techniques developed in Section 10.6 we get cos(θ) = 4
5 and sin(θ) = 3

5 . Our rotation

equations are x = x′ cos(θ) − y′ sin(θ) = 4x′

5 −
3y′

5 and y = x′ sin(θ) + y′ cos(θ) = 3x′

5 + 4y′

5 .
As usual, we now substitute these quantities into 16x2 + 24xy + 9y2 + 15x − 20y = 0 and
simplify. As a first step, the reader can verify

x2 =
16(x′)2

25
−24x′y′

25
+

9(y′)2

25
, xy =

12(x′)2

25
+

7x′y′

25
−12(y′)2

25
, y2 =

9(x′)2

25
+

24x′y′

25
+

16(y′)2

25

Once the dust settles, we get 25(x′)2 − 25y′ = 0, or y′ = (x′)2, whose graph is a parabola
opening along the positive y′-axis with vertex (0, 0). We graph this equation below.

x

y

x′
y′

θ = π
4

5x2 + 26xy + 5y2 − 16x
√

2 + 16y
√

2− 104 = 0

x

y

x′

y′

θ = arctan
(

3
4

)

16x2 + 24xy + 9y2 + 15x− 20y = 0

4As usual, there are infinitely many solutions to tan(θ) = 3
4
. We choose the acute angle θ = arctan

(
3
4

)
. The

reader is encouraged to think about why there is always at least one acute answer to cot(2θ) = A−C
B

and what this
means geometrically in terms of what we are trying to accomplish by rotating the axes. The reader is also encouraged
to keep a sharp lookout for the angles which satisfy tan(θ) = − 4

3
in our final graph. (Hint:

(
3
4

) (
− 4

3

)
= −1.)
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We note that even though the coefficients of x2 and y2 were both positive numbers in parts 1 and 2
of Example 11.6.2, the graph in part 1 turned out to be a hyperbola and the graph in part 2 worked
out to be a parabola. Whereas in Chapter 7, we could easily pick out which conic section we were
dealing with based on the presence (or absence) of quadratic terms and their coefficients, Example
11.6.2 demonstrates that all bets are off when it comes to conics with an xy term which require
rotation of axes to put them into a more standard form. Nevertheless, it is possible to determine
which conic section we have by looking at a special, familiar combination of the coefficients of the
quadratic terms. We have the following theorem.

Theorem 11.11. Suppose the equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 describes a non-
degenerate conic section.a

• If B2 − 4AC > 0 then the graph of the equation is a hyperbola.

• If B2 − 4AC = 0 then the graph of the equation is a parabola.

• If B2 − 4AC < 0 then the graph of the equation is an ellipse or circle.

aRecall that this means its graph is either a circle, parabola, ellipse or hyperbola. See page 399.

As you may expect, the quantity B2−4AC mentioned in Theorem 11.11 is called the discriminant
of the conic section. While we will not attempt to explain the deep Mathematics which produces this
‘coincidence’, we will at least work through the proof of Theorem 11.11 mechanically to show that it
is true.5 First note that if the coefficient B = 0 in the equation Ax2+Bxy+Cy2+Dx+Ey+F = 0,
Theorem 11.11 reduces to the result presented in Exercise 10 in Section 7.5, so we proceed here
under the assumption that B 6= 0. We rotate the xy-axes counter-clockwise through an angle
θ which satisfies cot(2θ) = A−C

B to produce an equation with no x′y′-term in accordance with
Theorem 11.10: A′(x′)2 + C(y′)2 + Dx′ + Ey′ + F ′ = 0. In this form, we can invoke Exercise 10
in Section 7.5 once more using the product A′C ′. Our goal is to find the product A′C ′ in terms of
the coefficients A, B and C in the original equation. To that end, we make the usual substitutions
x = x′ cos(θ) − y′ sin(θ) y = x′ sin(θ) + y′ cos(θ) into Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. We
leave it to the reader to show that, after gathering like terms, the coefficient A′ on (x′)2 and the
coefficient C ′ on (y′)2 are

A′ = A cos2(θ) +B cos(θ) sin(θ) + C sin2(θ)

C ′ = A sin2(θ)−B cos(θ) sin(θ) + C cos2(θ)

In order to make use of the condition cot(2θ) = A−C
B , we rewrite our formulas for A′ and C ′ using

the power reduction formulas. After some regrouping, we get

2A′ = [(A+ C) + (A− C) cos(2θ)] +B sin(2θ)

2C ′ = [(A+ C)− (A− C) cos(2θ)]−B sin(2θ)

Next, we try to make sense of the product

(2A′)(2C ′) = {[(A+ C) + (A− C) cos(2θ)] +B sin(2θ)} {[(A+ C)− (A− C) cos(2θ)]−B sin(2θ)}
5We hope that someday you get to see why this works the way it does.
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We break this product into pieces. First, we use the difference of squares to multiply the ‘first’
quantities in each factor to get

[(A+ C) + (A− C) cos(2θ)] [(A+ C)− (A− C) cos(2θ)] = (A+ C)2 − (A− C)2 cos2(2θ)

Next, we add the product of the ‘outer’ and ‘inner’ quantities in each factor to get

−B sin(2θ) [(A+ C) + (A− C) cos(2θ)]
+B sin(2θ) [(A+ C)− (A− C) cos(2θ)] = −2B(A− C) cos(2θ) sin(2θ)

The product of the ‘last’ quantity in each factor is (B sin(2θ))(−B sin(2θ)) = −B2 sin2(2θ). Putting
all of this together yields

4A′C ′ = (A+ C)2 − (A− C)2 cos2(2θ)− 2B(A− C) cos(2θ) sin(2θ)−B2 sin2(2θ)

From cot(2θ) = A−C
B , we get cos(2θ)

sin(2θ) = A−C
B , or (A−C) sin(2θ) = B cos(2θ). We use this substitution

twice along with the Pythagorean Identity cos2(2θ) = 1− sin2(2θ) to get

4A′C ′ = (A+ C)2 − (A− C)2 cos2(2θ)− 2B(A− C) cos(2θ) sin(2θ)−B2 sin2(2θ)

= (A+ C)2 − (A− C)2
[
1− sin2(2θ)

]
− 2B cos(2θ)B cos(2θ)−B2 sin2(2θ)

= (A+ C)2 − (A− C)2 + (A− C)2 sin2(2θ)− 2B2 cos2(2θ)−B2 sin2(2θ)

= (A+ C)2 − (A− C)2 + [(A− C) sin(2θ)]2 − 2B2 cos2(2θ)−B2 sin2(2θ)

= (A+ C)2 − (A− C)2 + [B cos(2θ)]2 − 2B2 cos2(2θ)−B2 sin2(2θ)

= (A+ C)2 − (A− C)2 +B2 cos2(2θ)− 2B2 cos2(2θ)−B2 sin2(2θ)

= (A+ C)2 − (A− C)2 −B2 cos2(2θ)−B2 sin2(2θ)

= (A+ C)2 − (A− C)2 −B2
[
cos2(2θ) + sin2(2θ)

]
= (A+ C)2 − (A− C)2 −B2

=
(
A2 + 2AC + C2

)
−
(
A2 − 2AC + C2

)
−B2

= 4AC −B2

Hence, B2 − 4AC = −4A′C ′, so the quantity B2 − 4AC has the opposite sign of A′C ′. The result
now follows by applying Exercise 10 in Section 7.5.

Example 11.6.3. Use Theorem 11.11 to classify the graphs of the following non-degenerate conics.

1. 21x2 + 10xy
√

3 + 31y2 = 144

2. 5x2 + 26xy + 5y2 − 16x
√

2 + 16y
√

2− 104 = 0

3. 16x2 + 24xy + 9y2 + 15x− 20y = 0

Solution. This is a straightforward application of Theorem 11.11.
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1. We have A = 21, B = 10
√

3 and C = 31 so B2 − 4AC = (10
√

3)2 − 4(21)(31) = −2304 < 0.
Theorem 11.11 predicts the graph is an ellipse, which checks with our work from Example
11.6.1 number 2.

2. Here, A = 5, B = 26 and C = 5, so B2 − 4AC = 262 − 4(5)(5) = 576 > 0. Theorem 11.11
classifies the graph as a hyperbola, which matches our answer to Example 11.6.2 number 1.

3. Finally, we have A = 16, B = 24 and C = 9 which gives 242 − 4(16)(9) = 0. Theorem 11.11
tells us that the graph is a parabola, matching our result from Example 11.6.2 number 2.

11.6.2 The Polar Form of Conics

In this subsection, we start from scratch to reintroduce the conic sections from a more unified
perspective. We have our ‘new’ definition below.

Definition 11.1. Given a fixed line L, a point F not on L, and a positive number e, a conic
section is the set of all points P such that

the distance from P to F

the distance from P to L
= e

The line L is called the directrix of the conic section, the point F is called a focus of the conic
section, and the constant e is called the eccentricity of the conic section.

We have seen the notions of focus and directrix before in the definition of a parabola, Definition 7.3.
There, a parabola is defined as the set of points equidistant from the focus and directrix, giving an
eccentricity e = 1 according to Definition 11.1. We have also seen the concept of eccentricity before.
It was introduced for ellipses in Definition 7.5 in Section 7.4, and later in Exercise 7 in Section 7.5.
There, e was also defined as a ratio of distances, though in these cases the distances involved were
measurements from the center to a focus and from the center to a vertex. One way to reconcile the
‘old’ ideas of focus, directrix and eccentricity with the ‘new’ ones presented in Definition 11.1 is
to derive equations for the conic sections using Definition 11.1 and compare these parameters with
what we know from Chapter 7. We begin by assuming the conic section has eccentricity e, a focus
F at the origin and that the directrix is the vertical line x = −d as in the figure below.

y

x

P (r, θ)

x = −d

r cos(θ)d

O = F

θ

r
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Using a polar coordinate representation P (r, θ) for a point on the conic with r > 0, we get

e =
the distance from P to F

the distance from P to L
=

r

d+ r cos(θ)

so that r = e(d+ r cos(θ)). Solving this equation for r, yields

r =
ed

1− e cos(θ)

At this point, we convert the equation r = e(d + r cos(θ)) back into a rectangular equation in the
variables x and y. If e > 0, but e 6= 1, the usual conversion process outlined in Section 11.4 gives6((

1− e2
)2

e2d2

)(
x− e2d

1− e2

)2

+

(
1− e2

e2d2

)
y2 = 1

We leave it to the reader to show if 0 < e < 1, this is the equation of an ellipse centered at
(
e2d

1−e2 , 0
)

with major axis along the x-axis. Using the notation from Section 7.4, we have a2 = e2d2

(1−e2)2 and

b2 = e2d2

1−e2 , so the major axis has length 2ed
1−e2 and the minor axis has length 2ed√

1−e2 . Moreover, we find

that one focus is (0, 0) and working through the formula given in Definition 7.5 gives the eccentricity

to be e, as required. If e > 1, then the equation generates a hyperbola with center
(
e2d

1−e2 , 0
)

whose

transverse axis lies along the x-axis. Since such hyperbolas have the form (x−h)2

a2 − y2

b2
= 1, we need

to take the opposite reciprocal of the coefficient of y2 to find b2. We get7 a2 = e2d2

(1−e2)2 = e2d2

(e2−1)2 and

b2 = − e2d2

1−e2 = e2d2

e2−1
, so the transverse axis has length 2ed

e2−1
and the conjugate axis has length 2ed√

e2−1
.

Additionally, we verify that one focus is at (0, 0), and the formula given in Exercise 7 in Section
7.5 gives the eccentricity is e in this case as well. If e = 1, the equation r = ed

1−e cos(θ) reduces to

r = d
1−cos(θ) which gives the rectangular equation y2 = 2d

(
x+ d

2

)
. This is a parabola with vertex(

−d
2 , 0
)

opening to the right. In the language of Section 7.3, 4p = 2d so p = d
2 , the focus is (0, 0),

the focal diameter is 2d and the directrix is x = −d, as required. Hence, we have shown that in all
cases, our ‘new’ understanding of ‘conic section’, ‘focus’, ‘eccentricity’ and ‘directrix’ as presented
in Definition 11.1 correspond with the ‘old’ definitions given in Chapter 7.
Before we summarize our findings, we note that in order to arrive at our general equation of a conic
r = ed

1−e cos(θ) , we assumed that the directrix was the line x = −d for d > 0. We could have just as
easily chosen the directrix to be x = d, y = −d or y = d. As the reader can verify, in these cases
we obtain the forms r = ed

1+e cos(θ) , r = ed
1−e sin(θ) and r = ed

1+e sin(θ) , respectively. The key thing to
remember is that in any of these cases, the directrix is always perpendicular to the major axis of
an ellipse and it is always perpendicular to the transverse axis of the hyperbola. For parabolas,
knowing the focus is (0, 0) and the directrix also tells us which way the parabola opens. We have
established the following theorem.

6Turn r = e(d+ r cos(θ)) into r = e(d+ x) and square both sides to get r2 = e2(d+ x)2. Replace r2 with x2 + y2,
expand (d+ x)2, combine like terms, complete the square on x and clean things up.

7Since e > 1 in this case, 1− e2 < 0. Hence, we rewrite
(
1− e2

)2
=
(
e2 − 1

)2
to help simplify things later on.
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Theorem 11.12. Suppose e and d are positive numbers. Then

• the graph of r = ed
1−e cos(θ) is the graph of a conic section with directrix x = −d.

• the graph of r = ed
1+e cos(θ) is the graph of a conic section with directrix x = d.

• the graph of r = ed
1−e sin(θ) is the graph of a conic section with directrix y = −d.

• the graph of r = ed
1+e sin(θ) is the graph of a conic section with directrix y = d.

In each case above, (0, 0) is a focus of the conic and the number e is the eccentricity of the conic.

• If 0 < e < 1, the graph is an ellipse whose major axis has length 2ed
1−e2 and whose minor axis

has length 2ed√
1−e2

• If e = 1, the graph is a parabola whose focal diameter is 2d.

• If e > 1, the graph is a hyperbola whose transverse axis has length 2ed
e2−1

and whose conjugate

axis has length 2ed√
e2−1

.

We test out Theorem 11.12 in the next example.

Example 11.6.4. Sketch the graphs of the following equations.

1. r =
4

1− sin(θ)
2. r =

12

3− cos(θ)
3. r =

6

1 + 2 sin(θ)

Solution.

1. From r = 4
1−sin(θ) , we first note e = 1 which means we have a parabola on our hands. Since

ed = 4, we have d = 4 and considering the form of the equation, this puts the directrix
at y = −4. Since the focus is at (0, 0), we know that the vertex is located at the point
(in rectangular coordinates) (0,−2) and must open upwards. With d = 4, we have a focal
diameter of 2d = 8, so the parabola contains the points (±4, 0). We graph r = 4

1−sin(θ) below.

2. We first rewrite r = 12
3−cos(θ) in the form found in Theorem 11.12, namely r = 4

1−(1/3) cos(θ) .

Since e = 1
3 satisfies 0 < e < 1, we know that the graph of this equation is an ellipse. Since

ed = 4, have d = 12 and, based on the form of the equation, we know the directrix is x = −12.
This means the ellipse has a major axis along the x-axis. We can find the vertices of the ellipse
by finding the points of the ellipse which lie on the x-axis. We find r(0) = 6 and r(π) = 3
which correspond to the rectangular points (−3, 0) and (6, 0), so these are our vertices. The
center of the ellipse is the midpoint of the vertices, which in this case is

(
3
2 , 0
)
.8 We know

one focus is (0, 0), which is 3
2 from the center

(
3
2 , 0
)

and this allows us to find the other focus

8As a quick check, we have from Theorem 11.12 the major axis should have length 2ed
1−e2 = (2)(4)

1−(1/3)2
= 9.
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(3, 0), even though we are not asked to do so. Finally, we know from Theorem 11.12 that the
length of the minor axis is 2ed√

1−e2 = 4√
1−(1/3)2

= 6
√

3 which means the endpoints of the minor

axis are
(

3
2 ,±3

√
2
)
. We now have everything we need to graph r = 12

3−cos(θ) .

y = −4

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

r = 4
1−sin(θ)

x

y

x = −12

−3 −2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

r = 12
3−cos(θ)

3. From r = 6
1+2 sin(θ) we get e = 2 > 1 so the graph is a hyperbola. Since ed = 6, we get

d = 3, and from the form of the equation, we know the directrix is y = 3. This means the
transverse axis of the hyperbola lies along the y-axis, so we can find the vertices by looking
where the hyperbola intersects the y-axis. We find r

(
π
2

)
= 2 and r

(
3π
2

)
= −6. These two

points correspond to the rectangular points (0, 2) and (0, 6) which puts the center of the
hyperbola at (0, 4). Since one focus is at (0, 0), which is 4 units away from the center, we
know the other focus is at (0, 8). According to Theorem 11.12, the conjugate axis has a length

of 2ed√
e2−1

= (2)(6)√
22−1

= 4
√

3. Putting this together with the location of the vertices, we get that

the asymptotes of the hyperbola have slopes ± 2
2
√

3
= ±

√
3

3 . Since the center of the hyperbola

is (0, 4), the asymptotes are y = ±
√

3
3 x+ 4. We graph the hyperbola below.

x

y

y = 3

−5 −4 −3 −2 −1 1 2 3 4 5

1

2

4

5

6

7

8

r = 6
1+2 sin(θ)
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In light of Section 11.6.1, the reader may wonder what the rotated form of the conic sections would
look like in polar form. We know from Exercise 10a in Section 11.5 that replacing θ with (θ−φ) in
an expression r = f(θ) rotates the graph of r = f(θ) counter-clockwise by an angle φ. For instance,
to graph r = 4

1−sin(θ−π4 )
all we need to do is rotate the graph of r = 4

1−sin(θ) , which we obtained in

Example 11.6.4 number 1, counter-clockwise by π
4 radians, as shown below.

−4−3−2−1 1 2 3 4

−3

−2

−1

1

2

3

r = 4
1−sin(θ−π4 )

Using rotations, we can greatly simplify the form of the conic sections presented in Theorem 11.12,
since any three of the forms given there can be obtained from the fourth by rotating through some
multiple of π

2 . Since rotations do not affect lengths, all of the formulas for lengths Theorem 11.12
remain intact. In the theorem below, we also generalize our formula for conic sections to include
circles centered at the origin by extending the concept of eccentricity to include e = 0. We conclude
this section with the statement of the following theorem.

Theorem 11.13. Given constants ` > 0, e ≥ 0 and φ, the graph of the equation

r =
`

1− e cos(θ − φ)

is a conic section with eccentricity e and one focus at (0, 0).

• If e = 0, the graph is a circle centered at (0, 0) with radius `.

• If e 6= 0, then the conic has a focus at (0, 0) and the directrix contains the point with polar
coordinates (−d, φ) where d = `

e .

– If 0 < e < 1, the graph is an ellipse whose major axis has length 2ed
1−e2 and whose minor

axis has length 2ed√
1−e2

– If e = 1, the graph is a parabola whose focal diameter is 2d.

– If e > 1, the graph is a hyperbola whose transverse axis has length 2ed
e2−1

and whose

conjugate axis has length 2ed√
e2−1

.
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11.6.3 Exercises

1. Graph the following equations.

(a) x2 + 2xy + y2 − x
√

2 + y
√

2− 6 = 0 (b) 7x2 − 4xy
√

3 + 3y2 − 2x− 2y
√

3− 5 = 0

(c) 13x2 − 34xy
√

3 + 47y2 − 64 = 0 (d) 8x2 + 12xy + 17y2 − 20 = 0

2. Graph the following equations.

(a) r =
2

1− cos(θ)
(b) r =

3

2 + sin(θ)

(c) r =
4

1 + 3 cos(θ)
(d) r =

6

3− cos
(
θ + π

4

)
3. The matrix A(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is called a rotation matrix. We’ve seen this matrix

most recently in the proof of used in the proof of Theorem 11.9.

(a) Show the matrix from Example 8.3.3 in Section 8.3 is none other than A
(
π
4

)
.

(b) Discuss with your classmates how to use A(θ) to rotate points in the plane.

(c) Using the even / odd identities for cosine and sine, show A(θ)−1 = A(−θ). Interpret
this geometrically.
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11.6.4 Answers

1. (a) x2 + 2xy + y2 − x
√

2 + y
√

2− 6 = 0
becomes (x′)2 = −(y′ − 3) after rotating
counter-clockwise through θ = π

4 .

x

y

x′
y′

θ = π
4

x2 + 2xy + y2 − x
√

2 + y
√

2− 6 = 0

(b) 7x2 − 4xy
√

3 + 3y2 − 2x− 2y
√

3− 5 = 0

becomes (x′−2)2

9 +(y′)2 = 1 after rotating
counter-clockwise through θ = π

3

x

y x′

y′ θ = π
3

7x2 − 4xy
√

3 + 3y2 − 2x− 2y
√

3− 5 = 0

(c) 13x2 − 34xy
√

3 + 47y2 − 64 = 0

becomes (y′)2 − (x′)2

16 = 1 after rotating
counter-clockwise through θ = π

6 .

x

y

x′

y′ θ = π
6

13x2 − 34xy
√

3 + 47y2 − 64 = 0

(d) 8x2 + 12xy + 17y2 − 20 = 0

becomes (x′)2 + (y′)2

4 = 1 after rotating
counter-clockwise through θ = arctan(2)

x

y

x′

y′

θ = arctan(2)

8x2 + 12xy + 17y2 − 20 = 0
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2. (a) r = 2
1−cos(θ) is a parabola

directrix x = −2 , vertex (−1, 0)
focus (0, 0), focal diameter 4

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(b) r = 3
2+sin(θ) =

3
2

1+ 1
2

sin(θ)
is an ellipse

directrix y = 3 , vertices (0, 1), (0,−3)
center (0,−2) , foci (0, 0), (0,−2)
minor axis length 2

√
3

x

y

−4 −3 −2 −1 1 2 3 4

−4

−2

−1

1

2

3

4

(c) r = 4
1+3 cos(θ) is a hyperbola

directrix x = 4
3 , vertices (1, 0), (2, 0)

center
(

3
2 , 0
)
, foci (0, 0), (3, 0)

conjugate axis length 2
√

2

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(d) r = 6
3−cos(θ+π

4 )
is the ellipse

r = 6
3−cos(θ) = 2

1− 1
3

cos(θ)

rotated through φ = −π
4

x

y

x′

y′

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

φ = −π
4
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11.7 Polar Form of Complex Numbers

In this section, we return to our study of complex numbers which were first introduced in Section
3.4. Recall that a complex number is a number of the form z = a + bi where a and b are real
numbers and i is the imaginary unit defined by i =

√
−1. The number a is called the real part of

z, denoted Re(z), while the real number b is called the imaginary part of z, denoted Im(z). From
Intermediate Algebra, we know that if z = a + bi = c + di where a, b, c and d are real numbers,
then a = c and b = d, which means Re(z) and Im(z) are well-defined.1 To start off this section,
we associate each complex number z = a + bi with the point (a, b) on the coordinate plane. In
this case, the x-axis is relabeled as the real axis, which corresponds to the real number line as
usual, and the y-axis is relabeled as the imaginary axis, which is demarcated in increments of the
imaginary unit i. The plane determined by these two axes is called the complex plane.

Real Axis

Imaginary Axis

(−4, 2)←→ z = −4 + 2i

(0,−3)←→ z = −3i

(3, 0)←→ z = 3

0−4 −3 −2 −1 1 2 3 4

−4i

−3i

−2i

−i

i

2i

3i

4i

The Complex Plane

Since the ordered pair (a, b) gives the rectangular coordinates associated with the complex number
z = a+ bi, the expression z = a+ bi is called the rectangular form of z. Of course, we could just
as easily associate z with a pair of polar coordinates (r, θ). Although it is not a straightforward as
the definitions of Re(z) and Im(z), we can still give r and θ special names in relation to z.

Definition 11.2. The Modulus and Argument of Complex Numbers: Let z = a+ bi be a
complex number with a = Re(z) and b = Im(z). Let (r, θ) be a polar representation of the point
with rectangular coordinates (a, b) where r ≥ 0.

• The modulus of z, denoted |z|, is defined by |z| = r.

• The angle θ is an argument of z. The set of all arguments of z is denoted arg(z).

• If z 6= 0 and −π < θ ≤ π, then θ is the principal argument of z, written θ = Arg(z).

Some remarks about Definition 11.2 are in order. We know from Section 11.4 that every point in
the plane has infinitely many polar coordinate representations (r, θ) which means it’s worth our

1‘Well-defined’ means that no matter how we express z, the number Re(z) is always the same, and the number
Im(z) is always the same. In other words, Re and Im are functions of complex numbers.
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time to make sure the quantities ‘modulus’, ‘argument’ and ‘principal argument’ are well-defined.
Concerning the modulus, if z = 0 then the point associated with z is the origin. In this case, the
only r-value which can be used here is r = 0. Hence for z = 0, |z| = 0 is well-defined. If z 6= 0,
then the point associated with z is not the origin, and there are two possibilities for r: one positive
and one negative. However, we stipulated r ≥ 0 in our definition so this pins down the value of |z|
to one and only one number. Thus the modulus is well-defined in this case, too.2 Even with the
requirement r ≥ 0, there are infinitely many angles θ which can be used in a polar representation
of a point (r, θ). If z 6= 0 then the point in question is not the origin, so all of these angles θ are
coterminal. Since coterminal angles are exactly 2π radians apart, we are guaranteed that only one
of them lies in the interval (−π, π], and this angle is what we call the principal argument of z,
Arg(z). In fact, the set arg(z) of all arguments of z can be described using set-builder notation
as arg(z) = {Arg(z) + 2πk : k is an integer}.3 If z = 0 then the point in question is the origin,
which we know can be represented in polar coordinates as (0, θ) for any angle θ. In this case, we
have arg(0) = (−∞,∞) and since there is no one value of θ which lies (−π, π], we leave Arg(0)
undefined.4 It is time for an example.

Example 11.7.1. For each of the following complex numbers find Re(z), Im(z), |z|, arg(z), and
Arg(z). Plot z in the complex plane.

1. z =
√

3− i 2. z = −2 + 4i 3. z = 3i 4. z = −117

Solution.

1. For z =
√

3 − i =
√

3 + (−1)i, we have Re(z) =
√

3 and Im(z) = −1. To find |z|, arg(z)
and Arg(z), we need to find a polar representation5 (r, θ) with r ≥ 0 for the point P (

√
3,−1)

associated with z. We know r2 = (
√

3)2 + (−1)2 = 4, so r = ±2. Since we require r ≥ 0,
we choose r = 2, so |z| = 2. Next, we find a corresponding angle θ. Since r > 0 and P lies

in Quadrant IV, θ is a Quadrant IV angle. We know tan(θ) = −1√
3

= −
√

3
3 , so θ = −π

6 + 2πk

for integers k. Hence, arg(z) =
{
−π

6 + 2πk : k is an integer
}

. Of these values, only θ = −π
6

satisfies the requirement that −π < θ ≤ π, hence Arg(z) = −π
6 .

2. The complex number z = −2 + 4i has Re(z) = −2, Im(z) = 4, and is associated with the
point P (−2, 4). Our next task is to find a polar representation (r, θ) for P where r ≥ 0.
Running through the usual calculations gives r = 2

√
5, so |z| = 2

√
5. To find θ, we get

tan(θ) = −2, and since r > 0 and P lies in Quadrant II, we know θ is a Quadrant II
angle. Using a reference angle approach,6 we find θ = π − arctan(2) + 2πk for integers k.
Hence arg(z) = {π − arctan(2) + 2πk : k is an integer}. Only θ = π − arctan(2) satisfies the
requirement −π < θ ≤ π, so Arg(z) = π − arctan(2).

2In case you’re wondering, the use of the absolute value notation |z| for modulus will be explained shortly.
3Note that since arg(z) is a set, we will write ‘θ ∈ arg(z)’ to mean ‘θ is in the set of arguments of z.’ The symbol

being used here, ‘∈,’ is the mathematical symbol which denotes membership in a set.
4If we had Calculus, we would regard Arg(0) as an ‘indeterminate form.’ But we don’t, so we won’t.
5In this solution, we take the time to review how to convert from rectangular coordinates into polar coordinates

in great detail. In future examples, we do not. Review Example 11.4.2 in Section 11.4 as needed.
6See Example 10.6.7 in Section 10.6 for review, if needed.
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3. We rewrite z = 3i as z = 0 + 3i to find Re(z) = 0 and Im(z) = 3. The point in the plane
which corresponds to z is (0, 3) and while we could go through the usual calculations to find
the required polar form of this point, we can almost ‘see’ the answer. The point (0, 3) lies 3
units away from the origin on the positive y-axis. Hence, r = |z| = 3 and θ = π

2 + 2πk for
integers k. We get arg(z) =

{
π
2 + 2πk : k is an integer

}
and Arg(z) = π

2 .

4. As in the previous problem, we write z = −117 = −117 + 0i so Re(z) = −117 and Im(z) = 0.
The number z = −117 corresponds to the point (−117, 0), and this is another instance where
we can determine the polar form ‘by eye.’ The point (−117, 0) is 117 units away from the
origin along the negative x-axis. Hence, r = |z| = 117 and θ = π + 2π = (2k + 1)πk for
integers k. We have arg(z) = {(2k + 1)π : kis an integers}. Only one of these values, θ = π,
just barely lies in the interval (−π, π] which means and Arg(z) = π. We plot z along with
the other numbers in this example below.

Real Axis

Imaginary Axis

z =
√

3− i

z = −2 + 4i

z = 3i

z = −117

−117 −2 −1 1 2 3 4
−i

i

2i

3i

4i

Now that we’ve had some practice computing the modulus and argument of some complex numbers,
it is time to explore their properties. We have the following theorem.

Theorem 11.14. Properties of the Modulus: Let z and w be complex numbers.

• |z| is the distance from z to 0 in the complex plane

• |z| ≥ 0 and |z| = 0 if and only if z = 0

• |z| =
√

Re(z)2 + Im(z)2

• Product Rule: |zw| = |z||w|

• Power Rule: |zn| = |z|n for all natural numbers, n

• Quotient Rule:
∣∣∣ z
w

∣∣∣ =
|z|
|w|

, provided w 6= 0

To prove the first three properties in Theorem 11.14, suppose z = a + bi where a and b are real
numbers. To determine |z|, we find a polar representation (r, θ) with r ≥ 0 for the point (a, b).
From Section 11.4, we know r2 = a2 + b2 so that r = ±

√
a2 + b2. Since we require r ≥ 0, then it

must be that r =
√
a2 + b2, which means |z| =

√
a2 + b2. Using the distance formula, we find the
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distance from (0, 0) to (a, b) is also
√
a2 + b2, establishing the first property.7 The second property

follows from the first. Since |z| is a distance, |z| ≥ 0. Furthermore, |z| = 0 if and only if the
distance from z to 0 is 0, and the latter happens if and only if z = 0.8 For the third property, we
note that, by definition, a = Re(z) and b = Im(z), so z =

√
a2 + b2 =

√
Re(z)2 + Im(z)2.

To prove the product rule, suppose z = a+ bi and w = c+ di for real numbers a, b, c and d. Then
zw = (a+ bi)(c+ di). After the usual arithmetic9 we get zw = (ac− bd) + (ad+ bc)i. Therefore,

|zw| =
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 − 2abcd+ b2d2 + a2d2 + 2abcd+ b2c2 Expand

=
√
a2c2 + a2d2 + b2c2 + b2d2 Rearrange terms

=
√
a2 (c2 + d2) + b2 (c2 + d2) Factor

=
√

(a2 + b2) (c2 + d2) Factor

=
√
a2 + b2

√
c2 + d2 Product Rule for Radicals

= |z||w| Definition of |z| and |w|
Hence |zw| = |z||w| as required.

Now that the Product Rule has been established, we use it and the Principle of Mathematical
Induction10 to prove the power rule. Let P (n) be the statement |zn| = |z|n. Then P (1) is true
since

∣∣z1
∣∣ = |z| = |z|1. Next, assume P (k) is true. That is, assume

∣∣zk∣∣ = |z|k for some k ≥ 1.
Our job is to show that P (k + 1) is true, namely

∣∣zk+1
∣∣ = |z|k+1. As is customary with induction

proofs, we first try to reduce the problem in such a way as to use the Induction Hypothesis.∣∣zk+1
∣∣ =

∣∣zkz∣∣ Properties of Exponents

=
∣∣zk∣∣ |z| Product Rule

= |z|k|z| Induction Hypothesis

= |z|k+1 Properties of Exponents

Hence, P (k + 1) is true, which means |zn| = |z|n is true for all natural numbers n.

Like the Power Rule, the Quotient Rule can also be established with the help of the Product Rule.
We assume w 6= 0 (so |w| 6= 0) and we get∣∣∣ z

w

∣∣∣ =

∣∣∣∣(z)( 1

w

)∣∣∣∣
= |z|

∣∣∣∣ 1

w

∣∣∣∣ Product Rule.

7Since the absolute value |x| of a real number x can be viewed as the distance from x to 0 on the number line,
this first property justifies the notation |z| for modulus. We leave it to the reader to show that if z is real, then the
definition of modulus coincides with absolute value so the notation |z| is unambiguous.

8This may be considered by some to be a bit of a cheat, so we work through the underlying Algebra to see this is
true. We know |z| = 0 if and only if

√
a2 + b2 = 0 if and only if a2 + b2 = 0, which is true if and only if a = b = 0.

The latter happens if and only if z = a+ bi = 0. There.
9See Example 3.4.1 in Section 3.4 for a review of complex number arithmetic.

10See Section 9.3 for a review of this technique.
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Hence, the proof really boils down to showing
∣∣ 1
w

∣∣ = 1
|w| . This is left as an exercise.

Next, we characterize the argument of a complex number in terms of its real and imaginary parts.

Theorem 11.15. Properties of the Argument: Let z be a complex number.

• If Re(z) 6= 0 and θ ∈ arg(z), then tan(θ) = Im(z)
Re(z) .

• If Re(z) = 0 and Im(z) > 0, then arg(z) =
{
π
2 + 2πk : k is an integer

}
.

• If Re(z) = 0 and Im(z) < 0, then arg(z) =
{
−π

2 + 2πk : k is an integer
}

.

• If Re(z) = Im(z) = 0, then z = 0 and arg(z) = (−∞,∞).

To prove Theorem 11.15, suppose z = a+bi for real numbers a and b. By definition, a = Re(z) and
b = Im(z), so the point associated with z is (a, b) = (Re(z), Im(z)). From Section 11.4, we know

that if (r, θ) is a polar representation for (Re(z), Im(z)), then tan(θ) = Im(z)
Re(z) , provided Re(z) 6= 0.

If Re(z) = 0 and Im(z) > 0, then z lies on the positive imaginary axis. Since we take r > 0, we
have that θ is coterminal with π

2 , and the result follows. If Re(z) = 0 and Im(z) < 0, then z lies
on the negative imaginary axis, and a similar argument shows θ is coterminal with −π

2 . The last
property in the theorem was already discussed in the remarks following Definition 11.2.

Our next goal is to completely marry the Geometry and the Algebra of the complex numbers. To
that end, consider the figure below.

Real Axis

Imaginary Axis

(a, b)←→ z = a+ bi←→ (r, θ)

0

θ ∈ arg(z)

a

bi

|z|
=

√ a
2 +

b2
=
r

Polar coordinates, (r, θ) associated with z = a+ bi with r ≥ 0.

We know from Theorem 11.7 that a = r cos(θ) and b = r sin(θ). Making these substitutions for a
and b gives z = a+ bi = r cos(θ) + r sin(θ)i = r [cos(θ) + i sin(θ)]. The expression ‘cos(θ) + i sin(θ)’
is abbreviated cis(θ) so we can write z = rcis(θ). Since r = |z| and θ ∈ arg(z), we get

Definition 11.3. A Polar Form of a Complex Number: Suppose z is a complex number
and θ ∈ arg(z). The expression:

|z|cis(θ) = |z| [cos(θ) + i sin(θ)]

is called a polar form for z.
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Since there are infinitely many choices for θ ∈ arg(z), there infinitely many polar forms for z, so
we used the indefinite article ‘a’ in Definition 11.3. It is time for an example.

Example 11.7.2.

1. Find the rectangular form of the following complex numbers. Find Re(z) and Im(z).

(a) z = 4cis
(

2π
3

)
(b) z = 2cis

(
−3π

4

)
(c) z = 3cis(0) (d) z = cis

(
π
2

)
2. Use the results from Example 11.7.1 to find a polar form of the following complex numbers.

(a) z =
√

3− i (b) z = −2 + 4i (c) z = 3i (d) z = −117

Solution.

1. The key to this problem is to write out cis(θ) as cos(θ) + i sin(θ).

(a) By definition, z = 4cis
(

2π
3

)
= 4

[
cos
(

2π
3

)
+ i sin

(
2π
3

)]
. After some simplifying, we get

z = −2 + 2i
√

3, so that Re(z) = −2 and Im(z) = 2
√

3.

(b) Expanding, we get z = 2cis
(
−3π

4

)
= 2

[
cos
(
−3π

4

)
+ i sin

(
−3π

4

)]
. From this, we find

z = −
√

2− i
√

2, so Re(z) = −
√

2 = Im(z).

(c) We get z = 3cis(0) = 3 [cos(0) + i sin(0)] = 3. Writing 3 = 3 + 0i, we get Re(z) = 3 and
Im(z) = 0, which makes sense seeing as 3 is a real number.

(d) Lastly, we have z = cis
(
π
2

)
= cos

(
π
2

)
+ i sin

(
π
2

)
= i. Since i = 0 + 1i, we get Re(z) = 0

and Im(z) = 1. Since i is called the ‘imaginary unit,’ these answers make perfect sense.

2. To write a polar form of a complex number z, we need two pieces of information: the modulus
|z| and an argument (not necessarily the principal argument) of z. We shamelessly mine our
solution to Example 11.7.1 to find what we need.

(a) For z =
√

3 − i, |z| = 2 and θ = −π
6 , so z = 2cis

(
−π

6

)
. We can check our answer by

converting it back to rectangular form to see that it simplifies to z =
√

3− i.
(b) For z = −2 + 4i, |z| = 2

√
5 and θ = π − arctan(2). Hence, z = 2

√
5cis(π − arctan(2)).

It is a good exercise to actually show that this polar form reduces to z = −2 + 4i.

(c) For z = 3i, |z| = 3 and θ = π
2 . In this case, z = 3cis

(
π
2

)
. This can be checked

geometrically. Head out 3 units from 0 along the positive real axis. Rotating π
2 radians

counter-clockwise lands you exactly 3 units above 0 on the imaginary axis at z = 3i.

(d) Last but not least, for z = −117, |z| = 117 and θ = π. We get z = 117cis(π). As with
the previous problem, our answer is easily checked geometrically.
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The following theorem summarizes the advantages of working with complex numbers in polar form.

Theorem 11.16. Products, Powers and Quotients Complex Numbers in Polar Form:
Suppose z and w are complex numbers with polar forms z = |z|cis(α) and w = |w|cis(β). Then

• Product Rule: zw = |z||w|cis(α+ β)

• Power Rule:a zn = |z|ncis(nθ) for every natural number n

• Quotient Rule:
z

w
=
|z|
|w|

cis(α− β), provided |w| 6= 0

aThis is DeMoivre’s Theorem

The proof of Theorem 11.16 requires a healthy mix of definition, arithmetic and identities. We first
start with the product rule.

zw = [|z|cis(α)] [|w|cis(β)]

= |z||w| [cos(α) + i sin(α)] [cos(β) + i sin(β)]

We now focus on the quantity in brackets on the right hand side of the equation.

[cos(α) + i sin(α)] [cos(β) + i sin(β)] = cos(α) cos(β) + i cos(α) sin(β)
+ i sin(α) cos(β) + i2 sin(α) sin(β)

= cos(α) cos(β) + i2 sin(α) sin(β) Rearranging terms
+ i sin(α) cos(β) + i cos(α) sin(β)

= (cos(α) cos(β)− sin(α) sin(β)) Since i2 = −1
+ i (sin(α) cos(β) + cos(α) sin(β)) Factor out i

= cos(α+ β) + i sin(α+ β) Sum identities

= cis(α+ β) Definition of ‘cis’

Putting this together with our earlier work, we get zw = |z||w|cis(α+ β), as required.

Moving right along, we next take aim at the Power Rule, better known as DeMoivre’s Theorem.11

We proceed by induction on n. Let P (n) be the sentence zn = |z|ncis(nθ). Then P (1) is true, since
z1 = z = |z|cis(θ) = |z|1cis(1 · θ). We now assume P (k) is true, that is, we assume zk = |z|kcis(kθ)
for some k ≥ 1. Our goal is to show that P (k + 1) is true, or that zk+1 = |z|k+1cis((k + 1)θ). We
have

zk+1 = zkz Properties of Exponents

=
(
|z|kcis(kθ)

)
(|z|cis(θ)) Induction Hypothesis

=
(
|z|k|z|

)
cis(kθ + θ) Product Rule

= |z|k+1cis((k + 1)θ)

11Compare this proof with the proof of the Power Rule in Theorem 11.14.

http://en.wikipedia.org/wiki/Abraham_de_Moivre
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Hence, assuming P (k) is true, we have that P (k + 1) is true, so by the Principle of Mathematical
Induction, zn = |z|ncis(nθ) for all natural numbers n.

The last property in Theorem 11.16 to prove is the quotient rule. Assuming |w| 6= 0 we have

z

w
=
|z|cis(α)

|w|cis(β)

=

(
|z|
|w|

)
cos(α) + i sin(α)

cos(β) + i sin(β)

Next, we multiply both the numerator and denominator of the right hand side by (cos(β)−i sin(β))
which is the complex conjugate of (cos(β) + i sin(β)) to get

z

w
=

(
|z|
|w|

)
cos(α) + i sin(α)

cos(β) + i sin(β)
· cos(β)− i sin(β)

cos(β)− i sin(β)

If we let N = [cos(α) + i sin(α)] [cos(β)− i sin(β)] and simplify we get

N = [cos(α) + i sin(α)] [cos(β)− i sin(β)]

= cos(α) cos(β)− i cos(α) sin(β) + i sin(α) cos(β)− i2 sin(α) sin(β) Expand

= [cos(α) cos(β) + sin(α) sin(β)] + i [sin(α) cos(β)− cos(α) sin(β)] Rearrange and Factor

= cos(α− β) + i sin(α− β) Difference Identities

= cis(α− β) Definition of ‘cis’

If we call the denominator D then we get

D = [cos(β) + i sin(β)] [cos(β)− i sin(β)]

= cos2(β)− i cos(β) sin(β) + i cos(β) sin(β)− i2 sin2(β) Expand

= cos2(β)− i2 sin2(β) Simplify

= cos2(β) + sin2(β) Again, i2 = −1

= 1 Pythagorean Identity

Putting it all together, we get

z

w
=

(
|z|
|w|

)
cos(α) + i sin(α)

cos(β) + i sin(β)
· cos(β)− i sin(β)

cos(β)− i sin(β)

=

(
|z|
|w|

)
cis(α− β)

1

=
|z|
|w|

cis(α− β)

and we are done. The next example makes good use of Theorem 11.16.
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Example 11.7.3. Let z = 2
√

3 + 2i and w = −1 + i
√

3. Use Theorem 11.16 to find the following.

1. zw 2. w5 3.
z

w

Write your final answers in rectangular form.

Solution. In order to use Theorem 11.16, we need to write z and w in polar form. For z = 2
√

3+2i,

we find |z| =
√

(2
√

3)2 + (2)2 =
√

16 = 4. If θ ∈ arg(z), we know tan(θ) = Im(z)
Re(z) = 2

2
√

3
=
√

3
3 . Since

z lies in Quadrant I, we have θ = π
6 + 2πk for integers k. Hence, z = 4cis

(
π
6

)
. For w = −1 + i

√
3,

we have |w| =
√

(−1)2 + (
√

3)2 = 2. For an argument θ of w, we have tan(θ) =
√

3
−1 = −

√
3. Since

w lies in Quadrant II, θ = 2π
3 + 2πk for integers k and w = 2cis

(
2π
3

)
. We can now proceed.

1. We get zw =
(
4cis

(
π
6

)) (
2cis

(
2π
3

))
= 8cis

(
π
6 + 2π

3

)
= 8cis

(
5π
6

)
= 8

[
cos
(

5π
6

)
+ i sin

(
5π
6

)]
.

After simplifying, we get zw = −4
√

3 + 4.

2. We use DeMoivre’s Theorem which yields w5 =
[
2cis

(
2π
3

)]5
= 25cis

(
5 · 2π

3

)
= 32cis

(
10π
3

)
.

Since 10π
3 is coterminal with 4π

3 , we get w5 = 32
[
cos
(

4π
3

)
+ i sin

(
4π
3

)]
= −16− 16i

√
3.

3. Last, but not least, we have
z

w
=

4cis(π6 )
2cis( 2π

3 )
= 4

2cis
(
π
6 −

2π
3

)
= 2cis

(
−π

2

)
. Since −π

2 is a

quadrantal angle, we can ‘see’ the rectangular form by moving out 2 units along the positive
real axis, then rotating π

2 radians clockwise to arrive at the point 2 units below 0 on the
imaginary axis. The long and short of it is that z

w = −2i.

Some remarks are in order. First, the reader may not be sold on using the polar form of complex
numbers to multiply complex numbers – especially if they aren’t given in polar form to begin with.
Indeed, a lot of work was needed to convert the numbers z and w in Example 11.7.3 into polar form,
compute their product, and convert back to rectangular form – certainly more work than is required
to multiply out zw = (2

√
3 + 2i)(−1 + i

√
3) the old-fashioned way. However, Theorem 11.16 pays

huge dividends when computing powers of complex numbers. Consider how we computed w5 above
and compare that to using the Binomial Theorem, Theorem 9.4, to accomplish the same feat by
expanding (−1 + i

√
3)5. Division is tricky in the best of times, and we saved ourselves a lot of

time and effort using Theorem 11.16 to find and simplify z
w using their polar forms as opposed to

starting with 2
√

3+2i
−1+i

√
3
, rationalizing the denominator, and so forth.

There is geometric reason for studying these polar forms and we would be derelict in our duties if
we did not mention the Geometry hidden in Theorem 11.16. Take the product rule, for instance.
If z = |z|cis(α) and w = |w|cis(β), the formula zw = |z||w|cis(α + β) can be viewed geometrically
as a two step process. The multiplication of |z| by |w| can be interpreted as magnifying12 the
distance |z| from z to 0, by the factor |w|. Adding the argument of w to the argument of z can be
interpreted geometrically as a rotation of β radians counter-clockwise.13 Focusing on z and w from

12Assuming |w| > 1.
13Assuming β > 0.
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Example 11.7.3, we can arrive at the product zw by plotting z, doubling its distance from 0 (since
|w| = 2), and rotating 2π

3 radians counter-clockwise. The sequence of diagrams below attempt to
geometrically describe this process.

Real Axis

Imaginary Axis

0

z = 4cis
(
π
6

)
z|w| = 8cis

(
π
6

)

1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

Real Axis

Imaginary Axis

0

zw = 8cis
(
π
6

+ 2π
3

)
z|w| = 8cis

(
π
6

)

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

Multiplying z by |w| = 2. Rotating counter-clockwise by Arg(w) = 2π
3

radians.

Visualizing zw for z = 4cis
(
π
6

)
and w = 2cis

(
2π
3

)
.

We may also visualize division similarly. Here, the formula z
w = |z|

|w|cis(α − β) may be interpreted

shrinking14 the distance from 0 to z by the factor |w|, followed up by a clockwise15 rotation of β
radians. In the case of z and w from Example 11.7.3, we arrive at z

w by first halving the distance
from 0 to z, then rotating clockwise 2π

3 radians.

Real Axis

Imaginary Axis

0

(
1
|w|

)
z = 2cis

(
π
6

)
z = 4cis

(
π
6

)

1 2 3

i

2i

3i

Real Axis

Imaginary Axis

0

zw = 2cis
(
π
6

2π
3

)

(
1
|w|

)
z = 2cis

(
π
6

)

1 2 3

−2i

−i

i

Dividing z by |w| = 2. Rotating clockwise by Arg(w) = 2π
3

radians.

Visualizing
z

w
for z = 4cis

(
π
6

)
and w = 2cis

(
2π
3

)
.

Our last goal of the section is to reverse DeMoivre’s Theorem to extract roots of complex numbers.

Definition 11.4. Let z and w be complex numbers. If there is a natural number n such that
wn = z, then w is an nth root of z.

Unlike Definition 5.4 in Section 5.3, we do not specify one particular prinicpal nth root, hence the
use of the indefinite article ‘an’ as in ‘an nth root of z’. Using this definition, both 4 and −4 are

14Again, assuming |w| > 1.
15Again, assuming β > 0.
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square roots of 16, while
√

16 means the principal square root of 16 as in
√

16 = 4. Suppose we
wish to find all complex third (cube) roots of 8. Algebraically, we are trying to solve w3 = 8. We
know that there is only one real solution to this equation, namely w = 3

√
8 = 2, but if we take the

time to rewrite this equation as w3 − 8 = 0 and factor, we get (w − 2)
(
w2 + 2w + 4

)
= 0. The

quadratic factor gives two more cube roots w = −1± i
√

3, for a total of three cube roots of 8. In
accordance with Theorem 3.14, since the degree of p(w) = w3− 8 is three, there are three complex
zeros, counting multiplicity. Since we have found three distinct zeros, we know these are all of the
zeros, so there are exactly three distinct cube roots of 8. Let us now solve this same problem using
the machinery developed in this section. To do so, we express z = 8 in polar form. Since z = 8 lies
8 units away on the positive real axis, we get z = 8cis(0). If we let w = |w|cis(α) be a polar form
of w, the equation w3 = 8 becomes

w3 = 8

(|w|cis(α))3 = 8cis(0)

|w|3cis(3α) = 8cis(0) DeMoivre’s Theorem

The complex number on the left hand side of the equation corresponds to the point with polar
coordinates

(
|w|3, 3α

)
, while the complex number on the right hand side corresponds to the point

with polar coordinates (8, 0). Since |w| ≥ 0, so is |w|3, which means
(
|w|3, 3α

)
and (8, 0) are

two polar representations corresponding to the same complex number, both with positive r values.
From Section 11.4, we know |w|3 = 8 and 3α = 0+2πk for integers k. Since |w| is a real number, we
solve |w|3 = 8 by extracting the principal cube root to get |w| = 3

√
8 = 2. As for α, we get α = 2πk

3
for integers k. This produces three distinct points with polar coordinates corresponding to k = 0,
1, and 2: (2, 0),

(
2, 2π

3

)
, and

(
2, 4π

3

)
. These correspond to the complex numbers w1 = 2cis(0),

w2 = 2cis
(

2π
3

)
and w3 = 2cis

(
4π
3

)
, respectively. Writing these out in rectangular form yields

w0 = 2, w1 = −1 + i
√

3 and w2 = −1 − i
√

3. While this process seems a tad more involved than
our previous factoring approach, this procedure can be generalized to find, for example, all of the
fifth roots of 32.16 If we start with a generic complex number in polar form z = |z|cis(θ) and solve
wn = z in the same manner as above, we arrive at the following theorem.

Theorem 11.17. The nth roots of a Complex Number: Let z 6= 0 be a complex number
with polar form z = rcis(θ). For each natural number n, z has n distinct nth roots, which we
denote by w0, w1, . . . , wn− 1, and they are given by the formula

wk = n
√
rcis

(
θ

n
+

2π

n
k

)
The proof of Theorem 11.17 breaks into to two parts: first, showing that each wk is an nth root, and
second, showing that the set {wk : k = 0, 1, . . . , (n− 1)} consists of n different complex numbers.
To show wk is an nth root of z, we use DeMoivre’s Theorem to show (wk)

n = z.

16The reader is challenged to find all of the complex solutions to w5 = 32 using the techniques in Chapter 3.



11.7 Polar Form of Complex Numbers 853

(wk)
n =

(
n
√
rcis

(
θ
n + 2π

n k
))n

= ( n
√
r)
n

cis
(
n ·
[
θ
n + 2π

n k
])

DeMoivre’s Theorem

= rcis (θ + 2πk)

Since k is a whole number, cos(θ+ 2πk) = cos(θ) and sin(θ+ 2πk) = sin(θ). Hence, it follows that
cis(θ + 2πk) = cis(θ), so (wk)

n = rcis(θ) = z, as required. To show that the formula in Theorem
11.17 generates n distinct numbers, we assume n ≥ 2 (or else there is nothing to prove) and note
that the modulus of each of the wk is the same, namely n

√
r. Therefore, the only way any two of

these polar forms correspond to the same number is if their arguments are coterminal – that is, if
the arguments differ by an integer multiple of 2π. Suppose k and j are whole numbers between 0
and (n−1), inclusive, with k 6= j. Since k and j are different, let’s assume for the sake of argument

that k > j. Then
(
θ
n + 2π

n k
)
−
(
θ
n + 2π

n j
)

= 2π
(
k−j
n

)
. For this to be an integer multiple of 2π,

(k − j) must be a multiple of n. But because of the restrictions on k and j, 0 < k − j ≤ n − 1.
(Think this through.) Hence, (k − j) is a positive number less than n, so it cannot be a multiple
of n. As a result, wk and wj are different complex numbers, and we are done. By Theorem 3.14,
we know there at most n distinct solutions to wn = z, and we have just found all fo them. We
illustrate Theorem 11.17 in the next example.

Example 11.7.4. Use Theorem 11.17 to find the following:

1. both square roots of z = −2 + 2i
√

3

2. the four fourth roots of z = −16

3. the three cube roots of z =
√

2 + i
√

2

4. the five fifth roots of z = 1.

Solution.

1. We start by writing z = −2 + 2i
√

3 = 4cis
(

2π
3

)
. To use Theorem 11.17, we identify r = 4,

θ = 2π
3 and n = 2. We know that z has two square roots, and in keeping with the notation

in Theorem 11.17, we’ll call them w0 and w1. We get w0 =
√

4cis
(

(2π/3)
2 + 2π

2 (0)
)

= 2cis
(
π
3

)
and w1 =

√
4cis

(
(2π/3)

2 + 2π
2 (1)

)
= 2cis

(
4π
3

)
. In rectangular form, the two square roots of

z are w0 = 1 + i
√

3 and w1 = −1 − i
√

3. We can check our answers by squaring them and
showing that we get z = −2 + 2i

√
3.

2. Proceeding as above, we get z = −16 = 16cis(π). With r = 16, θ = π and n = 4, we get the
four fourth roots of z to be w0 = 4

√
16cis

(
π
4 + 2π

4 (0)
)

= 2cis
(
π
4

)
, w1 = 4

√
16cis

(
π
4 + 2π

4 (1)
)

=

2cis
(

3π
4

)
, w2 = 4

√
16cis

(
π
4 + 2π

4 (2)
)

= 2cis
(

5π
4

)
and w3 = 4

√
16cis

(
π
4 + 2π

4 (3)
)

= 2cis
(

7π
4

)
.

Converting these to rectangular form gives w0 =
√

2+i
√

2, w1 = −
√

2+i
√

2, w2 = −
√

2−i
√

2,
and w3 =

√
2− i

√
2.
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3. For z =
√

2+i
√

2, we have z = 2cis
(
π
4

)
. With r = 2, θ = π

4 and n = 3 the usual computations

yield w0 = 3
√

2cis
(
π
12

)
, w1 = 3

√
2cis

(
9π
12

)
= 3
√

2cis
(

3π
4

)
and w2 = 3

√
2cis

(
17π
12

)
. If we were

to convert these to rectangular form, we would need to use either the Sum and Difference
Identities in Theorem 10.16 or the Half-Angle Identities in Theorem 10.19 to evaluate w0 and
w2. Since we are not explicitly told to do so, we leave this as a good, but messy, exercise.

4. To find the five fifth roots of 1, we write 1 = 1cis(0). We have r = 1, θ = 0 and n = 5.
Since 5

√
1 = 1, the roots are w0 = cis(0) = 1, w1 = cis

(
2π
5

)
, w2 = cis

(
4π
5

)
, w3 = cis

(
6π
5

)
and

w4 = cis
(

8π
5

)
. The situation here is even graver than in the previous example, since we have

no identities developed to help us determine the cosine or sine of 2π
5 . At this stage, we could

approximate our answers using a calculator, and we leave this to the Exercises.

Now that we have done some computations using Theorem 11.17, we take a step back to look
at things geometrically. Essentially, Theorem 11.17 says that to find the nth roots of a complex
number, we first take the nth root of the modulus and divide the argument by n. This gives the
first root w0. Each succeessive root is found by adding 2π

n to the argument, which amounts to
rotating w0 by 2π

n radians. This results in n roots, spaced equally around the complex plane. As
an example of this, we plot our answers to number 2 in Example 11.7.4 below.

Real Axis

Imaginary Axis

0

w0w1

w2 w3

−2 −1 1 2

−2i

−i

i

2i

The four fourth roots of z = −16 equally spaced 2π
4

= π
2

around the plane.

We have only glimpsed at the beauty of the complex numbers in this section. The complex plane
is without a doubt one of the most important mathematical constructs ever devised. Coupled with
Calculus, it is the venue for incredibly important Science and Engineering applications.17 For now,
the following Exercises will have to suffice.

17For more on this, see the beautifully written epilogue to Section 3.4 found on page 226.
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11.7.1 Exercises

1. Find a polar representation for each complex number z given below and then identify Re(z),
Im(z), |z|, arg(z) and Arg(z).

(a) z = 9 + 9i (b) z = −5i (c) z = −
√

3
2 −

1
2 i (d) z = −7 + 24i

2. Find the rectangular form of each complex number given below. Use whatever identities are
necessary to find the exact values.

(a) z = 12cis
(
−π

3

)
(b) z = 7cis

(
−3π

4

) (c) z = 2cis
(

7π
8

)
(d) z = 5cis

(
arctan

(
4
3

))
3. Let z = −3

√
3

2 + 3
2 i and w = 3

√
2 − 3i

√
2. Compute the following. Express your answers in

polar form using the principal argument.

(a) zw

(b) z
w

(c) w
z

(d) z4

(e) w3

(f) z5w2

4. Find the following complex roots. Express your answers in polar using the principal argument
and then convert them into rectangular form.

(a) the three cube roots of z = i

(b) the six sixth roots of z = 64

(c) the two square roots of 5
2 −

5
√

3
2 i

5. Use the Sum and Difference Identities in Theorem 10.16 or the Half Angle Identities in
Theorem 10.19 to express the three cube roots of z =

√
2 + i

√
2 in rectangular form. (See

Example 11.7.4, number 3.)

6. Use a calculator to approximate the five fifth roots of 1. (See Example 11.7.4, number 4.)

7. According to Theorem 3.16 in Section 3.4, the polynomial p(x) = x4 + 4 can be factored
into the product linear and irreducible quadratic factors. In Exercise 13 in Section 8.7, we
showed you how to factor this polynomial into the product of two irreducible quadratic factors
using a system of non-linear equations. Now that we can compute the complex fourth roots
of −4 directly, we can simply apply the Complex Factorization Theorem, Theorem 3.14, to
obtain the linear factorization p(x) = (x− (1 + i))(x− (1− i))(x− (−1 + i))(x− (−1− i)).
By multiplying the first two factors together and then the second two factors together, thus
pairing up the complex conjugate pairs of zeros Theorem 3.15 told us we’d get, we have
that p(x) = x2 − 2x + 2)(x2 + 2x + 2). Use the 12 complex 12th roots of 4096 to factor
p(x) = x12 − 4096 into a product of linear and irreducible quadratic factors.
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8. Complete the proof of Theorem 11.14 by showing that if w 6= 0 than
∣∣ 1
w

∣∣ = 1
|w| .

9. Recall from Section 3.4 that given a complex number z = a+bi its complex conjugate, denoted
z, is given by z = a− bi.

(a) Prove that |z| = |z|.
(b) Prove that |z| =

√
zz

(c) Show that Re(z) =
z + z

2
and Im(z) =

z − z
2i

(d) Show that if θ ∈ arg(z) then −θ ∈ arg (z). Interpret this result geometrically.

(e) Is it always true that Arg (z) = −Arg(z)?

10. Given an natural number n with n ≥ 2, the n complex nth roots of the number z = 1 are
called the nth Roots of Unity. In the following exercises, assume that n is a fixed, but
arbitrary, natural number such that n ≥ 2.

(a) Show that w = 1 is an nth root of unity.

(b) Show that if both wj and wk are nth roots of unity then so is their product wjwk.

(c) Show that if wj is an nth root of unity then there exists another nth root of unity wj′

such that wjwj′ = 1. Hint: If wj = cis(θ) let wj′ = cis(2π − θ). You’ll need to verify
that wj′ = cis(2π − θ) is indeed an nth root of unity.

11. Another way to express the polar form of a complex number is to use the exponential function.
For real numbers t, Euler’s Formula defines eit = cos(t) + i sin(t).

(a) Use Theorem 11.16 to show that eixeiy = ei(x+y) for all real numbers x and y.

(b) Use Theorem 11.16 to show that
(
eix
)n

= ei(nx) for any real number x and any natural
number n.

(c) Use Theorem 11.16 to show that
eix

eiy
= ei(x−y) for all real numbers x and y.

(d) If z = rcis(θ) is the polar form of z, show that z = reit where θ = t radians.

(e) Show that eiπ + 1 = 0. (This famous equation relates the five most important constants
in all of Mathematics with the three most fundamental operations in Mathematics.)

(f) Show that cos(t) =
eit + e−it

2
and that sin(t) =

eit − e−it

2i
for all real numbers t.

http://en.wikipedia.org/wiki/Leonhard_Euler
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11.7.2 Answers

1. (a) z = 9 + 9i = 9
√

2cis
(
π
4

)
, Re(z) = 9, Im(z) = 9, |z| = 9

√
2

arg(z) =
{
π
4 + 2πk : k is an integer

}
and Arg(z) = π

4 .

(b) z = −5i = 5cis
(
−π

2

)
, Re(z) = 0, Im(z) = −5, |z| = 5

arg(z) =
{
−π

2 + 2πk : k is an integer
}

and Arg(z) = −π
2 .

(c) z = −
√

3
2 −

1
2 i = cis

(
−5π

6

)
, Re(z) = −

√
3

2 , Im(z) = −1
2 , |z| = 1

arg(z) =
{
−5π

6 + 2πk : k is an integer
}

and Arg(z) = −5π
6 .

(d) z = −7 + 24i = 25cis
(
π − arctan

(
24
7

))
, Re(z) = −7, Im(z) = 24, |z| = 25

arg(z) =
{
π − arctan

(
24
7

)
+ 2πk : k is an integer

}
and Arg(z) = π − arctan

(
24
7

)
.

2. (a) z = 12cis
(
−π

3

)
= 6− 6i

√
3

(b) z = 7cis
(
−3π

4

)
= −7

√
2

2 −
7
√

2
2 i

(c) z = 2cis
(

7π
8

)
= −

√
2 +
√

2 + i
√

2−
√

2

(d) z = 5cis
(
arctan

(
4
3

))
= 3 + 4i

3. Since z = −3
√

3
2 + 3

2 i = 3cis
(

5π
6

)
and w = 3

√
2− 3i

√
2 = 6cis

(
−π

4

)
, we have the following.

(a) zw = 18cis
(

7π
12

)
(b) z

w = 1
2cis

(
−11π

12

) (c) w
z = 2cis

(
11π
12

)
(d) z4 = 81cis

(
−2π

3

) (e) w3 = 216cis
(
−3π

4

)
(f) z5w2 = 8748cis

(
−π

3

)
4. (a) Since z = i = cis

(
π
2

)
we have

w0 = cis
(
π
6

)
=
√

3
2 + 1

2 i w1 = cis
(

5π
6

)
= −

√
3

2 + 1
2 i w2 = cis

(
3π
2

)
= −i

(b) Since z = 64 = 64cis(0) we have

w0 = 2cis(0) = 2

w1 = 2cis
(
π
3

)
= 1 +

√
3i

w2 = 2cis
(

2π
3

)
= −1 +

√
3i

w3 = 2cis (π) = −2

w4 = 2cis
(
−2π

3

)
= −1−

√
3i

w5 = 2cis
(
−π

3

)
= 1−

√
3i

(c) Since 5
2 −

5
√

3
2 i = 5cis

(
−π

3

)
we have

w0 =
√

5cis
(
−π

6

)
=
√

15
2 −

√
5

2 i w1 =
√

5cis
(

5π
6

)
= −

√
15
2 +

√
5

2 i

5. Note: In the answers for w0 and w2 the first rectangular form comes from applying the
appropriate Sum or Difference Identity ( π12 = π

3 −
π
4 and 17π

12 = 2π
3 + 3π

4 , respectively) and the
second comes from using the Half-Angle Identities.

w0 = 3
√

2cis
(
π
12

)
= 3
√

2
(√

6+
√

2
4 + i

(√
6−
√

2
4

))
= 3
√

2

(√
2+
√

3
2 + i

√
2−
√

3
2

)
w1 = 3

√
2cis

(
3π
4

)
= 3
√

2
(
−
√

2
2 +

√
2

2 i
)

w2 = 3
√

2cis
(

17π
12

)
= 3
√

2
(√

2−
√

6
4 + i

(
−
√

2−
√

6
4

))
= 3
√

2

(√
2−
√

3
2 + i

√
2+
√

3
2

)
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6. w0 = cis(0) = 1

w1 = cis
(

2π
5

)
≈ 0.309 + 0.951i

w2 = cis
(

4π
5

)
≈ −0.809 + 0.588i

w3 = cis
(

6π
5

)
≈ −0.809− 0.588i

w4 = cis
(

8π
5

)
≈ 0.309− 0.951i

7. p(x) = x12−4096 = (x−2)(x+2)(x2+4)(x2−2x+4)(x2+2x+4)(x2−2
√

3x+4)(x2+2
√

3+4)
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11.8 Vectors

As we have seen numerous times in this book, Mathematics can be used to model and solve
real-world problems. For many applications, real numbers suffice; that is, real numbers with the
appropriate units attached can be used to answer questions like “How close is the nearest Sasquatch
nest?” There are other times though, when these kinds of quantities do not suffice. Perhaps it is
important to know, for instance, how close the nearest Sasquatch nest is as well as the direction in
which it lies. (Foreshadowing the use of bearings in the Exercises, perhaps?) To answer questions
like these which involve both a quantitative answer, or magnitude, along with a direction, we use
the mathematical objects called vectors.1 Vectors are represented geometrically as directed line
segments where the magnitude of the vector is taken to be the length of the line segment and the
direction is made clear with the use of an arrow at one endpoint of the segment. When referring to
vectors in this text, we shall adopt2 the ‘arrow’ notation, so the symbol ~v is read as ‘the vector v’.
Below is a typical vector ~v with endpoints P (1, 2) and Q (4, 6). The point P is called the initial
point or tail of ~v and the point Q is called the terminal point or head of ~v. Since we can reconstruct

~v completely from P and Q, we write ~v =
−−→
PQ, where the order of points P (initial point) and Q

(terminal point) is important. (Think about this before moving on.)

P (1, 2)

Q (4, 6)

~v =
−−→
PQ

While it is true that P and Q completely determine ~v, it is important to note that since vectors are
defined in terms of their two characteristics, magnitude and direction, any directed line segment
with the same length and direction as ~v is considered to be the same vector as ~v, regardless of its
initial point. In the case of our vector ~v above, any vector which moves three units to the right
and four up3 from its initial point to arrive at its terminal point is considered the same vector as ~v.
The notation we use to capture this idea is the component form of the vector, ~v = 〈3, 4〉, where the
first number, 3, is called the x-component of ~v and the second number, 4, is called the y-component
of ~v. If we wanted to reconstruct ~v = 〈3, 4〉 with initial point P ′(−2, 3), then we would find the
terminal point of ~v by adding 3 to the x-coordinate and adding 4 to the y-coordinate to obtain the
terminal point Q′(1, 7), as seen below.

1The word ‘vector’ comes from the Latin vehere meaning ‘to convey’ or ‘to carry.’
2Other textbook authors use bold vectors such as v. We find that writing in bold font on the chalkboard is

inconvenient at best, so we have chosen the ‘arrow’ notation.
3If this idea of ‘over’ and ‘up’ seems familiar, it should. The slope of the line segment containing ~v is 4

3
.
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P ′ (−2, 3)

Q′ (1, 7)

over 3

up 4

~v = 〈3, 4〉 with initial point P ′ (−2, 3).

The component form of a vector is what ties these very geometric objects back to Algebra and
ultimately Trigonometry. We generalize our example in our definition below.

Definition 11.5. Suppose ~v is represented by a directed line segment with initial point P (x0, y0)
and terminal point Q (x1, y1). The component form of ~v is given by

~v =
−−→
PQ = 〈x1 − x0, y1 − y0〉

Using the language of components, we have that two vectors are equal if and only if their corre-
sponding components are equal. That is, 〈v1, v2〉 = 〈v′1, v′2〉 if and only if v1 = v′1 and v2 = v′2.
(Again, think about this before reading on.) We now set about defining operations on vectors.
Suppose we are given two vectors ~v and ~w. The sum, or resultant vector ~v + ~w is obtained as
follows. First, plot ~v. Next, plot ~w so that its initial point is the terminal point of ~v. To plot the
vector ~v + ~w we begin at the initial point of ~v and end at the terminal point of ~w. It is helpful to
think of the vector ~v + ~w as the ‘net result’ of moving along ~v then moving along ~w.

~v

~w
~v + ~w

~v, ~w, and ~v + ~w

At the component level, we define addition of vectors component-wise to match this action.4

Definition 11.6. Suppose ~v = 〈v1, v2〉 and ~w = 〈w1, w2〉. The vector ~v + ~w is defined by

~v + ~w = 〈v1 + w1, v2 + w2〉

4Adding vectors ‘component-wise’ should seem hauntingly familiar. Compare this with how matrix addition was
defined in section 8.3. In fact, in more advanced courses such as Linear Algebra, vectors are defined as 1×n or n× 1
matrices, depending on the situation.
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Example 11.8.1. Let ~v = 〈3, 4〉 and suppose ~w =
−−→
PQ where P (−3, 7) and Q(−2, 5). Find ~v + ~w

and interpret this sum geometrically.

Solution. Before can add the vectors using Definition 11.6, we need to write ~w in component
form. Using Definition 11.5, we get ~w = 〈−2− (−3), 5− 7〉 = 〈1,−2〉. Thus

~v + ~w = 〈3, 4〉+ 〈1,−2〉
= 〈3 + 1, 4 + (−2)〉
= 〈4, 2〉

To visualize this sum, we draw ~v with its initial point at (0, 0) (for convenience) so that its terminal
point is (3, 4). Next, we graph ~w with its initial point at (3, 4). Moving one to the right and two
down, we find the terminal point of ~w to be (4, 2). We see that the vector ~v + ~w has initial point
(0, 0) and terminal point (4, 2) so its component form is 〈4, 2〉, as required.

x

y

~v

~w

~v + ~w

1 2 3 4

1

2

3

4

In order for vector addition to enjoy the same kinds of properties as real number addition, it is
necessary to extend our definition of vectors to include a ‘zero vector,’ ~0 = 〈0, 0〉. Geometrically,
~0 represents a point, which we can think of as a directed line segment with the same initial and
terminal points. The reader may well object to the inclusion of~0, since after all, vectors are supposed
to have both a magnitude (length) and a direction. While it seems clear that the magnitude of
~0 should be 0, it is not clear what its direction is. As we shall see, the direction of ~0 is in fact
undefined, but this minor hiccup in the natural flow of things is worth the benefits we reap by
including ~0 in our discussions. We have the following theorem.

Theorem 11.18. Properties of Vector Addition

• Commutative Property: For all vectors ~v and ~w, ~v + ~w = ~w + ~v.

• Associative Property: For all vectors ~u,~v and ~w, (~u+ ~v) + ~w = ~u+ (~v + ~w).

• Identity Property: The vector ~0 acts as the additive identity for vector addition. That
is, for all vectors ~v,

~v +~0 = ~0 + ~v = ~v.

• Inverse Property: Every vector ~v has a unique additive inverse, denoted −~v. That is, for
every vector ~v, there is a vector −~v so that

~v + (−~v) = (−~v) + ~v = ~0.
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The properties in Theorem 11.18 are easily verified using the definition of vector addition.5 For
the commutative property, we note that if ~v = 〈v1, v2〉 and ~w = 〈w1, w2〉 then

~v + ~w = 〈v1, v2〉+ 〈w1, w2〉
= 〈v1 + w1, v2 + w2〉
= 〈w1 + v1, w2 + v2〉
= ~w + ~v

Geometrically, we can ‘see’ the commutative property by realizing that the sums ~v + ~w and ~w + ~v
are the same directed diagonal determined by the parallelogram below.

~v

~w

~v

~w

~w
+
~v

~v
+
~w

Demonstrating the commutative property of vector addition.

The proofs of the associative and identity properties proceed similarly, and the reader is encourage
to verify them and provide accompanying diagrams. The existence and uniqueness of the additive
inverse is yet another property inherited from the real numbers. Given a vector ~v = 〈v1, v2〉, suppose
we wish to find a vector ~w = 〈w1, w2〉 so that ~v + ~w = ~0. By the definition of vector addition, we
have 〈v1 + w1, v2 + w2〉 = 〈0, 0〉, and hence, v1 + w1 = 0 and v2 + w2 = 0. We get w1 = −v1 and
w2 = −v2 so that ~w = 〈−v1,−v2〉. Hence, ~v has an additive inverse, and moreover, it is unique
and can be obtained by the formula −~v = 〈−v1,−v2〉. Geometrically, the vectors ~v = 〈v1, v2〉 and
−~v = 〈−v1,−v2〉 have the same length, but opposite directions. As a result, when adding the
vectors geometrically, the sum ~v+ (−~v) results in starting at the initial point of ~v and ending back
at the initial point of ~v, or in other words, the net result of moving ~v then −~v is not moving at all.

~v

−~v

Using the additive inverse of a vector, we can define the difference of two vectors, ~v− ~w = ~v+(−~w).
If ~v = 〈v1, v2〉 and ~w = 〈w1, w2〉 then

5The interested reader is encouraged to compare Theorem 11.18 and the ensuing discussion with Theorem 8.3 in
Section 8.3 and the discussion there.
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~v − ~w = ~v + (−~w)
= 〈v1, v2〉+ 〈−w1,−w2〉
= 〈v1 + (−w1) , v2 + (−w2)〉
= 〈v1 − w1, v2 − w2〉

In other words, like vector addition, vector subtraction works component-wise. To interpret the
vector ~v − ~w geometrically, we note

~w + (~v − ~w) = ~w + (~v + (−~w)) Definition of Vector Subtraction
= ~w + ((−~w) + ~v) Commutativity of Vector Addition
= (~w + (−~w)) + ~v Associativity of Vector Addition

= ~0 + ~v Definition of Additive Inverse
= ~v Definition of Additive Identity

This means that the ‘net result’ of moving along ~w then moving along ~v − ~w is just ~v itself. From
the diagram below, we see that ~v − ~w may be interpreted as the vector whose initial point is the
terminal point of ~w and whose terminal point is the terminal point of ~v as depicted below. It is also
worth mentioning that in the parallelogram determined by the vectors ~v and ~w, the vector ~v − ~w
is one of the diagonals – the other being ~v + ~w.

~v

~w

~v − ~w

~v

~w

~v

~w

~v − ~w

Next, we discuss scalar multiplication – that is, taking a real number times a vector. We define
scalar multiplication for vectors in the same way we defined it for matrices in Section 8.3.

Definition 11.7. If k is a real number and ~v = 〈v1, v2〉, we define k~v by

k~v = k 〈v1, v2〉 = 〈kv1, kv2〉

Scalar multiplication by k in vectors can be understood geometrically as scaling the vector (if k > 0)
or scaling the vector and reversing its direction (if k < 0) as demonstrated below.
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~v

2~v

1
2
~v

−2~v

Note that, by definition 11.7, (−1)~v = (−1) 〈v1, v2〉 = 〈(−1)v1, (−1)v2〉 = 〈−v1,−v2〉 = −~v. This,
and other properties of scalar multiplication are summarized below.

Theorem 11.19. Properties of Scalar Multiplication

• Associative Property: For every vector ~v and scalars k and r, (kr)~v = k(r~v).

• Identity Property: For all vectors ~v, 1~v = ~v.

• Additive Inverse Property: For all vectors ~v, −~v = (−1)~v.

• Distributive Property of Scalar Multiplication over Scalar Addition: For every
vector ~v and scalars k and r,

(k + r)~v = k~v + r~v

• Distributive Property of Scalar Multiplication over Vector Addition: For all vec-
tors ~v and ~w and scalars k,

k(~v + ~w) = k~v + k ~w

• Zero Product Property: If ~v is vector and k is a scalar, then

k~v = ~0 if and only if k = 0 or ~v = ~0

The proof of Theorem 11.19, like the proof of Theorem 11.18, ultimately boils down to the definition
of scalar multiplication and properties of real numbers. For example, to prove the associative
property, we let ~v = 〈v1, v2〉. If k and r are scalars then

(kr)~v = (kr) 〈v1, v2〉
= 〈(kr)v1, (kr)v2〉 Definition of Scalar Multiplication

= 〈k(rv1), k(rv2)〉 Associative Property of Real Number Multiplication

= k 〈rv1, rv2〉 Definition of Scalar Multiplication

= k (r 〈v1, v2〉) Definition of Scalar Multiplication

= k(r~v)

The remaining properties are proved similarly and are left as exercises.
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Our next example demonstrates how Theorem 11.19 allows us to do the same kind of algebraic
manipulations with vectors as we do with variables – multiplication and division of vectors notwith-
standing. If the pedantry seems familiar, it should. This is the same treatment we gave Example
8.3.1 in Section 8.3. As in that example, we spell out the solution in excruciating detail to encourage
the reader to think carefully about why each step is justified.

Example 11.8.2. Solve 5~v − 2 (~v + 〈1,−2〉) = ~0 for ~v.

Solution.

5~v − 2 (~v + 〈1,−2〉) = ~0

5~v + (−1) [2 (~v + 〈1,−2〉)] = ~0

5~v + [(−1)(2)] (~v + 〈1,−2〉) = ~0

5~v + (−2) (~v + 〈1,−2〉) = ~0

5~v + [(−2)~v + (−2) 〈1,−2〉] = ~0

5~v + [(−2)~v + 〈(−2)(1), (−2)(−2)〉] = ~0

[5~v + (−2)~v] + 〈−2, 4〉 = ~0

(5 + (−2))~v + 〈−2, 4〉 = ~0

3~v + 〈−2, 4〉 = ~0

(3~v + 〈−2, 4〉) + (−〈−2, 4〉) = ~0 + (−〈−2, 4〉)
3~v + [〈−2, 4〉+ (−〈−2, 4〉)] = ~0 + (−1) 〈−2, 4〉

3~v +~0 = ~0 + 〈(−1)(−2), (−1)(4)〉
3~v = 〈2,−4〉

1
3 (3~v) = 1

3 (〈2,−4〉)[(
1
3

)
(3)
]
~v =

〈(
1
3

)
(2),

(
1
3

)
(−4)

〉
1~v =

〈
2
3 ,−

4
3

〉
~v =

〈
2
3 ,−

4
3

〉
A vector whose initial point is (0, 0) is said to be in standard position. If ~v = 〈v1, v2〉 is plotted
in standard position, then its terminal point is necessarily (v1, v2). (Once more, think about this
before reading on.)

x

y

(v1, v2)

~v = 〈v1, v2〉 in standard position.
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Plotting a vector in standard position enables us to more easily quantify the concepts of magnitude
and direction of the vector. We can convert the point (v1, v2) in rectangular coordinates to a pair
(r, θ) in polar coordinates where r ≥ 0. The magnitude of ~v, which we said earlier was length
of the directed line segment, is r =

√
v2

1 + v2
2 and is denoted by ‖~v‖. From Section 11.4, we

know v1 = r cos(θ) = ‖~v‖ cos(θ) and v2 = r sin(θ) = ‖~v‖ sin(θ). From the definition of scalar
multiplication and vector equality, we get

~v = 〈v1, v2〉
= 〈‖v‖ cos(θ), ‖v‖ sin(θ)〉
= ‖~v‖ 〈cos(θ), sin(θ)〉

This motivates the following definition.

Definition 11.8. Suppose ~v is a vector with component form ~v = 〈v1, v2〉. Let (r, θ) be a polar
representation of the point with rectangular coordinates (v1, v2) with r ≥ 0.

• The magnitude of ~v, denoted ‖~v‖, is given by ‖~v‖ = r =
√
v2

1 + v2
2

• If ~v 6= ~0, the (vector) direction of ~v, denoted v̂ is given by v̂ = 〈cos(θ), sin(θ)〉

A few remarks are in order. First, we note that if ~v 6= 0 then even though there are infinitely
many angles θ which satisfy Definition 11.8, the stipulation r > 0 means that all of the angles are
coterminal. Hence, if θ and θ′ both satisfy the conditions of Definition 11.8, then cos(θ) = cos(θ′)
and sin(θ) = sin(θ′), and as such, 〈cos(θ), sin(θ)〉 = 〈cos(θ′), sin(θ′)〉 making v̂ is well-defined.6 If
~v = ~0, then ~v = 〈0, 0〉, and we know from Section 11.4 that (0, θ) is a polar representation for
the origin for any angle θ. For this reason, 0̂ is undefined. The following theorem summarizes the
important facts about the magnitude and direction of a vector.

Theorem 11.20. Properties of Magnitude and Direction: Suppose ~v is a vector.

• ‖~v‖ ≥ 0 and ‖~v‖ = 0 if and only if ~v = ~0

• For all scalars k, ‖k ~v‖ = |k|‖~v‖.

• If ~v 6= ~0 then ~v = ‖~v‖v̂, so that v̂ =
(

1
‖~v‖

)
~v.

The proof of the first property in Theorem 11.20 is a direct consequence of the definition of ‖~v‖.
If ~v = 〈v1, v2〉, then ‖~v‖ =

√
v2

1 + v2
2 which is by definition greater than or equal to 0. Moreover,√

v2
1 + v2

2 = 0 if and only of v2
1 + v2

2 = 0 if and only if v1 = v2 = 0. Hence, ‖~v‖ = 0 if and only if
~v = 〈0, 0〉 = ~0, as required.

The second property is a result of the definition of magnitude and scalar multiplication along with
a propery of radicals. If ~v = 〈v1, v2〉 and k is a scalar then

6If this all looks familiar, it should. The interested reader is invited to compare Definition 11.8 to Definition 11.2
in Section 11.7.
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‖k ~v‖ = ‖k 〈v1, v2〉 ‖
= ‖ 〈kv1, kv2〉 ‖ Definition of scalar multiplication

=
√

(kv1)
2 + (kv2)

2 Definition of magnitude

=
√
k2v2

1 + k2v2
2

=
√
k2(v2

1 + v2
2 )

=
√
k2
√
v2

1 + v2
2 Product Rule for Radicals

= |k|
√
v2

1 + v2
2 Since

√
k2 = |k|

= |k|‖~v‖

The equation ~v = ‖~v‖v̂ in Theorem 11.20 is a consequence of the definitions of ‖~v‖ and v̂ and
was worked out in the discussion just prior to Definition 11.8 on page 866. In words, the equation
~v = ‖~v‖v̂ says that any given vector is the product of its magnitude and its direction – an important

concept to keep in mind when studying and using vectors. The equation v̂ =
(

1
‖~v‖

)
~v is a result of

solving ~v = ‖~v‖v̂ for v̂ by multiplying both sides of the equation by 1
‖~v‖ and using the properties of

Theorem 11.19.7 We are overdue for an example.

Example 11.8.3.

1. Find the component form of the vector ~v which has a length of 5 units and which, when plotted
in standard position, lies in Quadrant II making a 60◦ angle with the negative x-axis.8

2. For the vectors ~v = 〈3, 4〉 and ~w = 〈1,−2〉, find the following.

(a) v̂ (b) ‖~v‖ − 2‖~w‖ (c) ‖~v − 2~w‖ (d) ‖ŵ‖

Solution.

1. We are told that ‖~v‖ = 5 and are given information about its direction, so we can use the
formula ~v = ‖~v‖v̂ to get the component form of ~v. To determine v̂, we appeal to Definition
11.8. We are told that ~v lies in Quadrant II and makes a 60◦ angle with the negative x-axis,
so the polar form of the terminal point of ~v, when plotted in standard position is (5, 120◦).

(See the diagram below.) Thus v̂ = 〈cos (120◦) , sin (120◦)〉 =
〈
−1

2 ,
√

3
2

〉
, so ~v = ‖~v‖v̂ =

5
〈
−1

2 ,
√

3
2

〉
=
〈
−5

2 ,
5
√

3
2

〉
.

7Of course, to go from ~v = ‖~v‖v̂ to v̂ =
(

1
‖~v‖

)
~v, we are essentially ‘dividing both sides’ of the equation by the

scalar ‖~v‖. The authors encourage the reader, however, to work out the details carefully to gain an appreciation of
the properties in play.

8Due to the utility of vectors in ‘real-world’ applications, we will usually use degree measure for the angle when
giving the vector’s direction.
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x

y

θ = 120◦60◦

~v

−3 −2 −1 1 2 3

1

2

3

4

5

2. (a) Since we are given the component form of ~v, we’ll use the formula v̂ =
(

1
‖~v‖

)
~v. For

~v = 〈3, 4〉, we have ‖~v‖ =
√

32 + 42 =
√

25 = 5. Hence, v̂ = 1
5 〈3, 4〉 =

〈
3
5 ,

4
5

〉
.

(b) We know from our work above that ‖~v‖ = 5, so to find ‖~v‖−2‖~w‖, we need only find ‖~w‖.
Since ~w = 〈1,−2〉, we get ‖~w‖ =

√
12 + (−2)2 =

√
5. Hence, ‖~v‖ − 2‖~w‖ = 5− 2

√
5.

(c) In the expression ‖~v−2~w‖, notice that the arithmetic on the vectors comes first, then the
magnitude. Hence, our first step is to find the component form of the vector ~v−2~w. We
get ~v − 2~w = 〈3, 4〉 − 2 〈1,−2〉 = 〈1, 8〉. Hence, ‖~v − 2~w‖ = ‖ 〈1, 8〉 ‖ =

√
12 + 82 =

√
65.

(d) To find ‖ŵ‖, we first need ŵ. Using the formula ŵ =
(

1
‖~w‖

)
~w along with ‖~w‖ =

√
5,

which we found the in the previous problem, we get ŵ = 1√
5
〈1,−2〉 =

〈
1√
5
,− 2√

5

〉
=〈√

5
5 ,−

2
√

5
5

〉
. Hence, ‖ŵ‖ =

√(√
5

5

)2
+
(
−2
√

5
5

)2
=
√

5
25 + 20

25 =
√

1 = 1.

The fact that ‖ŵ‖ = 1 in Example 11.8.3 makes ŵ an example of a ‘unit vector.’ As a result, the
vector ŵ is often called ‘the unit vector in the direction of ~w.’ We have the following.

Definition 11.9. Unit Vectors: Let ~v be a vector. If ‖~v‖ = 1, we say that ~v is a unit vector.

If ~v is a unit vector, then necessarily, ~v = ‖~v‖v̂ = 1 · v̂ = v̂. Conversely, we leave it as an exercise to

show that v̂ =
(

1
‖~v‖

)
~v is a unit vector for any nonzero vector ~v.9 In practice, if ~v is a unit vector we

write it as v̂ as opposed to ~v because we have reserved the ‘̂ ’ notation for unit vectors. The process
of multiplying a nonzero vector by the factor 1

‖~v‖ to produce a unit vector is called ‘normalizing
the vector’. The terminal points of unit vectors, when plotted in standard position, lie on the Unit
Circle. (You should take the time to show this.) As a result, we visualize normalizing a nonzero
vector ~v as shrinking10 its terminal point, when plotted in standard position, back to the unit circle
as seen below.

9One proof uses the properties of scalar multiplication and magnitude. If ~v 6= ~0, consider ‖v̂‖ =
∣∣∣∣∣∣( 1
‖~v‖

)
~v
∣∣∣∣∣∣. Use

the fact that ‖~v‖ ≥ 0 is a scalar and consider factoring.
10. . . if ‖~v‖ > 1 . . .
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x

y

~v

v̂

−1 1

−1

1

Visualizing vector normalization v̂ =
(

1
‖~v‖

)
~v

Of all of the unit vectors, two deserve special mention.

Definition 11.10. The Principal Unit Vectors:

• The vector î is defined by î = 〈1, 0〉

• The vector ĵ is defined by î = 〈0, 1〉

We can think of the vector î as representing the positive x-direction, while ĵ represents the positive
y-direction. We have the following ‘decomposition’ theorem.11

Theorem 11.21. Principal Vector Decomposition Theorem: Let ~v be a vector with com-
ponent form ~v = 〈v1, v2〉. Then ~v = v1î+ v2ĵ.

The proof of Theorem 11.21 is straightforward. Since î = 〈1, 0〉 and ĵ = 〈0, 1〉, we have from the
definition of scalar multiplication and vector addition that

v1î+ v2ĵ = v1 〈1, 0〉+ v2 〈0, 1〉 = 〈v1, 0〉+ 〈0, v2〉 = 〈v1, v2〉 = ~v

Geometrically, the situation looks like this:

x

y

~v = 〈v1, v2〉

v1 î

v2ĵ

î

ĵ

~v = 〈v1, v2〉 = v1î+ v2ĵ.

11We will see a generalization of Theorem 11.21 in Section 11.9. Stay tuned!
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We conclude this section with a classic example which demonstrates how vectors are used to model
forces. A ‘force’ is defined as a ‘push’ or a ‘pull.’ The intensity of the push or pull is the magnitude
of the force, and is measured in Netwons (N) in the SI system or pounds (lbs.) in the English
system. The following example uses all of the concepts in this section, and is worth studying in
detail.

Example 11.8.4. A 50 pound speaker is suspended from the ceiling by two support braces. If one
of them makes a 60◦ angle with the ceiling and the other makes a 30◦ angle with the ceiling, what
are the tensions on each of the supports?

Solution. We represent the problem schematically below and then provide the corresponding
vector diagram.

30◦ 60◦

50 lbs.

30◦ 60◦

30◦
60◦

~w

~T1

~T2

We have three forces acting on the speaker: the weight of the speaker, which we’ll call ~w, pulling
the speaker directly downward, and the forces on the support rods, which we’ll call ~T1 and ~T2

(for ‘tensions’) acting upward at angles 60◦ and 30◦, respectively. We are looking for the tensions
on the support, which are the magnitudes ‖ ~T1‖ and ‖ ~T2‖. In order for the speaker to remain
stationary,12 we require ~w+ ~T1 + ~T2 = ~0. Viewing the common initial point of these vectors as the
origin and the dashed line as the x-axis, we use Theorem 11.20 to get component representations
for the three vectors involved. We can model the weight of the speaker as a vector pointing directly
downwards with a magnitude of 50 pounds. That is, ‖~w‖ = 50 and ŵ = −ĵ = 〈0,−1〉. Hence,
~w = 50 〈0,−1〉 = 〈0,−50〉. For the force in the first support, we get

~T1 = ‖ ~T1‖ 〈cos (60◦) , sin (60◦)〉

=

〈
‖ ~T1‖

2
,
‖ ~T1‖
√

3

2

〉
For the second support, we note that the angle 30◦ is measured from the negative x-axis, so the
angle needed to write ~T2 in component form is 150◦. Hence

12This is the criteria for ‘static equilbrium’.
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~T2 = ‖ ~T2‖ 〈cos (150◦) , sin (150◦)〉

=

〈
−‖

~T2‖
√

3

2
,
‖ ~T2‖

2

〉
The requirement ~w + ~T1 + ~T2 = ~0 gives us this system of vector equations.

~w + ~T1 + ~T2 = ~0

〈0,−50〉+

〈
‖ ~T1‖

2
,
‖ ~T1‖
√

3

2

〉
+

〈
−‖

~T2‖
√

3

2
,
‖ ~T2‖

2

〉
= 〈0, 0〉〈

‖ ~T1‖
2
− ‖

~T2‖
√

3

2
,
‖ ~T1‖
√

3

2
+
‖ ~T2‖

2
− 50

〉
= 〈0, 0〉

Equating the corresponding components of the vectors on each side, we get a system of linear
equations in the variables ‖ ~T1‖ and ‖ ~T2‖.

(E1)
‖ ~T1‖

2
− ‖

~T2‖
√

3

2
= 0

(E2)
‖ ~T1‖
√

3

2
+
‖ ~T2‖

2
− 50 = 0

From (E1), we get ‖ ~T1‖ = ‖ ~T2‖
√

3. Substituting that into (E2) gives (‖ ~T2‖
√

3)
√

3
2 + ‖ ~T2‖

2 − 50 = 0

which yields 2‖ ~T2‖ − 50 = 0. Hence, ‖ ~T2‖ = 25 pounds and ‖ ~T1‖ = ‖ ~T2‖
√

3 = 25
√

3 pounds.
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11.8.1 Exercises

1. Let ~v =

〈
−3

5
,
4

5

〉
and ~w = 〈7, 24〉. Compute the following and state whether the result is a

vector or a scalar.

(a) ~v + ~w

(b) 5~v − ~w

(c) ‖~v‖

(d) ‖~v + ~w‖

(e) ‖~v‖+ ‖~w‖

(f) −3~v + 2~w

(g) −6‖~v‖

(h) ‖ − 6~v‖

(i) ‖~w‖ 〈1,−2〉

(j)
1

‖~w‖
~w

(k)

∥∥∥∥ 1

‖~w‖
~w

∥∥∥∥
2. Let ~a be the vector of length 117 that when drawn in standard position makes a 174◦ angle

with the positive x-axis. Write ~a in component form, that is, write ~a as 〈a1, a2〉. Round your
approximations to three decimal places.

3. Let ~b be the vector of length 42 that when drawn in standard position makes a 298◦ angle
with the positive x-axis. Write ~b in component form, that is, write ~b as 〈b1, b2〉. Round your
approximations to three decimal places.

4. Using ~a from Exercise 2 and ~b from Exercise 3 above, find the length of ~v = ~a +~b and the
angle θ that ~v makes with the positive x-axis when drawn in standard position. Round your
approximations to three decimal places.

5. Let ~v = 〈v1, v2〉 be any non-zero vector. Show that
1

‖~v‖
~v has length 1.

6. A 300 pound metal star is hanging on two cables which are attached to the ceiling. The left
hand cable makes a 72◦ angle with the ceiling while the right hand cable makes a 18◦ angle
with the ceiling. What is the tension on each of the cables?

7. (Yet another classic application) A small boat leaves the dock at Camp DuNuthin and heads
across the Nessie River at 17 miles per hour (This speed is with respect to the water.) while
maintaining a bearing of S68◦W. (Thus we can think of the front of the boat as always pointing
toward that heading.) The river is flowing due east at 8 miles per hour. What is the boat’s
true speed and heading? Express the heading as a bearing. (Hint: Model the boat’s speed
and course across smooth water by the vector ~b which has magnitude ‖~b‖ = 17 and makes a
68◦ with the negative y-axis in Quadrant III. The river current is given by ~r = 〈8, 0〉 because
we need ‖~r‖ = 8 with its direction along the positive x-axis. The true course of the boat is
given by ~b+ ~r. Finding the length and direction of ~b+ ~r is analogous to the computations in
Exercise 4 above.)

8. In calm air, a plane flying from the Pedimaxus International Airport can reach Cliffs of
Insanity Point in two hours by following a bearing of N8.2◦E at 96 miles an hour. (The
distance between the airport and the cliffs is 192 miles.) If the wind is blowing from the
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southeast at 25 miles per hour, what speed and bearing should the pilot take so that she
makes the trip in two hours along the original heading?

9. (A variation of the classic ‘two tugboats’ problem.) Two drunken college students have filled
an empty beer keg with rocks and tied ropes to it in order to drag it down the street in the
middle of the night. The stronger of the two students pulls with a force of 100 pounds at a
heading of N77◦E and the other pulls at a heading of S68◦E. What force should the weaker
student apply to his rope so that the keg of rocks heads due east? What resultant force is
applied to the keg?

10. Emboldened by the success of their late night keg pull in Exercise 9 above, our intrepid young
scholars have decided to pay homage to the chariot race scene from the movie ‘Ben-Hur’ by
tying three ropes to a couch, loading the couch with all but one of their friends and pulling
it due west down the street. The first rope points N80◦W, the second points due west and
the third points S80◦W. The force applied to the first rope is 100 pounds, the force applied
to the second rope is 40 pounds and the force applied (by the non-riding friend) to the third
rope is 160 pounds. They need the resultant force to be at least 300 pounds otherwise the
couch won’t move. Does it move? If so, is it heading due west?

11. We say that two non-zero vectors ~v and ~w are parallel if they have same or opposite directions.
That is, ~v 6= ~0 and ~w 6= ~0 are parallel if either v̂ = ŵ or v̂ = −ŵ. Show that this means
~v = k ~w for some non-zero scalar k and that k > 0 if the vectors have the same direction and
k < 0 if they point in opposite directions.

12. The goal of this exercise is to use vectors to describe non-vertical lines in the plane. To that
end, consider the line y = 2x − 4. Let ~v0 = 〈0,−4〉 and let ~s = 〈1, 2〉. Let t be any real
number. Show that the vector defined by ~v = ~v0 + t~s, when drawn in standard position, has
its terminal point on the line y = 2x− 4. (Hint: Show that ~v0 + t~s = 〈t, 2t− 4〉 for any real
number t.) Now consider the non-vertical line y = mx+ b. Repeat the previous analysis with
~v0 = 〈0, b〉 and let ~s = 〈1,m〉. Thus any non-vertical line can be thought of as a collection of
terminal points of the vector sum of 〈0, b〉 (the position vector of the y-intercept) and a scalar
multiple of the slope vector ~s = 〈1,m〉.

13. Prove the associative and identity properties of vector addition in Theorem 11.18.

14. Prove the properties of scalar multiplication in Theorem 11.19.
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11.8.2 Answers

1. (a) ~v + ~w =

〈
32

5
,
124

5

〉
vector

(b) 5~v − ~w = 〈−10,−20〉 vector

(c) ‖~v‖ = 1 scalar

(d) ‖~v + ~w‖ = 4
√

41 scalar

(e) ‖~v‖+ ‖~w‖ = 26 scalar

(f) −3~v + 2~w =

〈
79

5
,
228

5

〉
vector

(g) −6‖~v‖ = −6 scalar

(h) ‖ − 6~v‖ = 6 scalar

(i) ‖~w‖ 〈1,−2〉 = 〈25,−50〉 vector

(j)
1

‖~w‖
~w =

〈
7

25
,
24

25

〉
vector

(k)

∥∥∥∥ 1

‖~w‖
~w

∥∥∥∥ = 1 scalar

2. ~a = 〈117 cos(174◦), 117 sin(174◦)〉 ≈ 〈−116.359, 12.230〉

3. ~b = 〈42 cos(298◦), 42 sin(298◦)〉 ≈ 〈19.718,−37.084〉

4. ~v = ~a+~b ≈ 〈−96.641,−24.854〉 so ‖~v‖ ≈ 99.786 and θ ≈ 194.423◦

6. The tension on the left hand cable is 285.317 lbs. and on the right hand cable is 92.705 lbs.

7. The boat’s true speed is about 10 miles per hour at a heading of S50.6◦W.

8. She should fly at 83.46 miles per hour with a heading of N22.1◦E

9. The weaker student should pull about 60.05 pounds. The net force on the keg is about 153
pounds.

10. The resultant force is only 296.2 pounds so the couch doesn’t budge. Even if it did move, the
stronger force on the third rope would have made the couch drift slightly to the south as it
traveled down the street.
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11.9 The Dot Product and Projection

In Section 11.8, we learned how add and subtract vectors and how to multiply vectors by scalars.
In this section, we define a product of vectors. We begin with the following definiton.

Definition 11.11. Suppose ~v and ~w are vectors whose component forms are ~v = 〈v1, v2〉 and
~w = 〈w1, w2〉. The dot product of ~v and ~w is given by

~v · ~w = 〈v1, v2〉 · 〈w1, w2〉 = v1w1 + v2w2

For example, let ~v = 〈3, 4〉 and ~w = 〈1,−2〉. Then ~v · ~w = 〈3, 4〉 · 〈1,−2〉 = (3)(1) + (4)(−2) = −5.
Note that the dot product takes two vectors and produces a scalar. For that reason, the quantity
~v · ~w is often called the scalar product of ~v and ~w. The dot product enjoys the following properties.

Theorem 11.22. Properties of the Dot Product

• Commutative Property: For all vectors ~v and ~w, ~v · ~w = ~w · ~v

• Distributive Property: For all vectors ~u, ~v and ~w, ~u · (~v + ~w) = ~u · ~v + ~u · ~w.

• Scalar Property: For all vectors ~v and ~w and scalars k, (k~v) · ~w = k(~v · ~w) = ~v · (k ~w).

• Relation to Magnitude: For all vectors ~v, ~v · ~v = ‖~v‖2.

Like most of the theorems involving vectors, the proof of Theorem 11.22 amounts to using the
definition of the dot product and properties of real number arithmetic. To show the commutative
property for instance, let ~v = 〈v1, v2〉 and ~w = 〈w1, w2〉. Then

~v · ~w = 〈v1, v2〉 · 〈w1, w2〉
= v1w1 + v2w2 Definition of Dot Product

= w1v1 + w2v2 Commutativity of Real Number Multiplication

= 〈w1, w2〉 · 〈v1, v2〉 Definition of Dot Product

= ~w · ~v

The distributive property is proved similarly and is left as an exercise.

For the scalar property, assume that ~v = 〈v1, v2〉 and ~w = 〈w1, w2〉 and k is a scalar. Then

(k~v) · ~w = (k 〈v1, v2〉) · 〈w1, w2〉
= 〈kv1, kv2〉 · 〈w1, w2〉 Definition of Scalar Multiplication

= (kv1)(w1) + (kv2)(w2) Definition of Dot Product

= k(v1w1) + k(v2w2) Associativity of Real Number Multiplication

= k(v1w1 + v2w2) Distributive Law of Real Numbers

= k 〈v1, v2〉 · 〈w1, w2〉 Definition of Dot Product

= k(~v · ~w)

We leave k(~v · ~w) = ~v · (k ~w) as an exercise.
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For the last property, we note if ~v = 〈v1, v2〉, then ~v · ~v = 〈v1, v2〉 · 〈v1, v2〉 = v2
1 + v2

2 = ‖~v‖2, where
the last equality comes courtesy of Definition 11.8.

The following example puts Theorem 11.22 to good use. As in Example 11.8.2, we work out the
problem in great detail and encourage the reader to supply the justification for each step.

Example 11.9.1. Prove the identity: ‖~v − ~w‖2 = ‖~v‖2 − 2(~v · ~w) + ‖~w‖2.

Solution. We begin by rewriting ‖~v − ~w‖2 in terms of the dot product using Theorem 11.22.

‖~v − ~w‖2 = (~v − ~w) · (~v − ~w)

= (~v + [−~w]) · (~v + [−~w])

= (~v + [−~w]) · ~v + (~v + [−~w]) · [−~w]

= ~v · (~v + [−~w]) + [−~w] · (~v + [−~w])

= ~v · ~v + ~v · [−~w] + [−~w] · ~v + [−~w] · [−~w]

= ~v · ~v + ~v · [(−1)~w] + [(−1)~w] · ~v + [(−1)~w] · [(−1)~w]

= ~v · ~v + (−1)(~v · ~w) + (−1)(~w · ~v) + [(−1)(−1)](~w · ~w)

= ~v · ~v + (−1)(~v · ~w) + (−1)(~v · ~w) + ~w · ~w
= ~v · ~v − 2(~v · ~w) + ~w · ~w
= ‖~v‖2 − 2(~v · ~w) + ‖~w‖2

Hence, ‖~v − ~w‖2 = ‖~v‖2 − 2(~v · ~w) + ‖~w‖2 as required.

If we take a step back from the pedantry in Example 11.9.1, we see that the bulk of the work is
needed to show (~v− ~w) ·(~v− ~w) = ~v ·~v−2(~v · ~w)+ ~w · ~w. If this looks familiar, it should. Since the dot
product enjoys many of the same properties enjoyed by real numbers, the machinations required
to expand (~v− ~w) · (~v− ~w) for vectors ~v and ~w match those required to expand (v−w)(v−w) for
real numbers v and w, and hence we get similar looking results. The identity verified in Example
11.9.1 plays a large role in the development of the geometric properties of the dot product, which
we now explore.

Suppose ~v and ~w are two nonzero vectors. If we draw ~v and ~w with the same initial point, we define
the angle between ~v and ~w to be the angle θ determined by the rays containing the vectors ~v and
~w, as illustrated below. We require 0 ≤ θ ≤ π. (Think about why this is needed in the definition.)

~v

~w
θ

~v

~w ~v

~w
θ = 0 0 < θ < π θ = π

The following theorem gives us some insight into the geometric role the dot product plays.

Theorem 11.23. Geometric Interpretation of Dot Product: If ~v and ~w are nonzero vectors
then ~v · ~w = ‖~v‖‖~w‖ cos(θ), where θ is the angle between ~v and ~w.
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We prove Theorem 11.23 in cases. If θ = 0, then ~v and ~w have the same direction. It follows that
there is a real number k > 0 so that ~w = k~v.1 Hence, ~v · ~w = ~v · (k~v) = k(~v ·~v) = k‖~v‖2 = k‖~v‖‖~v‖.
Since k > 0, k = |k|, so k‖~v‖ = |k|‖~v‖ = ‖k~v‖ by Theorem 11.20. Hence, k‖~v‖‖~v‖ = ‖~v‖(k‖~v‖) =
‖~v‖‖k~v‖ = ‖~v‖‖~w‖. Since cos(0) = 1, we get ~v · ~w = k‖~v‖‖~v‖ = ‖~v‖‖~w‖ = ‖~v‖‖~w‖ cos(0), proving
that the formula holds for θ = 0. If θ = π, we repeat the argument with the difference being ~w = k~v
where k < 0. In this case, |k| = −k, so k‖~v‖ = −|k|‖~v‖ = −‖k~v‖ = −‖~w‖. Since cos(π) = −1, we
get ~v · ~w = −‖~v‖‖~w‖ = ‖~v‖‖~w‖ cos(π), as required. Next, if 0 < θ < π, the vectors ~v, ~w and ~v − ~w
determine a triangle with side lengths ‖~v‖, ‖~w‖ and ‖~v − ~w‖, respectively, as seen below.

θ
~v

~w
~v − ~w

θ

‖~v‖
‖~w‖

‖~v − ~w‖

The Law of Cosines yields ‖~v − ~w‖2 = ‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cos(θ). From Example 11.9.1,
we know ‖~v − ~w‖2 = ‖~v‖2 − 2(~v · ~w) + ‖~w‖2. Equating these two expressions for ‖~v − ~w‖2 gives
‖~v‖2+‖~w‖2−2‖~v‖‖~w‖ cos(θ) = ‖~v‖2−2(~v · ~w)+‖~w‖2 which reduces to −2‖~v‖‖~w‖ cos(θ) = −2(~v · ~w),
or ~v · ~w = ‖~v‖‖~w‖ cos(θ), as required. An immediate consequence of Theorem 11.23 is the following.

Theorem 11.24. Let ~v and ~w be nonzero vectors and let θ the angle between ~v and ~w. Then

θ = arccos

(
~v · ~w
‖~v‖‖~w‖

)
= arccos(v̂ · ŵ)

We obtain the formula in Theorem 11.24 by solving the equation given in Theorem 11.23. Since ~v
and ~w are nonzero, so are ‖~v‖ and ‖~w‖. Hence, we may divide both sides of ~v · ~w = ‖~v‖‖~w‖ cos(θ)
by ‖~v‖‖~w‖ to get cos(θ) = ~v·~w

‖~v‖‖~w‖ . Since 0 ≤ θ ≤ π by definition, the values of θ exactly match the

range of the arccosine function. Hence, θ = arccos
(

~v·~w
‖~v‖‖~w‖

)
. Using Theorem 11.22, we can rewrite

~v·~w
‖~v‖‖~w‖ =

(
1
‖~v‖~v

)
·
(

1
‖~w‖ ~w

)
= v̂ · ŵ, giving us the alternative formula θ = arccos(v̂ · ŵ).

We are overdue for an example.

Example 11.9.2. Find the angle between the following pairs of vectors.

1. ~v =
〈
3,−3

√
3
〉
, and ~w =

〈
−
√

3, 1
〉

2. ~v = 〈2, 2〉, and ~w = 〈5,−5〉

3. ~v = 〈3,−4〉, and ~w = 〈2, 1〉

Solution. We use the formula θ = arccos
(

~v·~w
‖~v‖‖~w‖

)
from Theorem 11.24 in each case below.

1Since ~v = ‖~v‖v̂ and ~w = ‖~w‖ŵ, if v̂ = ŵ then ~w = ‖~w‖v̂ = ‖~w‖
‖~v‖ (‖~v‖v̂) = ‖~w‖

‖~v‖ ~v. In this case, k = ‖~w‖
‖~v‖ > 0.
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1. We have ~v · ~w =
〈
3,−3

√
3
〉
·
〈
−
√

3, 1
〉

= −3
√

3−3
√

3 = −6
√

3. Since ‖~v‖ =
√

32 + (−3
√

3)2 =
√

36 = 6 and ‖~w‖ =
√

(−
√

3)2 + 12 =
√

4 = 2, θ = arccos
(
−6
√

3
12

)
= arccos

(
−
√

3
2

)
= 5π

6 .

2. For ~v = 〈2, 2〉 and ~w = 〈5,−5〉, we find ~v · ~w = 〈2, 2〉 · 〈5,−5〉 = 10− 10 = 0. Hence, it doesn’t

matter what ‖~v‖ and ‖~w‖ are,2 θ = arccos
(

~v·~w
‖~v‖‖~w‖

)
= arccos(0) = π

2 .

3. We find ~v · ~w = 〈3,−4〉 · 〈2, 1〉 = 6 − 4 = 2. Also ‖~v‖ =
√

32 + (−4)2 =
√

25 = 5 and

~w =
√

22 + 12 =
√

5, so θ = arccos
(

2
5
√

5

)
= arccos

(
2
√

5
25

)
. Since 2

√
5

25 isn’t the cosine of one

of the common angles, we leave our answer as θ = arccos
(

2
√

5
25

)
.

The vectors ~v = 〈2, 2〉, and ~w = 〈5,−5〉 in Example 11.9.2 are called orthogonal and we write
~v ⊥ ~w, because the angle between them is π

2 = 90◦. Geometrically, when orthogonal vectors are
sketched with the same initial point, the lines containing the vectors are perpendicular.

~v

~w

~v and ~w are orthogonal, ~v ⊥ ~w

We state the relationship between orthogonal vectors and their dot product in the following theorem.

Theorem 11.25. The Dot Product Detects Orthogonality: Let ~v and ~w be nonzero vectors.
Then ~v ⊥ ~w if and only if ~v · ~w = 0.

To prove Theorem 11.25, we first assume ~v and ~w are nonzero vectors with ~v ⊥ ~w. By definition,
the angle between ~v and ~w is π

2 . By Theorem 11.23, ~v · ~w = ‖~v‖‖~w‖ cos
(
π
2

)
= 0. Conversely,

if ~v and ~w are nonzero vectors and ~v · ~w = 0, then Theorem 11.24 gives θ = arccos
(

~v·~w
‖~v‖‖~w‖

)
=

arccos
(

0
‖~v‖‖~w‖

)
= arccos(0) = π

2 , so ~v ⊥ ~w. We can use Theorem 11.25 in the following example

to provide a different proof about the relationship between the slopes of perpendicular lines.3

Example 11.9.3. Let L1 be the line y = m1x+ b1 and let L2 be the line y = m2x+ b2. Prove that
L1 is perpendicular to L2 if and only if m1 ·m2 = −1.

Solution. Our strategy is to find two vectors: ~v1, which has the same direction as L1, and ~v2,
which has the same direction as L2 and show ~v1 ⊥ ~v2 if and only if m1m2 = −1. To that end, we
substitute x = 0 and x = 1 into y = m1x + b1 to find two points which lie on L1, namely P (0, b1)

and Q(1,m1 + b1). We let ~v1 =
−−→
PQ = 〈1− 0, (m1 + b1)− b1〉 = 〈1,m1〉, and note that since ~v1 is

2Note that there is no ‘zero product property’ for the dot product since neither ~v nor ~w is ~0, yet ~v · ~w = 0.
3See Exercise 13 in Section 2.1.
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determined by two points on L1, it may be viewed as lying on L1. Hence it has the same direction
as L1. Similarly, we get the vector ~v2 = 〈1,m2〉 which has the same direction as the line L2. Hence,
L1 and L2 are perpendicular if and only if ~v1 ⊥ ~v2. According to Theorem 11.25, ~v1 ⊥ ~v2 if and
only if ~v1 · ~v2 = 0. Notice that ~v1 · ~v2 = 〈1,m1〉 · 〈1,m2〉 = 1 +m1m2. Hence, ~v1 · ~v2 = 0 if and only
if 1 +m1m2 = 0, which is true if and only if m1m2 = −1, as required.

While Theorem 11.25 certainly gives us some insight into what the dot product means geometrically,
there is more to the story of the dot product. Consider the two nonzero vectors ~v and ~w drawn with
a common initial point O below. For the moment, assume the angle between ~v and ~w, which we’ll
denote θ, is acute. We wish to develop a formula for the vector ~p, indicated below, which is called
the orthogonal projection of ~v onto ~w. The vector ~p is obtained geometrically as follows: drop
a perpendicular from the terminal point T of ~v to the vector ~w and call the point of intersection

R. The vector ~p is then defined as ~p =
−−→
OR. Like any vector, ~p is determined by its magnitude ‖~p‖

and its direction p̂ according to the formula ~p = ‖~p‖p̂. Since we want p̂ to have the same direction
as ~w, we have p̂ = ŵ. To determine ‖~p‖, we make use of Theorem 10.4 as applied to the right

triangle 4ORT . We find cos(θ) = ‖~p‖
‖~v‖ , or ‖~p‖ = ‖~v‖ cos(θ). To get things in terms of just ~v and

~w, we use Theorem 11.23 to get ‖~p‖ = ‖~v‖ cos(θ) = ‖~v‖‖~w‖ cos(θ)
‖~w‖ = ~v·~w

‖~w‖ . Using Theorem 11.22, we

rewrite ~v·~w
‖~w‖ = ~v ·

(
1
‖~w‖ ~w

)
= ~v · ŵ. Hence, ‖~p‖ = ~v · ŵ, and since p̂ = ŵ, we now have a formula for

~p completely in terms of ~v and ~w, namely ~p = ‖~p‖p̂ = (~v · ŵ)ŵ.

O

~w

~v

θ

O

~w

~v

R

T

~p =
−−→
OR

θ

O

R

T

‖~v‖

‖~p‖

θ

Now suppose the angle θ between ~v and ~w is obtuse, and consider the diagram below. In this case,
we see that p̂ = −ŵ and using the triangle 4ORT , we find ‖~p‖ = ‖~v‖ cos(θ′). Since θ + θ′ = π, it
follows that cos(θ′) = − cos(θ), which means ‖~p‖ = ‖~v‖ cos(θ′) = −‖~v‖ cos(θ). Rewriting this last
equation in terms of ~v and ~w as before, we get ‖~p‖ = −(~v · ŵ). Putting this together with p̂ = −ŵ,
we get ~p = ‖~p‖p̂ = −(~v · ŵ)(−ŵ) = (~v · ŵ)ŵ in this case as well.



880 Applications of Trigonometry

O

~w
~v

R

T

~p =
−−→
OR

θ

θ′

If the angle between ~v and ~w is π
2 then it is easy to show that ~p = ~0.4 Since ~v ⊥ ~w in this case,

~v · ~w = 0. It follows that ~v · ŵ = 0 and ~p = ~0 = 0ŵ = (~v · ŵ)ŵ in this case, too. This gives us

Definition 11.12. Let ~v and ~w be nonzero vectors. The orthogonal projection of ~v onto ~w,
denoted proj~w(~v) is given by proj~w(~v) = (~v · ŵ)ŵ.

Definition 11.12 gives us a good idea what the dot product does. The scalar ~v · ŵ is a measure
of how much of the vector ~v is in the direction of the vector ~w and is thus called the scalar
projection of ~v onto ~w. While the formula given in Definition 11.12 is theoretically appealing,
because of the presence of the normalized unit vector ŵ, computing the projection using the formula
proj~w(~v) = (~v · ŵ)ŵ can be messy. We present two other formulas that are often used in practice.

Theorem 11.26. Alternate Formulas for Vector Projections: If ~v and ~w are nonzero vectors

proj~w(~v) = (~v · ŵ)ŵ =

(
~v · ~w
‖~w‖2

)
~w =

(
~v · ~w
~w · ~w

)
~w

The proof of Theorem 11.26, which we leave to the reader as an exercise, amounts to using the

formula ŵ =
(

1
‖~w‖

)
~w and properties of the dot product. It is time for an example.

Example 11.9.4. Let ~v = 〈1, 8〉 and ~w = 〈−1, 2〉. Find ~p = proj~w(~v), and plot ~v, ~w and ~p in
standard position.

Solution. We find ~v · ~w = 〈1, 8〉 · 〈−1, 2〉 = (−1)+16 = 15 and ~w · ~w = 〈−1, 2〉 · 〈−1, 2〉 = 1+4 = 5.
Hence, ~p = ~v·~w

~w·~w ~w = 15
5 〈−1, 2〉 = 〈−3, 6〉. We plot ~v, ~w and ~p below.

~v

~w

~p

−3 −2 −1 1

2

3

4

5

6

7

8

4In this case, the point R coincides with the point O, so ~p =
−→
OR =

−−→
OO = ~0.
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Suppose we wanted to verify that our answer ~p in Example 11.9.4 is indeed the orthogonal projection
of ~v onto ~w. We first note that since ~p is a scalar multiple of ~w, it has the correct direction, so
what remains to check is the orthogonality condition. Consider the vector ~q whose initial point is
the terminal point of ~p and whose terminal point is the terminal point of ~v.

~v

~w

~p

~q

−3 −2 −1 1

2

3

4

5

6

7

8

From the definition of vector arithmetic, ~p+~q = ~v, so that ~q = ~v−~p. In the case of Example 11.9.4,
~v = 〈1, 8〉 and ~p = 〈−3, 6〉, so ~q = 〈1, 8〉−〈−3, 6〉 = 〈4, 2〉. Then ~q · ~w = 〈4, 2〉·〈−1, 2〉 = (−4)+4 = 0,
which shows ~q ⊥ ~w, as required. This result is generalized in the following theorem.

Theorem 11.27. Generalized Decomposition Theorem: Let ~v and ~w be nonzero vectors.
There are unique vectors ~p and ~q such that ~v = ~p+~q where ~p = k ~w for some scalar k, and ~q · ~w = 0.

Note that if the vectors ~p and ~q in Theorem 11.27 are nonzero, then we can say ~p is parallel5 to
~w and ~q is orthogonal to ~w. In this case, the vector ~p is sometimes called the ‘vector component
of ~v parallel to ~w’ and ~q is called the ‘vector component of ~v orthogonal to ~w.’ To prove Theorem
11.27, we take ~p = proj~w(~v) and ~q = ~v − ~p. Then ~p is, by definition, a scalar multiple of ~w. Next,
we compute ~q · ~w.

~q · ~w = (~v − ~p) · ~w Definition of ~q.

= ~v · ~w − ~p · ~w Properties of Dot Product

= ~v · ~w −
(
~v · ~w
~w · ~w

~w

)
· ~w Since ~p = proj~w(~v).

= ~v · ~w −
(
~v · ~w
~w · ~w

)
(~w · ~w) Properties of Dot Product.

= ~v · ~w − ~v · ~w
= 0

Hence, ~q · ~w = 0, as required. At this point, we have shown that the vectors ~p and ~q guaranteed
by Theorem 11.27 exist. Now we need to show that they are unique. Suppose ~v = ~p+ ~q = ~p ′ + ~q ′

where the vectors ~p ′ and ~q ′ satisfy the same properties described in Theorem 11.27 as ~p and ~q.
Then ~p − ~p ′ = ~q ′ − ~q, so ~w · (~p − ~p ′) = ~w · (~q ′ − ~q) = ~w · ~q ′ − ~w · ~q = 0 − 0 = 0. Hence,
~w · (~p − ~p ′) = 0. Now there are scalars k and k ′ so that ~p = k ~w and ~p ′ = k ′ ~w. This means

5See Exercise 11 in Section 11.8.
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~w · (~p − ~p ′) = ~w · (k ~w − k ′ ~w) = ~w · ([k − k ′]~w) = (k − k ′)(~w · ~w) = (k − k ′)‖~w‖2. Since ~w 6= ~0,
‖~w‖2 6= 0, which means the only way ~w · (~p− ~p ′) = (k − k ′)‖~w‖2 = 0 is for k − k ′ = 0, or k = k ′.
This means ~p = k ~w = k ′ ~w = ~p ′. With ~q ′ − ~q = ~p − ~p ′ = ~p − ~p = ~0, it must be that ~q ′ = ~q as
well. Hence, we have shown there is only one way to write ~v as a sum of vectors as described in
Theorem 11.27.

We close this section with an application of the dot product. In Physics, if a constant force F is
exerted over a distance d, the work W done by the force is given by W = Fd. Here, we assume the
force is being applied in the direction of the motion. If the force applied is not in the direction of
the motion, we can use the dot product to find the work done. Consider the scenario below where
the constant force ~F is applied to move an object from the point P to the point Q.

P Q

~F~F

θθ

To find the work W done in this scenario, we need to find how much of the force ~F is in the

direction of the motion
−−→
PQ. This is precisely what the dot product ~F · P̂Q represents. Since

the distance the object travels is ‖
−−→
PQ‖, we get W = (~F · P̂Q)‖

−−→
PQ‖. Since

−−→
PQ = ‖

−−→
PQ‖P̂Q,

W = (~F · P̂Q)‖
−−→
PQ‖ = ~F · (‖

−−→
PQ‖P̂Q) = ~F ·

−−→
PQ = ‖~F‖‖

−−→
PQ‖ cos(θ), where θ is the angle between

the applied force ~F and the trajectory of the motion
−−→
PQ. We have proved the following.

Theorem 11.28. Work as a Dot Product: Suppose a constant force ~F is applied along the

vector
−−→
PQ. The work W done is given by

W = ~F ·
−−→
PQ = ‖~F‖‖

−−→
PQ‖ cos(θ),

where θ is the angle between ~F and
−−→
PQ.

Example 11.9.5. Taylor exerts a force of 10 pounds to pull her wagon a distance of 50 feet over
level ground. If the handle of the wagon makes a 30◦ angle with the horizontal, how much work
did Taylor do pulling the wagon?

30◦

Solution. We are to assume Taylor exerts the force of 10 pounds at a 30◦ angle for the duration of

the 50 feet. By Theorem 11.9.5, W = ‖~F‖‖
−−→
PQ‖ cos(θ) = (10 pounds)(50 feet) cos (30◦) = 250

√
3 ≈

433 foot-pounds of works.
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11.9.1 Exercises

1. For each pair of vectors ~v and ~w, find the following.

• ~v · ~w
• The angle θ between ~v and ~w

• proj~w(~v)

• ~q = ~v − proj~w(~v) (Show that ~q · ~w = 0.)

(a) ~v = 〈3, 4〉 and ~w = 〈5, 12〉
(b) ~v = 〈1, 17〉 and ~w = 〈−1, 0〉
(c) ~v = 〈−2,−7〉 and ~w = 〈5,−9〉
(d) ~v =

〈√
3

2 ,
1
2

〉
and ~w =

〈
−
√

2
2 ,−

√
2

2

〉
(e) ~v = 〈−8, 3〉 and ~w = 〈2, 6〉
(f) ~v = 〈34,−91〉 and ~w = 〈0, 1〉
(g) ~v = 〈−6,−5〉 and ~w = 〈10,−12〉
(h) ~v =

〈
1
2 ,−

√
3

2

〉
and ~w =

〈√
2

2 ,−
√

2
2

〉
2. In Exercise 9 in Section 11.8, two drunken college students have filled an empty beer keg with

rocks which they drag down the street by pulling on two attached ropes. The stronger of
the two students pulls with a force of 100 pounds on a rope which makes a 13◦ angle with
the direction of motion. (In this case, the keg was being pulled due east and the student’s
heading was N77◦E.) Find the work done by this student if the keg is dragged 42 feet.

3. Prove the distributive property of the dot product in Theorem 11.22.

4. Finish the proof of the scalar property of the dot product in Theorem 11.22.

5. We know that |x + y| ≤ |x| + |y| for all real numbers x and y by the Triangle Inequality
established in Exercise 4a in Section 2.2. We can now establish a Triangle Inequality for
vectors. In this exercise, we prove that ‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖ for all pairs of vectors ~u and ~v.

(a) (Step 1) Show that ‖~u+ ~v‖2 = ‖~u‖2 + 2~u · ~v + ‖~v‖2.

(b) (Step 2) Show that |~u ·~v| ≤ ‖~u‖‖~v‖. This is the celebrated Cauchy-Schwarz Inequality.6

(Hint: To show this inequality, start with the fact that |~u ·~v| = | ‖~u‖‖~v‖ cos(θ) | and use
the fact that | cos(θ)| ≤ 1 for all θ.)

(c) (Step 3) Show that ‖~u + ~v‖2 = ‖~u‖2 + 2~u · ~v + ‖~v‖2 ≤ ‖~u‖2 + 2|~u · ~v| + ‖~v‖2 ≤ ‖~u‖2 +
2‖~u‖‖~v‖+ ‖~v‖2 = (‖~u‖+ ‖~v‖)2.

(d) (Step 4) Use Step 3 to show that ‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖ for all pairs of vectors ~u and ~v.

(e) As an added bonus, we can now show that the Triangle Inequality |z + w| ≤ |z| + |w|
holds for all complex numbers z and w as well. Identify the complex number z = a+ bi
with the vector u = 〈a, b〉 and identify the complex number w = c + di with the vector
v = 〈c, d〉 and just follow your nose!

6It is also known by other names. Check out this site for details.

http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
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11.9.2 Answers

1. (a) ~v = 〈3, 4〉 and ~w = 〈5, 12〉
~v · ~w = 63

θ = arccos
(

63
65

)
≈ 14.25◦

proj~w(~v) =
〈

315
169 ,

756
169

〉
~q =

〈
192
169 ,−

80
169

〉
(b) ~v = 〈1, 17〉 and ~w = 〈−1, 0〉

~v · ~w = −1

θ = arccos
(
− 1√

290

)
≈ 93.37◦

proj~w(~v) = 〈1, 0〉
~q = 〈0, 17〉

(c) ~v = 〈−2,−7〉 and ~w = 〈5,−9〉
~v · ~w = 53

θ = arccos
(

1√
2

)
= 45◦

proj~w(~v) =
〈

5
2 ,−

9
2

〉
~q =

〈
−9

2 ,−
5
2

〉
(d) ~v =

〈√
3

2 ,
1
2

〉
and ~w =

〈
−
√

2
2 ,−

√
2

2

〉
~v · ~w = −

√
6+
√

2
4

θ = arccos
(
−
√

6+
√

2
4

)
= 165◦

proj~w(~v) =
〈√

3+1
4 ,

√
3+1
4

〉
~q =

〈√
3−1
4 , 1−

√
3

4

〉

(e) ~v = 〈−8, 3〉 and ~w = 〈2, 6〉
~v · ~w = 2

θ = arccos
(

1√
730

)
≈ 87.88◦

proj~w(~v) =
〈

1
10 ,

3
10

〉
~q =

〈
−81

10 ,
27
10

〉
(f) ~v = 〈34,−91〉 and ~w = 〈0, 1〉

~v · ~w = −91

θ = arccos
(
− 91√

9437

)
≈ 159.51◦

proj~w(~v) = 〈0,−91〉
~q = 〈34, 0〉

(g) ~v = 〈−6,−5〉 and ~w = 〈10,−12〉
~v · ~w = 0

θ = arccos (0) = 90◦

proj~w(~v) = 〈0, 0〉
~q = 〈−6,−5〉

(h) ~v =
〈

1
2 ,−

√
3

2

〉
and ~w =

〈√
2

2 ,−
√

2
2

〉
~v · ~w =

√
6+
√

2
4

θ = arccos
(√

6+
√

2
4

)
= 15◦

proj~w(~v) =
〈√

3+1
4 ,−

√
3+1
4

〉
~q =

〈
1−
√

3
4 , 1−

√
3

4

〉
2. (100 pounds)(42 feet) cos (13◦) ≈ 4092.35 foot-pounds
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11.10 Parametric Equations

As we have seen in Exercise 2 in Section 1.3, Chapter 7 and most recently in Section 11.5, there are
scores of interesting curves which, when plotted in the xy-plane, neither represent y as a function
of x nor x as a function of y. In this section, we present a new concept which allows us to use
functions to study these kinds of curves. To motivate the idea, we imagine a bug crawling across
a table top starting at the point O and tracing out a curve C in the plane, as shown below.

x

y

O

Q

P (x, y) = (f(t), g(t))

1 2 3 4 5

1

2

3

4

5

The curve C does not represent y as a function of x because it fails the Vertical Line Test and it
does not represent x as a function of y because it fails the Horizontal Line Test. However, since
the bug can be in only one place P (x, y) at any given time t, we can define the x-coordinate of P
as a function of t and the y-coordinate of P as a (usually, but not necessarily) different function of
t. (Traditionally, f(t) is used for x and g(t) is used for y.) The independent variable t in this case
is called a parameter and the system of equations{

x = f(t)
y = g(t)

is called a system of parametric equations or a parametrization of the curve C.1 The
parametrization of C endows it with an orientation and the arrows on C indicate motion in the
direction of increasing values of t. In this case, our bug starts at the point O, travels upwards to
the left, then loops back around to cross its path2 at the point Q and finally heads off into the
first quadrant. It is important to note that the curve itself is a set of points and as such is devoid
of any orientation. The parametrization determines the orientation and as we shall see, different
parametrizations can determine different orientations. If all of this seems hauntingly familiar,
it should. By definition, the system of equations {x = cos(t), y = sin(t) parametrizes the Unit
Circle, giving it a counter-clockwise orientation. More generally, the equations of circular motion
{x = r cos(ωt), y = r sin(ωt) developed on page 627 in Section 10.2.1 are parametric equations
which trace out a circle of radius r centered at the origin. If ω > 0, the orientation is counter-
clockwise; if ω < 0, the orientation is clockwise. The angular frequency ω determines ‘how fast’ the

1Note the use of the indefinite article ‘a’. As we shall see, there are infinitely many different parametric represen-
tations for any given curve.

2Here, the bug reaches the point Q at two different times. While this does not contradict our claim that f(t) and
g(t) are functions of t, it shows that neither f nor g can be one-to-one. (Think about this before reading on.)
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object moves around the circle. In particular, the equations
{
x = 2960 cos

(
π
12 t
)
, y = 2960 sin

(
π
12 t
)

that model the motion of Lakeland Community College as the earth rotates (see Example 10.2.7 in
Section 10.2) parameterize a circle of radius 2960 with a counter-clockwise rotation which completes
one revolution as t runs through the interval [0, 24). It is time for another example.

Example 11.10.1. Sketch the curve described by
{
x = t2 − 3, y = 2t− 1 for t ≥ −2.

Solution. We follow the same procedure here as we have time and time again when asked to
graph anything new – choose friendly values of t, plot the corresponding points and connect the
results in a pleasing fashion. Since we are told t ≥ −2, we start there and as we plot successive
points, we draw an arrow to indicate the direction of the path for increasing values of t.

t x(t) y(t) (x(t), y(t))

−2 1 −5 (1,−5)

−1 −2 −3 (−2,−3)

0 −3 −1 (−3,−1)

1 −2 1 (−2, 1)

2 1 3 (1, 3)

3 6 5 (6, 5)

x

y

−2−1 1 2 3 4 5 6

−5

−3

−2

−1

1

2

3

4

5

The curve sketched out in Example 11.10.1 certainly looks like a parabola, and the presence of
the t2 term in the equation x = t2 − 3 reinforces this hunch. Since the parametric equations{
x = t2 − 3, y = 2t− 1 given to describe this curve are a system of equations, we can use the

technique of substitution as described in Section 8.7 to eliminate the parameter t and get an
equation involving just x and y. To do so, we choose to solve the equation y = 2t − 1 for t to

get t = y+1
2 . Substituting this into the equation x = t2 − 3 yields x =

(
y+1

2

)2
− 3 or, after some

rearrangement, (y + 1)2 = 4(x + 3). Thinking back to Section 7.3, we see that the graph of this
equation is a parabola with vertex (−3,−1) which opens to the right, as required. Technically
speaking, the equation (y + 1)2 = 4(x + 3) describes the entire parabola, while the parametric
equations

{
x = t2 − 3, y = 2t− 1 for t ≥ −2 describe only a portion of the parabola. In this case,3

we can remedy this situation by restricting the bounds on y. Since the portion of the parabola we
want is exactly the part where y ≥ −5, the equation (y+1)2 = 4(x+3) coupled with the restriction
y ≥ −5 describes the same curve as the given parametric equations. The one piece of information
we can never recover after eliminating the parameter is the orientation of the curve.

Eliminating the parameter and obtaining an equation in terms of x and y, whenever possible,
can be a great help in graphing curves determined by parametric equations. If the system of
parametric equations contains algebraic functions, as was the case in Example 11.10.1, then the

3We will have an example shortly where no matter how we restrict x and y, we can never accurately describe the
curve once we’ve eliminated the parameter.
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usual techniques of substitution and elimination as learned in Section 8.7 can be applied to the
system {x = f(t), y = g(t) to eliminate the parameter. If, on the other hand, the parametrization
involves the trigonometric functions, the strategy changes slightly. In this case, it is often best
to solve for the trigonometric functions and relate them using an identity. We demonstrate these
techniques in the following example.

Example 11.10.2. Sketch the curves described by the following parametric equations.

1.

{
x = t3

y = 2t2
for −1 ≤ t ≤ 1

2.

{
x = e−t

y = e−2t for t ≥ 0

3.

{
x = sin(t)
y = csc(t)

for 0 < t < π

4.

{
x = 1 + 3 cos(t)
y = 2 sin(t)

for 0 ≤ t ≤ 3π
2

Solution.

1. To get a feel for the curve described by the system
{
x = t3, y = 2t2 we first sketch the

graphs of x = t3 and y = 2t2 over the interval [−1, 1]. We note that as t takes on values
in the interval [−1, 1], x = t3 ranges between −1 and 1, and y = 2t2 ranges between 0
and 2. This means that all of the action is happening on a portion of the plane, namely
{(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 2}. Next we plot a few points to get a sense of the position and
orientation of the curve. Certainly, t = −1 and t = 1 are good values to pick since these are
the extreme values of t. We also choose t = 0, since that corresponds to a relative minimum4

on the graph of y = 2t2. Plugging in t = −1 gives the point (−1, 2), t = 0 gives (0, 0) and
t = 1 gives (1, 2). More generally, we see that x = t3 is increasing over the entire interval
[−1, 1] whereas y = 2t2 is decreasing over the interval [−1, 0] and then increasing over [0, 1].
Geometrically, this means that in order to trace out the path described by the parametric
equations, we start at (−1, 2) (where t = −1), then move to the right (since x is increasing)
and down (since y is decreasing) to (0, 0) (where t = 0). We continue to move to the right
(since x is still increasing) but now move upwards (since y is now increasing) until we reach
(1, 2) (where t = 1). Finally, to get a good sense of the shape of the curve, we eliminate
the parameter. Solving x = t3 for t, we get t = 3

√
x. Substituting this into y = 2t2 gives

y = 2( 3
√
x)2 = 2x2/3. Our experience in Section 5.3 yields the graph of our final answer below.

t

x

−1 1

−1

1

t

y

−1 1

1

2

x

y

−1 1

1

2

x = t3, −1 ≤ t ≤ 1 y = 2t2, −1 ≤ t ≤ 1
{
x = t3, y = 2t2 , −1 ≤ t ≤ 1

4You should review Section 1.7.1 if you’ve forgotten what ‘increasing’, ‘decreasing’ and ‘relative minimum’ mean.
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2. For the system
{
x = 2e−t, y = e−2t for t ≥ 0, we proceed as in the previous example and

graph x = 2e−t and y = e−2t over the interval [0,∞). We find that the range of x in this
case is (0, 2] and the range of y is (0, 1]. Next, we plug in some friendly values of t to get a
sense of the orientation of the curve. Since t lies in the exponent here, ‘friendly’ values of t
involve natural logarithms. Starting with t = ln(1) = 0 we get5 (2, 1), for t = ln(2) we get(
1, 1

4

)
and for t = ln(3) we get

(
2
3 ,

1
9

)
. Since t is ranging over the unbounded interval [0,∞),

we take the time to analyze the end behavior of both x and y. As t → ∞, x = 2e−t → 0+

and y = e−2t → 0+ as well. This means the graph of
{
x = 2e−t, y = e−2t approaches the

point (0, 0). Since both x = 2e−t and y = e−2t are always decreasing for t ≥ 0, we know
that our final graph will start at (2, 1) (where t = 0), and move consistently to the left (since
x is decreasing) and down (since y is decreasing) to approach the origin. To eliminate the
parameter, one way to proceed is to solve x = 2e−t for t to get t = − ln

(
x
2

)
. Substituting

this for t in y = e−2t gives y = e−2(− ln(x/2)) = e2 ln(x/2) = eln(x/2)2
=
(
x
2

)2
= x2

4 . Or, we could

recognize that y = e−2t =
(
e−t
)2

, and since x = 2e−t means e−t = x
2 , we get y =

(
x
2

)2
= x2

4
this way as well. Either way, the graph of

{
x = 2e−t, y = e−2t for t ≥ 0 is a portion of the

parabola y = x2

4 which starts at the point (2, 1) and heads towards, but never reaches, (0, 0).6

t

x

1 2

1

2

t

y

1 2

1

x

y

1 2

1

x = 2e−t, t ≥ 0 y = e−2t, t ≥ 0
{
x = 2e−t, y = e−2t , t ≥ 0

3. For the system {x = sin(t), y = csc(t) for 0 < t < π, we start by graphing x = sin(t) and
y = csc(t) over the interval (0, π). We find that the range of x is (0, 1] while the range of
y is [1,∞). Plotting a few friendly points, we see that t = π

6 gives the point
(

1
2 , 2
)
, t = π

2
gives (1, 1) and t = 5π

6 returns us to
(

1
2 , 2
)
. Since t = 0 and t = π aren’t included in the

domain for t, (because y = csc(t) is undefined at these t-values), we analyze the behavior of
the system as t approaches 0 and π. We find that as t→ 0+ as well as when t→ π−, we get
x = sin(t)→ 0+ and y = csc(t)→∞. Piecing all of this information together, we get that for
t near 0, we have points with very small positive x-values, but very large positive y-values.
As t ranges through the interval

(
0, π2

]
, x = sin(t) is increasing and y = csc(t) is decreasing.

This means that we are moving to the right and downwards, through
(

1
2 , 2
)

when t = π
6 to

(1, 1) when t = π
2 . Once t = π

2 , the orientation reverses, and we start to head to the left,
since x = sin(t) is now decreasing, and up, since y = csc(t) is now increasing. We pass back
through

(
1
2 , 2
)

when t = 5π
6 back to the points with small positive x-coordinates and large

5The reader is encourage to review Sections 6.1 and 6.2 as needed.
6Note the open circle at the origin. See the solution to part 3 in Example 1.2.1 on page 16 and Theorem 4.1 in

Section 4.1 for a review of this concept.



11.10 Parametric Equations 889

positive y-coordinates. To better explain this behavior, we eliminate the parameter. Using a
reciprocal identity, we write y = csc(t) = 1

sin(t) . Since x = sin(t), the curve traced out by this

parametrization is a portion of the graph of y = 1
x . We now can explain the unusual behavior

as t→ 0+ and t→ π− – for these values of t, we are hugging the vertical asymptote x = 0 of
the graph of y = 1

x . We see that the parametrization given above traces out the portion of
y = 1

x for 0 < x ≤ 1 twice as t runs through the interval (0, π).

t

x

π
2

π

1

t

y

π
2

π

1

x

y

1

1

2

3

x = sin(t), 0 < t < π y = csc(t), 0 < t < π {x sin(t), y = csc(t) , 0 < t < π

4. Proceeding as above, we set about graphing {x = 1 + 3 cos(t), y = 2 sin(t) for 0 ≤ t ≤ 3π
2 by

first graphing x = 1 + 3 cos(t) and y = 2 sin(t) on the interval
[
0, 3π

2

]
. We see that x ranges

from −2 to 4 and y ranges from −2 to 2. Plugging in t = 0, π2 , π and 3π
2 gives the points (4, 0),

(1, 2), (−2, 0) and (1,−2), respectively. As t ranges from 0 to π
2 , x = 1+3 cos(t) is decreasing,

while y = 2 sin(t) is increasing. This means that we start tracing out our answer at (4, 0) and
continue moving to the left and upwards towards (1, 2). For π

2 ≤ t ≤ π, x is decreasing, as is y,
so the motion is still right to left, but now is downwards from (1, 2) to (−2, 0). On the interval[
π, 3π

2

]
, x begins to increase, while y continues to decrease. Hence, the motion becomes left

to right but continues downwards, connecting (−2, 0) to (1,−2). To eliminate the parameter
here, we note that the trigonometric functions involved, namely cos(t) and sin(t), are related
by the Pythagorean Identity cos2(t) + sin2(t) = 1. Hence, we solve x = 1 + 3 cos(t) for cos(t)
to get cos(t) = x−1

3 , and we solve y = 2 sin(t) for sin(t) to get sin(t) = y
2 . Substituting these

expressions into cos2(t)+sin2(t) = 1 gives
(
x−1

3

)2
+
(y

2

)2
= 1, or (x−1)2

9 + y2

4 = 1. From Section
7.4, we know that the graph of this equation is an ellipse centered at (1, 0) with vertices at
(−2, 0) and (4, 0) with a minor axis of length 4. Our parametric equations here are tracing
out three-quarters of this ellipse, in a counter-clockwise direction.

t

x

π
2

π 3π
2

−2

−1

1

2

3

4

t

y

π
2

π 3π
2

−2

−1

1

2

x

y

−1 1 2 3 4

−2

−1

1

2

x = 1 + 3 cos(t), 0 ≤ t ≤ 3π
2

y = 2 sin(t), 0 ≤ t ≤ 3π
2

{x = 1 + 3 cos(t), y = 2 sin(t) , 0 ≤ t ≤ 3π
2
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Now that we have had some good practice sketching the graphs of parametric equations, we turn
to the problem of finding parametric representations of curves. We start with the following.

Parametrizations of Common Curves

• To parametrize y = f(x) as x runs through some interval I, let x = t and y = f(t) and let
t run through I.

• To parametrize x = g(y) as y runs through some interval I, let x = g(t) and y = t and let t
run through I.

• To parametrize a directed line segment with initial point (x0, y0) and terminal point (x1, y1),
let x = x0 + (x1 − x0)t and y = y0 + (y1 − y0)t for 0 ≤ t ≤ 1.

• To parametrize (x−h)2

a2 + (y−k)2

b2
= 1 where a, b > 0, let x = h+ a cos(t) and y = k + b sin(t)

for 0 ≤ t < 2π. (This will impart a counter-clockwise orientation.)

The reader is encouraged to verify the above formulas by eliminating the parameter and, when
indicated, checking the orientation. We put these formulas to good use in the following example.

Example 11.10.3. Find a parametrization for each of the following curves and check your answers.

1. y = x2 from x = −3 to x = 2

2. y = f−1(x) where f(x) = x5 + 2x+ 1

3. The line segment which starts at (2,−3) and ends at (1, 5)

4. The circle x2 + 2x+ y2 − 4y = 4

5. The left half of the ellipse x2

4 + y2

9 = 1

Solution.

1. Since y = x2 is written in the form y = f(x), we let x = t and y = f(t) = t2. Since x = t, the
bounds on t match precisely the bounds on x so we get

{
x = t, y = t2 for −3 ≤ t ≤ 2. The

check is almost trivial; with x = t we have y = t2 = x2 as t = x runs from −3 to 2.

2. We are told to parametrize y = f−1(x) for f(x) = x5 + 2x+ 1 so it is safe to assume that f
is is one-to-one. (Otherwise, f−1 would not exist.) To find a formula y = f−1(x), we follow
the procedure outlined on page 299 – we start with the equation y = f(x), interchange x and
y and solve for y. Doing so gives us the equation x = y5 + 2y + 1. While we could attempt
to solve this equation for y, we don’t need to. We can parametrize x = f(y) = y5 + 2y + 1
by setting y = t so that x = t5 + 2t + 1. We know from our work in Section 3.1 that since
f(x) = x5 + 2x + 1 is an odd-degree polynomial, the range of y = f(x) = x5 + 2x + 1 is
(−∞,∞). Hence, in order to trace out the entire graph of x = f(y) = y5 + 2y+ 1, we need to
let y run through all real numbers. Our final answer to this problem is

{
x = t5 + 2t+ 1, y = t

for −∞ < t <∞. As in the previous problem, our solution is trivial to check.7

7Provided you followed the inverse function theory, of course.
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3. To parametrize line segment which starts at (2,−3) and ends at (1, 5), we make use of the
formulas x = x0 +(x1−x0)t and y = y0 +(y1−y0)t for 0 ≤ t ≤ 1. While these equations at first
glance are quite a handful, they can be summarized as ‘starting point + (displacement)t’.8

To find the equation for x, we have that the line segment starts at x = 2 and ends at x = 1.
This means the displacement in the x-direction is (1− 2) = −1. Hence, the equation for x is
x = 2 + (−1)t = 2 − t. For y, we note that the line segment starts at y = −3 and ends at
y = 5. Hence, the displacement in the y-direction is (5 − (−3)) = 8, so we get y = −3 + 8t.
Our final answer is {x = 2− t, y = −3 + 8t for 0 ≤ t ≤ 1. To check, we can solve x = 2 − t
for t to get t = 2− x. Substituting this into y = −3 + 8t gives y = −3 + 8t = −3 + 8(2− x),
or y = −8x+ 13. We know this is the graph of a line, so all we need to check is that it starts
and stops at the correct points. When t = 0, x = 2− t = 2, and when t = 1, x = 2− t = 1.
Plugging in x = 2 gives y = −8(2) + 13 = −3, for an initial point of (2,−3). Plugging in
x = 1 gives y = −8(1) + 13 = 5 for an ending point of (1, 5), as required.

4. In order to use the formulas above to parametrize the circle x2 +2x+y2−4y = 4, we first need
to put it into the correct form. After completing the squares, we get (x+ 1)2 + (y − 2)2 = 9,

or (x+1)2

9 + (y−2)2

9 = 1. Once again, the formulas x = h+ a cos(t) and y = k + b sin(t) can be
a challenge to memorize, but they come from the Pythagorean Identity cos2(t) + sin2(t) = 1.

In the equation (x+1)2

9 + (y−2)2

9 = 1, we identify cos(t) = x+1
3 and sin(t) = y−2

3 . Rearranging
these last two equations, we get x = −1 + 3 cos(t) and y = 2 + 3 sin(t). In order to complete
one revolution around the circle, we let t range through the interval [0, 2π). We get as our final
answer {x = −1 + 3 cos(t), y = 2 + 3 sin(t) for 0 ≤ t < 2π. To check our answer, we could
eliminate the parameter by solving x = −1 + cos(t) for cos(t) and y = 2 + 3 sin(t) for sin(t),
invoking a Pythagorean Identity, and then manipulating the resulting equation in x and y
into the original equation x2 + 2x+ y2 − 4y = 4. Instead, we opt for a more direct approach.
We substitute x = −1 + 3 cos(t) and y = 2 + 3 sin(t) into the equation x2 + 2x+ y2 − 4y = 4
and show that the latter is satisfied for all t such that 0 ≤ t < 2π.

x2 + 2x+ y2 − 4y = 4

(−1 + 3 cos(t))2 + 2(−1 + 3 cos(t)) + (2 + 3 sin(t))2 − 4(2 + 3 sin(t))
?
= 4

1− 6 cos(t) + 9 cos2(t)− 2 + 6 cos(t) + 4 + 12 sin(t) + 9 sin2(t)− 8− 12 sin(t)
?
= 4

9 cos2(t) + 9 sin2(t)− 5
?
= 4

9
(
cos2(t) + sin2(t)

)
− 5

?
= 4

9 (1)− 5
?
= 4

4
X
= 4

Now that we know the parametric equations give us points on the circle, we can go through
the usual analysis as demonstrated in Example 11.10.2 to show that the entire circle is covered
as t ranges through the interval [0, 2π).

8Compare and contrast this with Exercise 12 in Section 11.8.
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5. In the equation x2

4 + y2

9 = 1, we can either use the formulas above or think back to the
Pythagorean Identity to get x = 2 cos(t) and y = 3 sin(t). The normal range on the parameter
in this case is 0 ≤ t < 2π, but since we are interested in only the left half of the ellipse, we
restrict t to the values which correspond to Quadrant II and Quadrant III angles, namely
π
2 ≤ t ≤ 3π

2 . Our final answer is {x = 2 cos(t), y = 3 sin(t) for π
2 ≤ t ≤ 3π

2 . Substituting

x = 2 cos(t) and y = 3 sin(t) into x2

4 + y2

9 = 1 gives 4 cos2(t)
4 + 9 sin2(t)

9 = 1, which reduces
to the Pythagorean Identity cos2(t) + sin2(t) = 1. This proves that the points generated by

the parametric equations {x = 2 cos(t), y = 3 sin(t) lie on the ellipse x2

4 + y2

9 = 1. Employing
the techniques demonstrated in Example 11.10.2, we find that the restriction π

2 ≤ t ≤ 3π
2

generates the left half of the ellipse, as required.

We note that the formulas given on page 890 offer only one of literally infinitely many ways to
parametrize the common curves listed there. At times, the formulas offered there need to be altered
to suit the situation. Two easy ways to alter parametrizations are given below.

Adjusting Parametric Equations

• Reversing Orientation: Replacing every occurrence of t with −t in a parametric descrip-
tion for a curve (including any inequalities which describe the bounds on t) reverses the
orientation of the curve.

• Shift of Parameter: Replacing every occurrence of t with (t−c) in a parametric description
for a curve (including any inequalities which describe the bounds on t) shifts the start of
the parameter t ahead by c units.

We demonstrate these techniques in the following example.

Example 11.10.4. Find a parametrization for the following curves.

1. The curve which starts at (2, 4) and follows the parabola y = x2 to end at (−1, 1). Shift the
parameter so that the path starts at t = 0.

2. The two part path which starts at (0, 0), travels along a line to (3, 4), then travels along a
line to (5, 0).

3. The Unit Circle, oriented clockwise, with t = 0 corresponding to (0,−1).

Solution.

1. We can parametrize y = x2 from x = −1 to x = 2 using the formula given on Page 890 as{
x = t, y = t2 for −1 ≤ t ≤ 2. This parametrization, however, starts at (−1, 1) and ends at

(2, 4). Hence, we need to reverse the orientation. To do so, we replace every occurrence of t
with−t to get

{
x = −t, y = (−t)2 for−1 ≤ −t ≤ 2. After simplifying, we get

{
x = −t, y = t2

for −2 ≤ t ≤ 1. We would like t to begin at t = 0 instead of t = −2. The problem here is
that the parametrization we have starts 2 units ‘too soon’, so we need to introduce a ‘time
delay’ of 2. Replacing every occurrence of t with (t− 2) gives

{
x = −(t− 2), y = (t− 2)2 for

−2 ≤ t− 2 ≤ 1. Simplifying yields
{
x = 2− t, y = t2 − 4t+ 4 for 0 ≤ t ≤ 3.
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2. When parameterizing line segments, we think: ‘starting point + (displacement)t’. For the
first part of the path, we get {x = 3t, y = 4t for 0 ≤ t ≤ 1, and for the second part
we get {x = 3 + 2t, y = 4− 4t for 0 ≤ t ≤ 1. Since the first parametrization leaves off
at t = 1, we shift the parameter in the second part so it starts at t = 1. Our current
description of the second part starts at t = 0, so we introduce a ‘time delay’ of 1 unit
to the second set of parametric equations. Replacing t with (t − 1) in the second set of
parametric equations gives {x = 3 + 2(t− 1), y = 4− 4(t− 1) for 0 ≤ t − 1 ≤ 1. Simplify-
ing yields {x = 1 + 2t, y = 8− 4t for 1 ≤ t ≤ 2. Hence, we may parametrize the path as
{x = f(t), y = g(t) for 0 ≤ t ≤ 2 where

f(t) =

{
3t, for 0 ≤ t ≤ 1

1 + 2t, for 1 ≤ t ≤ 2
and g(t) =

{
4t, for 0 ≤ t ≤ 1

8− 4t, for 1 ≤ t ≤ 2

3. We know that {x = cos(t), y = sin(t) for 0 ≤ t < 2π gives a counter-clockwise parametrization
of the Unit Circle with t = 0 corresponding to (1, 0), so the first order of business is to reverse
the orientation. Replacing t with −t gives {x = cos(−t), y = sin(−t) for 0 ≤ −t < 2π,
which simplifies9 to {x = cos(t), y = − sin(t) for −2π < t ≤ 0. This parametrization gives
a clockwise orientation, but t = 0 still corresponds to the point (1, 0); the point (−1, 0) is
reached when t = −3π

2 . Our strategy is to first get the parametrization to ‘start’ at the
point (0,−1) and then shift the parameter accordingly so the ‘start’ coincides with t = 0.
We know that any interval of length 2π will parametrize the entire circle, so we keep the
equations {x = cos(t), y = − sin(t) , but start the parameter t at −3π

2 , and find the upper
bound by adding 2π so −3π

2 ≤ t < π
2 . The reader can verify that {x = cos(t), y = − sin(t)

for −3π
2 ≤ t < π

2 traces out the Unit Circle clockwise starting at the point (−1, 0). We now
shift the parameter by introducing a ‘time delay’ of 3π

2 units by replacing every occurrence
of t with

(
t− 3π

2

)
. We get

{
x = cos

(
t− 3π

2

)
, y = − sin

(
t− 3π

2

)
for −3π

2 ≤ t−
3π
2 < π

2 . This
simplifies10 to {x = − sin(t), y = − cos(t) for 0 ≤ t < 2π, as required.

We put our answer to Example 11.10.4 number 3 to good use to derive the equation of a cycloid.
Suppose a circle of radius r rolls along the positive x-axis at a constant velocity v as pictured below.
Let θ be the angle in radians which measures the amount of clockwise rotation experienced by the
radius highlighted in the figure.

x

y

P (x, y)

θ
r

9courtesy of the Even/Odd Identities
10courtesy of the Sum/Difference Formulas

http://en.wikipedia.org/wiki/Cycloid
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Our goal is to find parametric equations for the coordinates of the point P (x, y) in terms of θ.
From our work in Example 11.10.4 number 3, we know that clockwise motion along the Unit
Circle starting at the point (0,−1) can be modeled by the equations {x = − sin(θ), y = − cos(θ)
for 0 ≤ θ < 2π. (We have renamed the parameter ‘θ’ to match the context of this problem.) To
model this motion on a circle of radius r, all we need to do11 is multiply both x and y by the
factor r which yields {x = −r sin(θ), y = −r cos(θ) . We now need to adjust for the fact that the
circle isn’t stationary with center (0, 0), but rather, is rolling along the positive x-axis. Since the
velocity v is constant, we know that at time t, the center of the circle has traveled a distance vt
down the positive x-axis. Furthermore, since the radius of the circle is r and the circle isn’t moving
vertically, we know that the center of the circle is always r units above the x-axis. Putting these two
facts together, we have that at time t, the center of the circle is at the point (vt, r). From Section
10.1.1, we know v = rθ

t , or vt = rθ. Hence, the center of the circle, in terms of the parameter θ,
is (rθ, r). As a result, we need to modify the equations {x = −r sin(θ), y = −r cos(θ) by shifting
the x-coordinate to the right rθ units (by adding rθ to the expression for x) and the y-coordinate
up r units12 (by adding r to the expression for y). We get {x = −r sin(θ) + rθ, y = −r cos(θ) + r ,
which can be written as {x = r(θ − sin(θ)), y = r(1− cos(θ)) . Since the motion starts at θ = 0
and proceeds indefinitely, we set θ ≥ 0.

We end the section with a demonstration of the graphing calculator.

Example 11.10.5. Find the parametric equations of a cycloid which results from a circle of radius
3 rolling down the positive x-axis as described above. Graph your answer using a calculator.

Solution. We have r = 3 which gives the equations {x = 3(t− sin(t)), y = 3(1− cos(t)) for t ≥ 0.
(Here we have returned to the convention of using t as the parameter.) Sketching the cycloid by
hand is a wonderful exercise in Calculus, but for the purposes of this book, we use a graphing utility.
Using a calculator to graph parametric equations is very similar to graphing polar equations on a
calculator.13 Ensuring that the calculator is in ‘Parametric Mode’ and ‘radian mode’ we enter the
equations and advance to the ‘Window’ screen.

As always, the challenge is to determine appropriate bounds on the parameter, t, as well as for x
and y. We know that one full revolution of the circle occurs over the interval 0 ≤ t < 2π, so it

11If we replace x with x
r

and y with y
r

in the equation for the Unit Circle x2 + y2 = 1, we obtain
(
x
r

)2
+
(
y
r

)2
= 1

which reduces to x2 + y2 = r2. In the language of Section 1.8, we are stretching the graph by a factor of r in both
the x- and y-directions. Hence, we multiply both the x- and y-coordinates of points on the graph by r.

12Does this seem familiar? See Example 11.1.1 in Section 11.1.
13See Exercise 7 in Section 11.5.
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seems reasonable to keep these as our bounds on t. The ‘Tstep’ seems reasonably small – too large
a value here can lead to incorrect graphs.14 We know from our derivation of the equations of the
cycloid that the center of the generating circle has coordinates (rθ, r), or in this case, (3t, 3). Since
t ranges between 0 and 2π, we set x to range between 0 and 6π. The values if y go from the bottom
of the circle to the top, so y ranges between 0 and 6.

Below we graph the cycloid with these settings, and then extend t to range from 0 to 6π which
forces x to range from 0 to 18π yielding three arches of the cycloid. (It is instructive to note
that keeping the y settings between 0 and 6 messes up the geometry of the cycloid. The reader is
invited to use the Zoom Square feature on the graphing calculator to see what window gives a true
geometric perspective of the three arches.)

14Again, see Exercise 7 in Section 11.5.
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11.10.1 Exercises

1. Plot each set of parametric equations by hand. Be sure to indicate the orientation imparted
on the curve by the parametrization.

(a)

{
x = t2 + 2t+ 1
y = t+ 1

for t ≤ 1

(b)

{
x = cos(t)
y = sin(t)

for − π

2
≤ t ≤ π

2

(c)

{
x = −1 + 3 cos(t)
y = 4 sin(t)

for 0 ≤ t ≤ 2π

(d)

{
x = sec(t)
y = tan(t)

for
π

2
< t <

3π

2

2. Plot each set of parametric equations with the help of a graphing utility. Be sure to indicate
the orientation imparted on the curve by the parametrization.

(a)

{
x = t3 − 3t
y = t2 − 4

for − 2 ≤ t ≤ 2

(b)

{
x = 4 cos3(t)
y = 4 sin3(t)

for 0 ≤ t ≤ 2π

(c)

{
x = et + e−t

y = et − e−t for − 2 ≤ t ≤ 2

(d)

{
x = cos(3t)
y = sin(4t)

for 0 ≤ t ≤ 2π

3. Find a parametric description for the following oriented curves:

(a) the straight line segment from (3,−5) to (−2, 2)

(b) the curve y = 4− x2 from (−2, 0) to (2, 0)
(Shift the parameter so t = 0 corresponds to (−2, 0).)

(c) the circle (x− 3)2 + (y + 1)2 = 117, oriented counter-clockwise

(d) the ellipse 9x2 + 4y2 + 24y = 0, oriented counter-clockwise

(e) the ellipse 9x2 + 4y2 + 24y = 0, oriented clockwise
(Shift the parameter so t = 0 corresponds to (0, 0).)

(f) the triangle with vertices (0, 0), (3, 0), (0, 4), oriented counter-clockwise
(Shift the parameter so t = 0 corresponds to (0, 0).)

4. Use parametric equations and a graphing utility to graph the inverse of f(x) = x3 + 3x− 4.

5. Suppose an object, called a projectile, is launched into the air. Ignoring everything except
the force gravity, the path of the projectile is given by15

{
x = v0 cos(θ) t

y = −1
2gt

2 + v0 sin(θ) t+ s0

for 0 ≤ t ≤ T

where v0 is the initial speed of the object, θ is the angle from the horizontal at which the
projectile is launched,16 g is the acceleration due to gravity, s0 is the initial height of the

15A nice mix of vectors and Calculus are needed to derive this.
16We’ve seen this before. It’s the angle of elevation which was defined on page 644.
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projectile above the ground and T is the time when the object returns to the ground. (See
the figure below.)

x

y

s0
θ

(x(T ), 0)

(a) Carl’s friend Jason competes in Highland Games Competitions across the country. In
one event, the ‘hammer throw’, he throws a 56 pound weight for distance. If the weight
is released 6 feet above the ground at an angle of 42◦ with respect to the horizontal with
an initial speed of 33 feet per second, find the parametric equations for the flight of the
hammer. (Here, use g = 32 ft.

s2
.) When will the hammer hit the ground? How far away

will it hit the ground? Check your answer using a graphing utility.

(b) Eliminate the parameter in the equations for projectile motion to show that the path of
the projectile follows the curve

y = −g sec2(θ)

2v2
0

x2 + tan(θ)x+ s0

Use the vertex formula (Equation 2.4) to show the maximum height of the projectile is

y =
v2

0 sin2(θ)

2g
+ s0 when x =

v2
0 sin(2θ)

2g

(c) In another event, the ‘sheaf toss’, Jason throws a 20 pound weight for height. If the
weight is released 5 feet above the ground at an angle of 85◦ with respect to the horizontal
and the sheaf reaches a maximum height of 31.5 feet, use your results from part 5b to
determine how fast the sheaf was launched into the air. (Once again, use g = 32 ft.

s2
.)

(d) Suppose θ = π
2 . (The projectile was launched vertically.) Simplify the general parametric

formula given for y(t) above using g = 9.8 m
s2

and compare that to the formula for s(t)
given in Exercise 5 in Section 2.3. What is x(t) in this case?

6. Every polar curve r = f(θ) can be translated to a system of parametric equations with
parameter θ by {x = r cos(θ) = f(θ) cos(θ), y = r sin(θ) = f(θ) sin(θ) . Convert r = 6 cos(2θ)
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to a system of parametric equations. Check your answer by graphing r = 6 cos(2θ) by hand
using the techniques presented in Section 11.5 and then graphing the parametric equations
you found using a graphing utility.

7. In this exercise, we explore the hyperbolic cosine function, denoted cosh(t), and the hy-
perbolic sine function, denoted sinh(t), defined below:

cosh(t) =
et + e−t

2
and sinh(t) =

et − e−t

2

(a) Using a graphing utility as needed, verify that the domain of cosh(t) is (−∞,∞) and
the range of cosh(t) is [1,∞).

(b) Using a graphing utility as needed, verify that the domain and range of sinh(t) are both
(−∞,∞).

(c) Show that {x(t) = cosh(t), y(t) = sinh(t) parametrize the right half of the ‘unit’ hyper-
bola x2 − y2 = 1. (Hence the use of the adjective ‘hyperbolic.’)

(d) Compare the definitions of cosh(t) and sinh(t) to the formulas for cos(t) and sin(t) given
in Exercise 11f in Section 11.7.

(e) Four other hyperbolic functions are waiting to be defined: the hyperbolic secant sech(t),
the hyperbolic cosecant csch(t), the hyperbolic tangent tanh(t) and the hyperbolic cotan-
gent coth(t). Define these functions in terms of cosh(t) and sinh(t), then convert them to
formulas involving et and e−t. Consult a suitable reference (a Calculus book, or this en-
try on the hyperbolic functions) and spend some time reliving the thrills of trigonometry
with these ‘hyperbolic’ functions.

(f) If these functions look familiar, they should. Enjoy a trip down memory lane by revisiting
Exercise 13 in Section 6.5, Exercise 5 in Section 6.3 and the answer to Exercise 7 in
Section 6.4.

http://en.wikipedia.org/wiki/Hyperbolic_function
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11.10.2 Answers

1. (a)

{
x = t2 + 2t+ 1
y = t+ 1

for t ≤ 1

x

y

1 2 3 4 5

−2

−1

1

2

(b)

{
x = cos(t)
y = sin(t)

for − π

2
≤ t ≤ π

2

x

y

−1 1

−1

1

(c)

{
x = −1 + 3 cos(t)
y = 4 sin(t)

for 0 ≤ t ≤ 2π

x

y

−4 −3 −2 −1 1 2

−4

−3

−2

−1

1

2

3

4

(d)

{
x = sec(t)
y = tan(t)

for
π

2
< t <

3π

2

x

y

−4 −3 −2 −1

−4

−3

−2

−1

1

2

3

4

2. (a)

{
x = t3 − 3t
y = t2 − 4

for − 2 ≤ t ≤ 2

x

y

−2 −1 1 2

−4

−3

−2

−1

(b)

{
x = 4 cos3(t)
y = 4 sin3(t)

for 0 ≤ t ≤ 2π

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4
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(c)

{
x = et + e−t

y = et − e−t for − 2 ≤ t ≤ 2

x

y

1 2 3 4 5 6 7

−7

−5

−3

−1

1

3

5

7

(d)

{
x = cos(3t)
y = sin(4t)

for 0 ≤ t ≤ 2π

x

y

−1 1

−1

1

3.

(a)

{
x = 3− 5t
y = −5 + 7t

for 0 ≤ t ≤ 1

(b)

{
x = t− 2
y = 4t− t2 for 0 ≤ t ≤ 4

(c)

{
x = 3 +

√
117 cos(t)

y = −1 +
√

117 sin(t)
for 0 ≤ t < 2π

(d)

{
x = 2 cos(t)
y = −3 + 3 sin(t)

for 0 ≤ t < 2π

(e)

{
x = 2 cos

(
t− π

2

)
= 2 sin(t)

y = −3− 3 sin(t− π
2 ) = −3 + 3 cos(t)

for 0 ≤ t < 2π

(f) {x(t), y(t) where:

x(t) =


3t, 0 ≤ t ≤ 1

6− 3t, 1 ≤ t ≤ 2
0, 2 ≤ t ≤ 3

y(t) =


0, 0 ≤ t ≤ 1

4t− 4, 1 ≤ t ≤ 2
12− 4t, 2 ≤ t ≤ 3

5. (a) The parametric equations for the hammer throw are

{
x = 33 cos(42◦)t
y = −16t2 + 33 sin(42◦)t+ 6

for

t ≥ 0. To find when the hammer hits the ground, we solve y(t) = 0 and get t ≈ −0.23
or 1.61. Since t ≥ 0, the hammer hits the ground after approximately t = 1.61 seconds
after it was launched into the air. To find how far away the hammer hits the ground,
we find x(1.61) ≈ 39.48 feet from where it was thrown into the air.

(c) We solve y =
v2

0 sin2(θ)

2g
+ s0 =

v2
0 sin2(85◦)

2(32)
+ 5 = 31.5 to get v0 = ±41.34. The initial

speed of the sheaf was approximately 41.34 feet per second.

6. r = 6 cos(2θ) translates to

{
x = 6 cos(2θ) cos(θ)
y = 6 cos(2θ) sin(θ)

for 0 ≤ θ < 2π.
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nth root

definition, 311

index, 311

radicand, 311

u-substitution, 211

x-axis, 1

x-coordinate, 2

x-intercept, 23

y-axis, 1

y-coordinate, 2

y-intercept, 23

abscissa, 2

absolute value, 127

acute angle, 594

amplitude, 676, 747

angle

acute, 594

between two vectors, 876

decimal degrees, 595

definition, 593

degree, 594

DMS, 595

initial side, 598

measurement, 593

negative, 598

obtuse, 594

of depression, 650

of inclination, 644

oriented, 597

positive, 598

radian measure, 601

reference, 616

right, 594

standard position, 598

straight, 593

terminal side, 598

vertex, 593

angle side opposite pairs, 761

angles

complementary, 596

coterminal, 598

quadrantal, 598

supplementary, 596

annuity

annuity-due, 568

introduction to, 567

ordinary, 568

asymptote

horizontal, 234, 235

slant (oblique), 256

vertical, 234

average rate of change, 120

bearings, 769

binomial coefficient, 583

Binomial Theorem, 584

bisection method, 215

Cartesian coordinate plane, 1

Cauchy’s Bound, 207

circle

definition, 400

from slicing a cone, 397

standard equation, 400

standard equation, alternate, 422

901



902 Index

circular function, 635
common base, 332
complementary angles, 596
complex number, 842
complex number

argument, 842
argument

principal argument, 842
conjugate, 220
definition, 219
imaginary part, 842
modulus, 842
polar form

cis-notation, 846
real part, 842
rectangular form, 842

complex numbers
imaginary unit, i, 219

complex plane, 842
conic sections

definition, 397
continuous, 184
coordinates

polar, 782
rectangular, 782

coordinates, Cartesian, 2
cosecant

of an angle, 635
cosine

of an angle, 612, 635
cost

average, 269
fixed, start-up, 118
variable, 119

cotangent
of an angle, 635

Cramer’s Rule, 513
curve

orientated, 885
cycloid, 893

decimal degrees, 595
degree measure, 594

DeMoivre’s Theorem, 848
dependent variable, 44
Descartes’ Rule of Signs, 212
difference quotient, 58
directrix, 834
discriminant, 144
discriminant

conic, 832
distance

definition, 6
distance formula, 7

DMS, 595
domain

applied, 49
definition of, 36
implied, 47

eccentricity, 834
ellipse

center, 419
definition, 419
eccentricity, 425
foci, 419
from slicing a cone, 398
guide rectangle, 422
major axis, 419
minor axis, 419
reflective property, 426
standard equation, 422
vertices, 419

ellipsis (. . . ), 19
equation

contradiction, 449
graph, 22
identity, 449
linear of n variables, 454
linear of two variables, 449

extended interval notation, 647

factorial, 554, 581
focus, 834
frequency, 677
frequency
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angular, 607, 677, 747
ordinary, 607, 747

function
(absolute) maximum, 72
(absolute, global) minimum, 72
argument, 44
circular, 635
composite, 279
constant, 70, 116
decreasing, 70
definition as a relation, 34
difference, 55
difference quotient, 58
domain, 36
even, 66
exponential, 330
graphing, 64
identity, 125
increasing, 70
inverse, 294
linear, 116
local (relative) maximum, 72
local (relative) minimum, 72
logarithmic, 334
notation, 44
odd, 66
one-to-one, 296
periodic, 672
piecewise-defined, 49
polynomial, 179
product, 55
quadratic, 139
quotient, 55
range, 36
sum, 55
zero, 66

functions
algebraic, 313

fundamental cycle
of y = cos(x), 673

Fundamental Theorem of Algebra, The, 222

graph

function, 64
graphing

equation, 22
greatest integer function, 51
growth model

limited, 384
logistic, 384
uninhibited, 381

harmonic motion, 751
Henderson-Hasselbalch Equation, 356
Heron’s Formula, 776
Horizontal Line Test (HLT), 296
hyperbola

asymptotes, 433
branch, 433
center, 433
conjugate axis, 434
definition of, 433
foci, 433
from slicing a cone, 398
guide rectangle, 434
standard equation

horizontal, 436
vertical, 436

transverse axis, 433
vertices, 433

hyperbolic cosine, 898
hyperbolic sine, 898

imaginary axis, 842
independent variable, 44
induction

base step, 573
induction hypothesis, 573
inductive step, 573

inflection point, 386
integers, 51
interest

compound, 378
compound continuously, 380
simple, 378

interval notation
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extended, 647

Law of Cosines, 773
Law of Sines, 762
line

horizontal, 17
parallel, 124
perpendicular, 124
point-slope form, 115
slope-intercept form, 115
vertical, 17

logarithm
common, 334
natural, 334

matrix
additive identity, 477
additive inverse, 477
adjoint, 516
associative law of addition, 477
associative property of matrix multiplication,

483
associative property of scalar multiplication,

479
augmented, 467
cofactor, 510
commutative law of addition, 477
definition, 466
determinant, 508
dimension, 466
distributive property of matrix multiplica-

tion over matrix addition, 483
distributive property of scalar multiplication

over matrix addition, 479
distributive property of scalar multiplication

over scalar addition, 479
entry, 466
equality, 476
identity of matrix multiplication, 483
identity of scalar multiplication, 479
invertible, 497
leading entry, 468
main diagonal, 483

matrix multiplication, 482
minor, 510
product of row and column, 482
reduced row echelon form, 469
rotation, 839
row echelon form, 468
scalar multiplication, 478
size, 466
square matrix, 484
sum, 476
zero product property for scalar multiplica-

tion, 479
measure of an angle, 593
midpoint

definition, 8
midpoint formula, 8

natural base, 332

ordered pair, 2
ordinate, 2
orientation, 885
oriented angle, 597
orthogonal, 878
orthogonal projection, 879

parabola, 141
parabola

axis of symmetry, 141
definition, 407
focal diameter, 409
focal length, 408
from slicing a cone, 398
latus rectum, 409
reflective property, 412
standard equation

horizontal, 411
vertical, 408

vertex, 141, 407
paraboloid, 412
parallel vectors, 873
parameter, 885
parametric equations, 885
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parametrization, 885
partial fractions, 522
Pascal’s Triangle, 588
period, 747
period

circular motion, 607
periodic function, 672
phase, 677, 747
phase shift, 677, 747
piecewise-defined function, 49
polar coordinates, 782
polar coordinates

polar axis, 782
pole, 782

polynomial division
dividend, 198
divisor, 198
factor, 198
quotient, 198
remainder, 198
synthetic division, 200

polynomial function
completely factored

over the complex numbers, 223
over the real numbers, 223

constant term, 180
degree, 180
end behavior, 183
leading coefficient, 180
leading term, 180
variations in sign, 211
zero

multiplicity, 188
price-demand equation, 119
principal, 378
profit, 144
projection

x−axis, 37
orthogonal, 879

Pythagorean Conjugate, 642

quadrants, 4
quadratic formula, 143

quadratic function
general form, 142
irreducible quadratic, 223
standard form, 142

radian measure, 601
range

definition of, 36
rational functions, 231
Rational Zeros Theorem, 207
ray

definition, 593
initial point, 593

real axis, 842
rectangular coordinates, 782
reflecton, 6
regression

coefficient of determination, 171
correlation coefficient, 171
least squares line, 170
quadratic, 173
total squared error, 170

relation
algebraic description, 16
definition, 14
graphical description, 14
list description, 14
roster description, 14

revenue, 121
right angle, 594
rotation matrix, 839

scalar projection, 880
secant

of an angle, 635
secant line, 120
sequence

arithmetic
common difference, 554
definition, 554

definition, 552
geometric

common ratio, 554
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definition, 554

sequences

alternating, 552

index of summation, 562

lower limit of summation, 562

recursion, 554

summation notation, 562

term, 552

upper limit of summation, 562

series, 569

sign diagram, 160

sine

of an angle, 612, 635

sinusoid

amplitude, 676, 747

baseline, 747

frequency

angular, 747

ordinary, 747

period, 747

phase, 747

phase shift, 677, 747

vertical shift, 747

sinusoid curve, 676

slope

definition, 111

rate of change, 114

smooth, 184

straight angle, 593

supplementary angles, 596

symmetry

about the x-axis, 4

about the y-axis, 4

about the origin, 4

system of equations

back-substitution, 460

coefficient matrix, 488

consistent, 453

constant matrix, 488

definition, 449

dependent, 454

free variable, 452

Gauss-Jordan Elimination, 470
Gaussian Elimination, 457
inconsistent, 454
independent, 454
leading variable, 456
overdetermined, 454
parametric solution, 452
triangular form, 456
underdetermined, 454
unknowns matrix, 488

tangent
of an angle, 635

Triangle Inequality, 135

Unit Circle
definition, 403

variable
dependent, 44
independent, 44

variation
constant of proportionality, 272
direct, 272
inverse, 272
joint, 272

vector, 859
vector

associative property of scalar multiplication,
864

component form, 859
direction vector, 866
distributive property of scalar multiplication

over scalar addition, 864
distributive property of scalar multiplication

over vector addition, 864
dot product, 875
head, 859
identity of scalar multiplication, 864
initial point, 859
magnitude, 866
normalization, 868
orthogonal projection, 879
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orthogonal vectors, 878
parallel, 873
resultant, 860
scalar multiplication, 863
scalar product, 875
scalar projection, 880
standard position, 865
tail, 859
terminal point, 859
triangle inequality, 883
unit vector, 868
zero product property for scalar multiplica-

tion, 864
vectors

angle between, 876
velocity

average angular, 606
instantaneous, 606
instantaneous angular, 606

Vertical Line Test (VLT), 34

work, 882

zero of a function, 66
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